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ABSTRACT
Road networks are important datasets for an increasing num-
ber of applications. However, the creation and maintenance
of such datasets pose interesting research challenges. This
work proposes an automatic road network generation algo-
rithm that takes vehicle tracking data in the form of trajec-
tories as input and produces a road network graph. This
effort addresses the challenges of evolving map data sets,
specifically by focusing on (i) automatic map-attribute gen-
eration (weights), (ii) automatic road network generation,
and (iii) by providing a quality assessment. An experimen-
tal study assesses the quality of the algorithms by generating
a part of the road network of Athens, Greece, using trajec-
tories derived from GPS tracking a school bus fleet.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining

General Terms
Algorithms

Keywords
map generation, FCD, tracking data

1. INTRODUCTION
Road networks and more generally transportation net-

works are an interesting research subject in that they repre-
sent the principal data set for a large range of applications,
including GIS, transportation systems, location-based ser-
vices and Web mapping. Currently, such datasets are pro-
vided by two global players, Navteq and TeleAtlas. More
recently, community-driven efforts have begun to challenge
commercial efforts, at least for the context of non-critical
applications (cf. [1]).
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This work will address the challenges of evolving map data
sets, specifically by working towards automatic map and at-
tribute generation from massive amounts of vehicle tracking
data. Our objective is to create an algorithm that automati-
cally extracts the road network graph and related attributes
such as road categories from tracking data obtained using
GPS-based position samples (floating car data - FCD) for
large vehicle fleets.

Advances in mobile computing have essentially led to a
commodization of online navigation services with a consid-
erable number of users now being able to determine and
communicate their location. The advent of Web 2.0 ap-
plications that have positioning as their core theme further
increases the amount of tracking data that is currently avail-
able for data analysis. From this point of view, algorithms
that take tracking data as input and produce map data sets
would be relevant, especially when considering disaster sce-
narios in which existing infrastructure is wiped out and ad-
hoc networks need to be recorded. Besides deriving road
networks, the presented approach can be used to identify
implicit movement patterns in any kinds of spatiotemporal
tracking data, e.g., animal migration, historic trade routes,
etc. Existing approaches to the road network generation
problem do exist. As we will see in the next section, both,
the GIS and, more recently, the Computational Geometry
communities have addressed this problem, each having their
specific strengths and limitations.

The presented approach exploits the ubiquitous trajec-
tory data in order to analyze, reconstruct and extract road
network geometries enriched by attributes. Our heuristics-
based approach relies on “bundling” the trajectories around
intersection nodes. Intersection nodes are derived by detect-
ing clusters in changes to movement patterns. Essentially,
we identify areas in which different types of turns are de-
tected and designate them as intersection nodes. Linking
the trajectories to intersections allows us then to derive links
and consequently the entire geometry of the road network.
To assess the quality, we sample the generated road network
and the actual road network by means of distinct and ran-
dom shortest-path queries. Comparing the shortest-paths
generated in both networks will give us an indication of the
quality of the generated road network.

The remainder of this work is organized as follows. Sec-
tion 2 describes related work and research efforts on road
network generation techniques. Section 3 discusses the meth-
ods developed regarding trajectories clustering and calcula-
tion of intersection nodes, connecting intersection nodes and
the generation of a road network. Additionally, we suggest



an evaluation approach to provide quality guarantees of the
generated road network in relation to the underlying net-
work in Section 4. Section 5 presents an experimental eval-
uation and Section 6 gives conclusions and directions for
future work.

2. RELATED WORK
Automatic map construction and automatic road network

refinement for improved navigation services have been tack-
led using a variety of methods including probabilistic mod-
els, computational geometry algorithms such as shape match-
ing or curve similarity, but also image processing methods.
What follows is a discussion of such relevant approaches.

Various approaches exist to solve the problem of road net-
work reconstruction. Road networks can be derived from
satellite or aerial images by means of image processing tech-
niques [14, 13, 15, 5, 20, 16]. For example, Tavakoli et al.
[18] group together edges found by an edge detector into
shapes representing buildings and roads. Some of the earli-
est works that address refining existing map datasets with
the use of tracking data is [17]. It exhibits similarities to
the present approach in that it applies clustering techniques
to infer intersection models. However, no actual road net-
work is derived and no quality estimates are given. Using
AI techniques, Bruntrup et al. [7] build a road network by
incrementally integrating trace data starting with a single
trajectory and placing strict assumptions on the quality of
the data. In [12], Guo et al. use statistical analysis of GPS
traces to generate road maps. Chen et al. [10] use a Gaus-
sian mixture model to infer the lane structure of roads from
GPS data. However, their effort does not go beyond the
definition of such a model. Both approaches have not been
widely experimented on large-scale data, while our approach
uses a portion of the city of Athens.

