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Abstract. Tracking data has become a valuable resource for establishing speed 
profiles for road networks, i.e., travel-time maps. While methods to derive travel 
time maps from GPS tracking data sources, such as floating car data (FCD), are 
available, the critical aspect in this process is to obtain amounts of data that fully 
cover all geographic areas of interest. In this work, we introduce Wireless  
Positioning Systems (WPS) based on 802.11 networks (WiFi), as an additional 
technology to extend the number of available tracking data sources. Featuring in-
creased ubiquity but lower accuracy than GPS, this technology has the potential to 
produce travel time maps comparable to GPS data sources. Specifically, we adapt 
and apply readily available algorithms for (a) WPS (centroid and fingerprinting) 
to derive position estimates, and (b) map matching to derive travel times. Further, 
we introduce map matching as a means to improve WPS accuracy. We present an 
extensive experimental evaluation on real data comparing our approach to GPS-
based techniques. We demonstrate that the exploitation of WPS tracking data 
sources is feasible with existing tools and techniques. 
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1   Introduction 

Incorporating travel times into road network information, i.e., travel time maps, is an 
important prerequisite for a large number of spatiotemporal tasks. Examples include 
shortest path computation, traffic avoidance, emergency response, etc. Solutions typi-
cally rely on collected floating car data (FCD) that sample the overall traffic condi-
tions [16, 5] in a given region. FCD capture temporal variations in achievable vehicle 
speeds throughout the road network. For example, speeds during the rush-hour are 
considerably lower than during night traffic. Then, in a post-processing step termed 
map-matching [4, 19], tracking data is accurately related to the road network and 
travel times are extracted. It is critical that large amounts of FCD are available for 
long periods of time and geography, so that the extracted speed profiles are accurate. 
Currently, all methods use GPS for tracking the position of vehicles.  
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1.1   The Case for GPS vs. WPS 

While GPS is the most popular positioning technique, it has several drawbacks. First, 
it requires the use of specific hardware limiting the number of vehicles or users that 
can collect and provide tracking data. Second, there are occasions where GPS is in-
adequate (e.g., limited coverage, interference of high frequency electronic equip-
ment). This is especially true for “urban canyons”, i.e., areas in urban environments 
where line-of-sight with the GPS satellites is obscured, leading to inaccurate readings 
or no coverage at all. As demonstrated by LaMarca et al. [11], the average availability 
of GPS in an urban environment is only 4.5% during a user’s daily schedule. In con-
trast, wireless networks, such as WiFi and GSM, are available on average 94.5% and 
99.6% respectively. Third, the addition of extra integrated or autonomous GPS mod-
ules lead to increased power consumption, and thus limit the user’s mobility or appli-
cation of GPS. 

These drawbacks of GPS have led to the rise of Wireless Positioning Systems 
(WPS), where the user location is estimated with the help of other, readily available 
wireless networks. As a technology, WPS delivers less accurate results (e.g., ~40m 
for WiFi/outdoors), but provides greater coverage characteristics (e.g., above 90% of 
a user’s time). Further, WPS can be integrated in practically any computing device 
that incorporates a wireless network interface, and with a negligible burden on the 
interface’s power consumption. So while WPS is less accurate than GPS, for typical 
everyday applications it can efficiently augment or even replace GPS. 

Lately, WPS capable devices and applications are becoming a common place for 
end users, with examples like the iPhone, Android, Google Gears, Mozilla Firefox 
3.1, etc. In addition, the integration of WPS in GPS and WiFi chipsets (e.g., SiRF, 
Broadcom, Texas Instruments) will result in a state where practically all mobile de-
vices will have WPS capabilities. This argument is a fact, rather than a prediction, 
with great implications on spatiotemporal data management in general. In combina-
tion with the emerging usage of geolocation Web APIs (e.g., W3C Geolocation) we 
anticipate that in the near future there will be an abundance of readily available WPS 
positioning data.  

Consequently, the technical advance of WPS is leading to new challenges and po-
tential gains for numerous applications, where the scale and amount of positioning 
data will require corresponding advances in algorithmic solutions. Further, repurpos-
ing this sort of data by accommodating their particularities (e.g., varying levels of 
accuracy, ubiquitous coverage, etc.) in order to extract hidden knowledge, will be 
another area of great interest. 