Several works exist that approach the problem using com-
putational geometry methods with quality guarantees. Chen
et al. [9] focus on detecting seed elements in the road net-
work and connecting them subsequently. Aanjaneya et al.
[2] view road networks as metric graphs and their focus is
on computing the combinatorial structure, but they do not
compute an explicit embedding of nodes (vertices) and links
(edges). Both approaches are based on sub-sampling the
trajectory data and then using an unordered set of points
to derive the complete road network. Recently, Ahmed and
Wenk [3] developed an incremental method that employs the
Frèchet distance to match partial trajectories to a graph.
While the authors give partial quality guarantees, their ap-
proach does not address the basic connectivity problem and
how to measure the respective quality of a generated net-
work.

Heuristics-based methods include Edelkamp et al. [11]
addressing efficient algorithms for road segmentation, map
matching, and lane clustering using GPS traces. Worrall et
al. [19] compress GPS traces to infer a digitized road map
and present their results only for small datasets. In [8], Lili
and Krumm present a method to eliminate noise in GPS
traces and Fathi and Krumm [4] provide an approach that
detects intersections by using a trained detector. While a
road network is finally derived, their approach works best
for well aligned road networks.

Our approach differs in that we try to preserve the un-
derlying connectivity of the road network embedded in the
vehicle trajectories. Essentially, trajectories are clustered to-

gether based on intersection indicators (turn samples) and
the final road network is derived by merging the trajectories
that link the intersections. As such this approach works for
arbitrary“movement networks”. In addition and, to the best
of our knowledge, there has not been any comparable effort
for computing quality measures with respect to connectivity
and spatial similarity for generated road networks.

3. ROAD NETWORK GENERATION
The contribution of this work will be to derive a road net-

work by sampling it using vehicles and GPS tracking. By
means of the (set of) algorithms that is discussed in the fol-
lowing, the tracking data is essentially reduced to the actual
road network geometry. In addition, road categories are
derived based on the amount of data that is available for
particular road network portions. Our task will be to align
the vehicle trajectories, so as to derive the actual road net-
work underlying it. Figure 1 plots such tracking data with
the actual road network being (at least visually) evident.
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Figure 1: Tracking data example - Athens, school
bus data

The algorithm to derive the road network involves three
essential steps; (i) identifying intersections, i.e., use turns
in vehicle trajectories as indicator for intersections, (ii) con-
necting intersections, i.e., create links between intersections
by using trajectories, and (iii) reducing the network graph,
i.e., collapse the links to create a meaningful road network
graph. The remainder of this section describes the various
steps of the methods in detail.

3.1 Data
A road network is made of basic pieces usually referred to

as links. A link is an atomic road portion such as a road
section between two intersections, or a ramp onto a high-
way. The link notion is introduced to reflect the connectiv-
ity between roads of possibly different importance. A road
network is modeled as a directed graph G = (V,E), whose
vertices V represent intersections between links and edges
E represent links.

The vehicle tracking data is commonly referred to as Float-
ing car data (FCD), i.e., data generated by one vehicle as
a sample to assess to overall traffic conditions (“cork swim-
ming in the river”). Typically these data comprise basic
vehicle telemetry such as speed, direction and most impor-
tantly the position of the vehicle in the form of vehicle track-
ing data. Having large amounts of vehicles collecting such
data for a given spatial area such as a city (e.g., taxis, public
transport, utility vehicles, private vehicles), it will create an
accurate picture of the traffic conditions in time and space.



The resulting data comprises vehicle trajectories, which can
be modeled as a list of space-time points T = p0, . . . , pn with
pi = 〈xi, yi, ti〉 and xi, yi ∈ R, ti ∈ R+ for i = 0, 1, . . . , n and
t0 < t1 < t2 < . . . < tn.

The recorded vehicle trajectories are affected by a mea-
surement error due to the limited GPS accuracy and a sam-
pling error due to the sampling rate (typically 30s ), having
a great impact on the quality of the data set [6]. As in the
case of map-matching, both errors need to be addressed by
the respective algorithm, in our case, the map construction
algorithm. However, in our experimentation, we introduced
some heuristics that allow us to filter out outliers in the data
(cf. Section 4).

3.2 Turns and Intersections
Given a vehicle trajectory, we use turns to detect intersec-

tion nodes of the road network. Specific indicators for turns
are changes in the vehicle’s movement in terms of speed and
direction.

3.2.1 Indicators
Deriving from a common-sense understanding of vehicular

movement, when turning, a vehicle (i) reduces its speed and
(ii) changes its direction. Our approach uses a speed thresh-
old in combination with a change in direction. Figure 2 gives
an example of a trajectory with two position samples and
the respective direction vectors. In the specific experiments
of Section 4, a speed threshold of 40km/h and a direction
threshold of 15◦ were used. These values were determined
in series of experiments to yield the best results for the spe-
cific network case and tracking data. Figure 4 gives the
pseudo-code of the Intersection Detection algorithm. Here,
the direction and speed difference are considered in Lines 8
and 9, respectively.

Figure 2: Angular difference

The Intersection Detection algorithm scans all trajectories
in a position-by-position and an edge-by-edge manner taking
into consideration the above conditions (Lines 6-10). We
record all positions that satisfy the turn conditions (Line
11) and label them turn samples.

3.2.2 Clustering Turns
Categorizing turns by means of a turn model will enable

us to cluster turn samples stemming from different trajec-
tories and deriving intersections. The turn model describes
all the possible movement patterns by using direction (0 is
east, degrees increase counter-clockwise) in relation to an in-
tersection. Using this approach, we essentially sample turns
with respect their direction. While in this work we consider

typical 4-way intersections, the approach can be extended
to cover more complex intersections.

The turn samples are classified by using eight types of
turns. The turn types captures all the possible combinations
of incoming and outgoing links at a candidate intersection.
Odd numbers are used for outgoing turns and even numbers
for incoming turns resulting in four turn pairs as shown in
Figure 3.
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Figure 3: Turn model

Using the turn model, the turn samples are grouped ac-
cording to (i) spatial proximity and (ii) turn similarity.

Within each turn category now, we use an agglomera-
tive hierarchical clustering method and a distance thresh-
old of 50m (cf. Figure 4, Line 12) to identify turn clus-
ters, i.e., turn samples clustered together based on location
(candidate intersection location) and turn type. Again, this
distance threshold was established through experimentation
and yields only for the the specific network and tracking
data case the best result.

Intersections(T )

� Clustering turns to compute intersections
1 P ← ∅ � Position sample in trajectory
2 PS ← ∅ � Turn samples
3 PC ← ∅ � Turn clusters
4 I ← ∅ � Intersection nodes
5 Angle, Speed , Dist � Parameter thresholds

� Process all position samples in all trajectories
6 while (T [i] 6= null)
7 P ← T [i] � Positions samples of a single trajectory
8 ap ← AngularDiff(P [i− 1], P [i], P [i+ 1])

9 vp ←
δx(P [i− 1], P [i])

δt(P [i− 1], P [i])
� Mean speed

10 if (ap ∈ Angle and vp ∈ Speed)
11 PS .insert(P [i],TurnType(P [i]))

� Cluster turn samples into turn clusters
12 PC ← ClusterTurns(PS ,Dist)

� Cluster turn clusters into intersection nodes
13 I ← ClusterIntersections(PC ,Dist)

Figure 4: Finding intersections

Figure 5(a) shows the calculated result for three roads
that are met at an intersection. X and O markers are used
for “odd” and “even” turn types, respectively. Using color,



we further distinguish turn types. Yellow is used for types
1 and 2, orange for 3 and 4, red for 5 and 6, and black for 7
and 8.
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(a) Position samples → turn clusters
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(b) Turn clusters → intersection nodes
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(c) Connecting intersection nodes

Figure 5: Computing intersection nodes

3.2.3 Intersections
Having identified turns, the question that remains to be

answered is how we actually derive intersections. Again, per-
forming agglomerative hierarchical clustering in connection
with a distance threshold, (in our case 25m), we translate
the turn clusters established in the previous step, to inter-
section nodes (Figure 4, Line 13).