Our work is therefore extremely relevant in this newly established context, and ap-
plied to the specific issue of creating travel time maps. Currently, the creation of 
travel time maps from actual travel data is based solely on FCD. While this guaran-
tees the use of position readings of high accuracy, it also limits the availability of such 
data for extended periods of time and geography. However, by successfully exploiting 
WPS, we would have access to data (a) whose size is several orders of magnitude 
greater, (b) temporally span bigger periods, and (c) extend to larger geographic areas. 
One could argue that WPS is only feasible in urban areas. While this observation is 
true, it actually strengthens our argument; urban areas are exactly where travel time 
maps are valuable resources for routing solutions.  
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1.2   Contributions 

In this work, we advocate the use of WPS to complement and/or replace GPS tracking 
data sources to produce travel time maps. This increases the potential number of data 
providers and ultimately the quality of the resulting travel times. To the best of our 
knowledge, this is the first attempt of repurposing WPS tracking data to produce 
travel time maps. Our contributions are: 

• We adapt and extend the two most important classes of WPS algorithms (centroid 
and fingerprinting) for our setting (WiFi network, outdoors operation). 

• We experimentally evaluate the optimal parameters of the various classes of WPS 
algorithms and identify an optimal solution in terms of accuracy and coverage un-
der realistic settings. 

• We adapt an online map-matching algorithm to WPS tracking data as a post-
processing step to improve WPS accuracy. 

• We adapt a global map-matching algorithm to extract travel time maps from his-
toric WPS tracking data and compare the results to GPS derived travel time maps. 

• We demonstrate that for high sampling frequencies, WPS derived travel times are 
comparable to GPS in absolute terms. Further, even for low sampling frequencies, 
the results in terms of speed profiles (categories) are useful as well. 

The remainder of this paper is structured as follows. Section 2 introduces techniques 
for wireless positioning. Section 3 briefly introduces the map-matching algorithm 
used for deriving travel times from tracking data. Section 4 gives an experimental 
evaluation of WPS techniques and travel times derived from WPS data. Finally,  
Section 5 presents our conclusions and directions for future research. 

2   Wireless Positioning 

Wireless Positioning Systems (WPS) provide a position estimate based on the radio 
signals received at a given location (measurement), and a known radio map of the 
environment. In the case for 802.11 (WiFi) wireless networks, the measurement con-
sists of a set of the visible access point ids (BSSID), and their corresponding received 
signal strength (RSS1). The measurement is then compared to the radio map through a 
distance metric, and a position estimate is calculated. 

Different wireless positioning algorithms exist, which imply different forms and 
means to create the radio maps, as well as distance metrics to provide an estimate. In all 
cases, the radio maps for a given region are produced by training data, typically col-
lected through wardriving. Wardriving is the process of massively collecting geocoded 
RSS measurements when driving through a certain geographic area. For a given meas-
urement period (e.g., 5sec), we perform a scan of the available WiFi networks in the 
environment (BSSID, RSS) and obtain the position of this scan through GPS. 

In this section, we present the outline of two classes of WPS algorithms we 
adapted and implemented for our experiments, i.e., centroid and fingerprinting. For 
both classes, numerous approaches and variations exist, depending on the wireless 

                                                           
1 Note that we always refer to the absolute value of RSS. 
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network (e.g., [13, 12, 17, 7, 18]) and environment (e.g., indoors/outdoors [10, 2, 3, 
8]). We have either adopted these variations as is, or properly adapted and extended 
them to suit our case. 

2.1   Centroid 

Centroid is the simplest and the fastest method for wireless positioning. In centroid, 
the radio map consists of a set of the available APs and their positions, i.e., <BSSID, 
X, Y>. Consequently, centroid depends on having the true locations of the AP posi-
tions. Since this information is practically not available, nor feasible to produce, we 
must create the radio map from the training data, essentially estimating the position of 
the APs. Therefore, for each AP in the training data, we find all the positions it was 
visible, and estimate the AP’s position as the arithmetic mean of these coordinates. 
Having established the radio map, a position estimate is provided in a similar manner. 
Given a measurement from the environment where certain APs are visible, we calcu-
late the arithmetic mean of their coordinates, as provided by the radio map. 

In order to improve accuracy when creating the radio map and/or calculating an es-
timate, we adopted weighted centroid from [6] and proposed two new heuristics: k-
max and thresholds. Specifically: 

• Weighted. The simple arithmetic mean is substituted by a weighted arithmetic 
mean, where the weight is based on the RSS. 

• K-max. We apply the arithmetic mean on only the k APs with the lowest RSS (low 
RSS values correspond to strong received signal). 

• Thresholds. We define three thresholds t1≤t2≤t3 which split the RSS space in four 
regions. If there are APs which fall in the first threshold (RSS≤t1), then we use only 
them in the arithmetic mean and ignore the rest. If there no APs in the first thresh-
old, we use the ones in the second (t1≤RSS≤t2), and so forth. In case there are APs 
only in the last threshold (t3≤RSS), then the algorithm does not provide an estimate 
since we consider the measurement to provide highly inaccurate readings. 

Consequently, for centroid, there are a total of 16 different combinations of tech-
niques to create the radio map and to provide an estimate: 4 to create the radio map, 
and 4 to provide an estimate. A specific centroid technique will be denoted as cen-
troid <radio map, estimation>, where radio map and estimation can be one of the 
following: arithmetic mean (am), weighted (w), k-max (k=n), and thresholds (t1-t2-t3). 
For example, centroid <k=2, 60-70-80>, means that the radio map was built with the 
k-max technique with k=2, and the estimation is provided with the thresholds tech-
nique with t1=60, t2=70, and t3=80. 