For each so generated intersection node, we also record
two properties. A weight for the node is derived as the sum
of the weights recorded for all constituting turn clusters, i.e.,
the total number of turns the intersection node was derived
from. In addition, the permitted maneuvers for each node
are recorded, i.e., given an intersection, what are the possible
turns as “seen” by the GPS tracking data.

The distance threshold of 25m was established through

experimental evaluation, i.e., it is lower than the threshold
used for establishing turn clusters since the clusters’ position
is already located near a turn. Experimentation showed that
a greater threshold would produce fewer intersections, as
would a smaller threshold produce too many intersection
nodes.

Essentially, we establish turn clusters based on distance
and turn type, to then group them into intersection nodes.

Figure 5(b) shows intersection nodes using grey ∗markers.

3.3 Connecting Intersection Nodes
At this stage in the network generation process, we suc-

ceeded in deriving isolated intersection nodes. In the fol-
lowing, we connect them, i.e., create links, by using the
trajectory data. A fringe benefit of the intersection nodes
computation based on turns is the connection of trajectory
portions to these nodes, i.e., for all trajectories we know
which samples helped constituting intersection nodes. To
derive links we exploit this knowledge. We record for each
intersection node the outgoing and/or incoming trajectory
portions connecting this node to other nodes by essentially
scanning all trajectories, whether they contain sequences of
intersection nodes. The result of this step is the creation
of a road network that connects nodes (intersections) with
(trajectory portions) links.

The algorithm is simple, in that it essentially examines
all trajectories based on whether they contain turn samples
(with turn samples constituting intersections nodes) and
“marking” the respective trajectory portions. In our data
structure handling the trajectory data, all position samples
that are also turn samples have been marked as such. Hence,
performing a linear scan of all trajectories reveals the respec-
tive portions of the trajectories that connect turn samples,
and, hence, intersection nodes (Figure 7, Lines 4-7).
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(a) Computing link samples between two intersections
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(b) Average positions of link samples

Figure 6: Computing intersection nodes

Essentially, two intersection nodes in question will typi-
cally be connected by a number of trajectories, i.e., vehicles
that have passed more than once from an intersection to
the other. In terms of network geometry, at this stage of



the overall process, we introduce redundant links between
intersection nodes as we simply want to identify which tra-
jectory relates to which intersection node. Merging these
links will be the next step. We refer to trajectory portions
connecting intersections at this stage as link samples. To
establish link samples, we merge the spatial portion of tra-
jectories using a sweep-line algorithm (Figure 7, Lines 8-13).
Given a set of trajectories, at each position sample we com-
pute an average position based on the normal distance of
the position sample to all other trajectories. Figure 6(a)
shows a set of positions that comprise trajectory portions
and the resulting link (grey) that was derived for connecting
the two intersection nodes (black crosses). Horizontal lines
indicate positions samples at which the average position is
computed. Figure 6(b) shows a close up of the resulting link
(grey) for the first two position samples shown at the left of
Figure 6(a). In addition, for each link sample (i) a weight
is derived representing the number of the trajectories com-
prising a link sample and (ii) a width is computed as the
maximum spatial extent of the trajectories (thickness of a
link sample is derived by the bundled trajectories). This
link sample width will be used in the next step when com-
pacting the road network as a size parameter of the buffer
region that is used in the process.

Figure 5(c) shows how intersection nodes are connected
by various trajectories. It also shows that trajectories that
“pass through”, i.e., do not turn at the intersection, have so
far not been considered (but will be in the next section).
In general, the number of generated intersection nodes de-
pends highly on the parameter setting of the algorithm, i.e.,
choosing lower or higher threshold values will generate more
or fewer intersection nodes, respectively. As also discussed
in Section 5, the parameters need to be tuned to the network
and the data in question!

Links(T )

� Connecting intersection nodes using trajectories
1 I ← ∅ � Intersection nodes
2 IS ← ∅ � Intersection sequence
3 LS ← ∅ � Link samples

� Identify intersection sequences from trajectories
4 for each t ∈ T
5 for each p ∈ t
6 if p ∈ I � was mapped to an intersection node

� record prev., current intersection node & pts
7 IS ← {i−, i, p−, p, t}

� Collect and merge link samples
8 for each {i−, i} ∈ IS

� add all trajectory portions for this intersection pair
9 for each t ∈ IS

10 LS ← {t, p−, . . . , p}
� cluster link samples

11 Width ←Width(LS)
12 Weight ←Weight(LS)
13 LS ← SweepMerge(LS)

Figure 7: Connecting intersections

3.4 Compacting Links
The state of the generated road network at this point is

that we have intersection nodes connected by links derived
from trajectories that exhibit turns at these intersections.
This also means that a large portion of the data, trajec-
tories “passing through” at intersections (bulk of the data
shown in, e.g., Figure 5(c)), has not been considered yet
with respect to all link samples. In a nutshell, the algorithm
identifies trajectory portions that are close to existing links
by means of a buffer region and merges their geometry onto
the existing link geometry. In this step, we neither introduce
new intersections nor do we add new links. We only adjust
the geometry of existing links.

The three steps of the algorithm include (i) sorting ex-
isting link samples, (ii) using a buffer region around link
samples to determine relevant trajectory portions, and (iii)
adjusting the geometry of links based on the trajectories’
geometry.

A first step is to sort all links according to their length
(Figure 9, Line 1) so as to process longer links first as they
are more significant for link construction. I.e., the longer
a link, the more selective will be the match for a longer
trajectory portion to fit in a buffer region. In trying to
identify portions of link samples that match other link sam-
ples expressed by spatial proximity and direction similarity,
the algorithm uses a buffer region around the examined link
sample and retrieves all intersecting portions of other links
(Figure 9, Line 6). The size of the buffer region is determined
by the width of the respective link sample as described in
Section 3.3. In addition to containment in a buffer region,
a threshold is used to assess direction similarity. In our ex-
perimentation, we found that 45◦ are an adequate measure.
Figure 8(a) shows in black the buffer region of an examined
link. The examined link is shown in grey and respective
portions of other candidate links are shown in light grey.
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Figure 8: Road Network Generation

As a pre-cursor to merging link samples, we record for each
examined link its similar links and the portions that exhibit
similarity. The latter is important in order to manage par-
tially similar link samples. As the similar link samples can
be located at the beginning, the end, or the middle, the re-
maining portions are preserved by splitting the respective
links (Figure 9, Line 11).



Merging link samples follows an approach similar to the
one of Section 3.3, when connections of intersection nodes
were established. The method is applied to every portion of
the examined link that exhibits partial similarity to other
links (Figure 9, Lines 9 & 13). New links are created by in-
terpolating link samples and introducing intersection nodes.
In addition, new links preserve a weight that is the sum of
the weights of the merged links.

Link samples are updated several times during this stage.
While the examined links are reconstructed, new link sam-
ples are created and the existing are removed, i.e., additions,
deletions and updates to the connectivity of the road net-
work.

CompactLinks(L)

� Compacting links to generate road network
1 LS ← sort(LS , length) � Sorting link samples by length
2 CLS ← ∅ � Candidate link samples
3 Width � width of link samples
4 Angle � direction threshold
5 for each l ∈ LS
6 CLS ← Find(bbox(l,Width(l),Angle))
7 for each cl ∈ CLS
8 if Contains(l, cl)
9 SweepMerge(l, cl)

10 else � partial overlap
11 clin, clout ← Split(l, cl)
12 CLS.add(clout)
13 SweepMerge(l, clin)

Figure 9: Road network extraction algorithm

3.5 Post Processing
While the road extraction algorithm so far has already cre-

ated a road network graph, the following heuristics-based
post-processing step should further improve the quality of
the road network. The basic idea in our road extraction
process is the use of turns to identify turn clusters, which
in turn create intersection nodes. The underlying trajec-
tory data is recorded by means of taking position samples
at regular time intervals. In the case of turns, this is es-
pecially critical in that a position sample might create turn
clusters well in advance or after the actual turn and hence
introduce additional intersections. We call this phenomenon
triangular intersections.

To detect such triangular intersections, we analyze link
sample weights in connection with geometric properties. To
establish a criterion, we introduce the notion of relative
weight ρ between the weights wi, wj of two link samples
l1, l2 defined as ρi,j = wi/wj . Our aim is to detect such
triangle constellations of links l1, l2, l3 with two sides having
respective high relative weights in relation to the third side,
i.e., ρ1,2 � ρ1,3 ∧ ρ1,2 � ρ2,3.

Figure 10 gives an example by showing in red link samples
with high relative weight and in yellow link samples with low
relative weight.

Following a statistical analysis, a link sample may be elim-
inated provided that both high relative weight ratios are
> 0.7 and the low relative weight ratio is < 0.6, i.e., given
ρi,j > 0.7 ∧ ρi,k > 0.7 ∧ ρj,k < 0.6, lk can be eliminated.
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Figure 10: Triangular intersections

Figure 11 shows the distribution of such relative weight ra-
tios (sorted by descending high relative weight ratio) for the
162 triangular intersections detected in the generated road
network described in Section 5.
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Figure 11: Relative weights comparison

4. EVALUATION
Essential for any automated process is the evaluation of its

results. In the case of road map generation, this encompasses
the assessment of the quality of the resulting road network.
Ideally, we would like to compare the generated with the
existing road network graph, i.e., how do the roads and the
intersections we found by means of our algorithm line up
with the actual road network. Provided that the tracking
data does not cover all the road network, such a comparison
should only be with respect to the corresponding portion
of the network. To this effect, we defined a method that
extracts a subset of a road network based on given tracking
data samples.

To the best of our knowledge no algorithm/metric exists
that compares two road networks, i.e., two metric graphs, we
devised our own method that relies on massive shortest-path
computation and comparing the resulting routes to reason
about the similarity of the two road networks.

Thus, the quality of the generated road network is evalu-
ated by a process that assesses the connectivity of the links
and the geometry of the generated result. The evaluation
process can be summarized in three steps. The first step
determines a relevant portion of the actual road network
that lines up with the tracking data. In the second step, we
randomly produce distinct pairs of origin and destination
nodes in the generated and the actual, partial road network
and compute their respective shortest paths. Finally, in step
three, we apply Distinct Frèchet distance and Average Ver-
tical distance as quality measures to assess the similarity
of the shortest-paths and, thus, reason about the similarity
between the derived and the actual road network.



4.1 Road Network Extraction
The trajectory data covers a certain spatial area and we

will use this extent to derive the covered portion of the road
network. I.e., the reduced network will only comprise links
of areas also covered by the tracking data. To find this par-
tial network, we augment the geometry of the underlying
road network with buffer regions around the network edges.
Experimentation showed that a distance threshold of 50m
is not too small to exclude road portions and not too large
to include all the road network. Now, to derive the partial
network, we use the trajectories as a query set with the con-
dition that either they cross or they are spatially contained
in the buffer regions representing the links of the actual road
network.

In the example of Figure 12, the dashed black lines repre-
sent the buffer region, the grey lines the partial road network
and the yellow lines an instance of the trajectory data. As
this process is by no means perfect, in this example, several
links have been falsely identified (redundant links).
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Figure 12: The underlying road network

4.2 Shortest Paths and Network Similarity
To assess the quality of the generated road network, we

will use a large number of shortest-path queries in the pro-
cess. We compute shortest-paths for randomly selected pairs
of origin and destination nodes in (i) the generated and (ii)
the actual road network. Using Dijkstra’s algorithm, besides
the actual path, we also record the total cost of the path in
terms of distance and the number of links.

We compare the similarity of the shortest paths by using
(i) the Discrete Frèchet distance and (ii) the Average Ver-
tical distance to the corresponding pairs of shortest paths.
The similarity measures are not applied to individual links,
but to the entire paths to able to draw conclusions regard-
ing more extensive portions of the road network. To com-
pute these distance measures, readily available MATLAB
routines are used.

The results of this evaluation can be found in Section 5.3.

5. EXPERIMENTATION
Having devised an algorithm to derive road networks from

collected trajectories, this section will showcase various re-
sults with a focus on the quality of the generated road net-
work data.

5.1 Experimental Setup
All algorithms have been developed in MATLAB given its

impressive high-level routines for statistics including cluster-
ing and visualization, essentially allowing us to focus on core
algorithms and data structures. The experimental setup in

Finding intersections
Angular difference 15◦

Mean speed 40km/h
Max sampling interval 35s
Turn clustering threshold 50m
Intersection clustering threshold 25m

Road network generation
Direction threshold 45◦

Evaluation
Road network extraction threshold 50m

Table 1: Parameters overview

Figure 13 shows the methods developed in order to auto-
matically derive and assess the generated road network.

Trajectories

3
Road network generation

1
Finding intersections

2
Connecting intersections

4
Evaluation

Figure 13: Experimental setup

A series of initial experiments established the proper pa-
rameter setting for our road generation algorithm given the
specific road network and also tracking data (cf. Table 1).
Turn clustering and intersection extraction (cf. Section 3.2)
employs four parameters. For turn clustering, (i) the angu-
lar difference threshold was set to 15◦. We found that when
move straight ahead, vehicles do not change direction by
more than 15◦. If they do and in combination with (ii) the
mean speed threshold of 40km/h that vehicles may experi-
ence while turning, then we consider this as an indication
for a turn. Both measures have been chosen very conser-
vatively as false positives will eventually be eliminated and
they should not be backed up by additional samples. In
addition, (iii) a maximum time constraint of 35s and a dis-
tance threshold of 50m were used to cluster position sam-
ples. With respect to clustering turn samples into intersec-
tion nodes, (iv) a 25m distance threshold was established
by analyzing the result data. The road network generation
algorithm (cf. Section 3.4) uses a buffer region that encloses
candidate road network portions. While its size is dynami-
cally established, we initialize it with a maximum width of
20m.

All parameters were established empirically by running
a great number of experiments and assessing the quality
of the respective results. While details of these results are
omitted in this paper, the above parameters represent the
best setting for the specific case (network and tracking data).

5.2 Road Network Generation Results
In what follows, we describe the results of the road net-

work generation algorithm applied to trajectory data cover-



ing a portion of the road network of Athens, Greece.
The actual road network portion that we try to generate

consists of 22490 links (edges) and 15389 nodes. It covers an
area of 13km × 16km. The edges have a length of 1813km.
However, the tracking data used for our purpose covers only
a portion of this road network. The road network is illus-
trated in Figure 14(c).

In the experiments, we used vehicle tracking data that
was recorded using GPS at a typical sampling interval of
30s. As the expected sampling rate in our data is 30s, we
consider time intervals of 35s in between position samples
as a discontinuity in the data and introduce in such a case a
new trajectory. Such temporal gaps in the data are typically
due to a GPS signal loss or a turned-off GPS receiver. The
data comprises 120 vehicle trajectories with a total length
of 6070km (Figure 1). Following the various stages of the
road network extraction algorithm, the algorithm produces
the following output. During the first phase, i.e., intersec-
tion extraction and connection, 4995 intersection nodes and
5983 link samples are generated. All links combined have
a length of 2700km. The second road network generation
phase produces 5124 intersection nodes, 6219 links and a
length of 710km. This result shows that during the second
phase of the algorithm, the number nodes remains largely
constant but only the length of the links connecting them is
significantly reduced since we radically merge links during
this phase.

The overall time to compute these results in MATLAB
(Windows 7) on an Intel Core2Duo processor running at
2.2GHz was 56min. This time was achieved without per-
forming any optimization on the data structures used in the
implementation.

Figure 14(a) visualizes the generated road network. In
addition, Figure 14(b) illustrates how the computed link
weight information can be used to identify major roads of
the network. In this visualization, links are shown that are
traversed at least 10 times. The gaps in the road network
are due to uneven distribution of weights during stage two
of the algorithm when compacting the road network and the
untypical traversal of roads by school buses, i.e., turning off
major roads to drop of kids.

Zooming in on the data, Figure 15 shows the tracking
data, the generated road network, and the actual road net-
work of a smaller area. At this scale, it can be clearly seen
that the traversed portion of the road network was correctly
identified.

5.3 Quality Assessment
As part of the performance study, we evaluate the qual-

ity of the generated road network in terms of road network
accuracy and connectivity.

In our case, the quality of the generated result is expressed
by the distance measure between computed shortest-paths
in the generated and the actual (partial) road network. To
this effect, we computed 500 shortest-paths uniformly dis-
tributed over the two networks. Figure 16(a) displays the
network coverage of the randomly created routes (excerpt).

Figure 16(b) gives an example of how similar two ran-
domly created routes are in the actual (light grey) and in
the generated (dark grey) road networks.

Besides visual inspection, we needed to come up with an
indicator for dissimilarity and a way to assess the quality of
the generated network. Dissimilarity can be expressed as an
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(a) Generated road network
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(b) Heavily travelled road network
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(c) Original road network

Figure 14: Experimental results

increasing distance between the two paths. Figure 17 shows
the Discrete Frèchet distance (in light grey) and Average
Vertical distance (in dark grey) of the 500 computed paths.
Combining visual inspection with path distance, it was em-
pirically established that a Discrete Frèchet distance greater
than 300m is an indicator of such dissimilarity. In other
words, such distances are an implicit indication for dissimi-
larity between the generated and the actual road network.

Shortest-path pairs exceeding this distance use portions
of the generated road network with connectivity problems
that do not exist in the actual road network. Connectiv-
ity problems are mostly due to falsely created links. In our
experimentation, we found that 5% of the computed routes
appear to have such problems, i.e., in 95% of the cases, the
computed shortest paths in both networks were almost iden-
tical exhibiting only small differences at the origin and the
destination nodes accounting for distance measures up to
300m.

Having a closer look at some of the 5% cases, we can ob-
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(a) Raw data
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(b) Generated road network
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(c) Original road network

Figure 15: Generated road network (close ups)
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(a) Network coverage

4.832 4.834 4.836 4.838 4.84 4.842 4.844 4.846 4.848 4.85
x 10

5

4.211

4.2115

4.212

4.2125

4.213
x 10

6

(b) Links similarity

Figure 16: Assessing generated road network

serve two problems for the generated network; (i) spatial
accuracy and (ii) connectivity. Figure 18(a) shows an ex-
ample in which due to the spatial accuracy, an alternative
route was computed. In this case, the generated network
simple produced a slightly different geometry that made the
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Figure 17: Similarity results

shortest-path algorithm choose a partially different route. A
more serious problem is that of connectivity. Figure 18(b)
illustrates this problem, which results in different routes due
to missing links. In both visualizations, the route of the ac-
tual road network is shown in black, while the route of the
generated road network is grey.
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Figure 18: Link failures

5.4 Summary
Our experiments have shown that the proposed algorithm

taking vehicle trajectories as input produces navigable road
networks that when compared to the actual road network
dataset exhibit great similarity. Assessing the generated
road network using sets of shortest-path queries, we found
that 95% of paths computed using the generated road net-
work exhibit great similarity to the comparable paths in the
actual road network. 5% show dissimilarity due to different
connectivity and other spatial aspects such as link length.
Visual inspection shows that the generated road network
closely resembles the actual road network if sufficient track-
ing data that provides redundant coverage of the road net-



work is available.

6. CONCLUSIONS
This work describes a novel approach to road network

generation from GPS tracking data. In an nutshell, the
algorithm exploits changes in movement patterns by using
turns as a means to identify intersection nodes. Intersec-
tion nodes are effectively used to bundle vehicle trajecto-
ries and links between intersections are derived by merg-
ing them. In addition, we developed a method to assess
the quality of the generated road network based on compar-
ing computed shortest-paths by means of distance measures.
Overall, our algorithm produces road networks that closely
resemble the actual road network provided sufficient track-
ing data is available. Redundancy in coverage increases the
quality of the road network.

Our directions for future work include the testing of the
method using additional tracking data sources with differ-
ent sampling rates as well as geographic locations, as the
algorithm has several parameters that need to be tuned to
a specific setting. Here, we will focus first on creative com-
mons data such as Openstreetmap [1] and other sources as
they become available. Assessing the quality of the gener-
ated road network is important and our aim is to improve
our method towards directly considering topological network
properties. If possible, such a method should lead to a tool
for benchmarking network generation algorithms in general.
One motivation for automatic road network generation from
tracking data are continuously evolving road networks and
the related challenging maintenance. Here our contribution
will be to investigate algorithms that work for incomplete,
uncertain and continuously evolving collections of data, i.e.,
refining an existing network with newly collected data. Dur-
ing experimentation we observed that the properties of the
tracking data such as sampling rate and vehicle speed highly
affect the produced result. We will investigate techniques to
segment the tracking data, to use automatically determined
parameters and to generate different aspects of the road net-
work (hierarchies) independently.
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