2.2   Fingerprinting 

Fingerprinting assumes that the APs and associated RSS observed at a particular loca-
tion are stable over time. Consequently, a measurement at a given location, i.e., the 
list of visible APs and RSS, can be considered as the unique fingerprint of that loca-
tion. Thus, in fingerprinting, the training data themselves comprise the radio map. 

To estimate the position, the algorithm calculates the Euclidean distance in the sig-
nal strength space between the current fingerprint and all available fingerprints in the 
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radio map that contain the same APs. It then selects the k-nearest fingerprints in terms 
of distance, and returns as an estimate the arithmetic mean of their coordinates. This 
comparison is possible only if the current fingerprint and the fingerprints in the radio 
map contain exactly the same APs. Otherwise, calculating their distance in the 
Euclidean space is not possible. 

However, in realistic conditions the current fingerprint may not contain exactly the 
same APs with the ones in the radio map. For example, some of the APs may have 
been turned off or removed, new APs may have been deployed, or the network inter-
face may not provide APs with an RSS below a given threshold (typical behavior of 
Windows 802.11 hardware drivers).  

To account for this situation, we calculate the distance between the current finger-
print and the ones in the radio map based on a subset of common APs. In particular, 
we extended the algorithm in [6] so that the subset is defined by two parameters: 

• l: We compare the current fingerprint with fingerprints that contain at most l less 
APs. For example, suppose the WiFi scan <(AP1, RSS1), (AP2, RSS2), (AP3, 
RSS3)>. For l=1, a fingerprint <xa, ya, (AP1, RSS1), (AP2, RSS2)> would be in-
cluded in the position estimation, in contrast with <xb, yb, (AP2, RSS2)> which 
would be ignored since there are two missing APs. 

• m: We compare the current fingerprint with fingerprints that contain at most m 
more APs. For example, suppose the WiFi scan <AP1, RSS1>. For m=1, the finger-
print <xa, ya, (AP1, RSS1), (AP2, RSS2), (AP3, RSS3)> would be excluded from the 
estimation due to the two extra APs. 

Consequently, fingerprinting is modified as follows. The algorithm calculates the 
Euclidean distance in the signal strength space between the current fingerprint and all 
fingerprints in the radio map that contain at most l less and m more APs. It then se-
lects the k-nearest fingerprints in terms of distance in the signal space, and returns as 
an estimate the arithmetic mean of their coordinates. As a result, there are many in-
stances of the fingerprinting algorithm based on different parameters of k, l, and m. 
During the rest of the paper, we will use the notation fingerprinting <k, l, m> to de-
note a specific instance of the fingerprinting algorithm. 

3   Map Matching 

Deriving travel times from tracking data implies the alignment of the tracking data 
with a respective trajectory in the road network, i.e., finding the actual roads the vehi-
cle has traversed. Now, provided that the tracking data is precise, this task would be 
simple. However, tracking data is obtained by sampling a vehicle’s movement, typi-
cally with GPS and in our case with WPS. Unfortunately, both GPS and WPS are not 
precise due to the measurement error caused by the limited positioning accuracy, and 
the sampling error caused by the sampling rate, i.e., not knowing where the moving 
object was in between position samples [14]. Therefore, a processing step is needed 
that matches tracking data to the road network. This technique is commonly referred 
to as map matching. 
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Fig. 1. Map-Matching example 

 

Fig. 2. Sampling error and measurement error 

To illustrate these errors and the map-matching problem in general, Fig.1 gives two 
examples of measured positions and the possible trajectory the vehicle could have 
taken. Fig. 1a shows the interpolated path in between position samples A and B and 
the actual path with respect to the road segment. Further, as evident in Fig.1b, the 
positioning error becomes significant when facing several parallel roads close by. 
Specifically, in the case of WPS (Fig.2), the measurement error might grow quite 
large. This significantly increases the challenge for proper map-matching, since with a 
large measurement error, one is presented many alternative paths in the road network 
to map the sampled movement to. Thus, we expect that at least minimizing the sam-
pling error by using high sampling rates will prove to be important.  

3.1   Theoretical Considerations 

Most map-matching algorithms are tailored towards mapping current positions onto a 
vector representation of a road network. Onboard systems for vehicle navigation util-
ize, besides continuous positioning, dead reckoning to minimize the positioning error 
and to produce accurate positions that can be easily matched to a road map. However, 
for the purpose of processing tracking data collected over a period of time, the entire 
trajectory, given as a sequence of historic position samples, needs to be mapped.  
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The algorithm we utilize in this work is the global map-matching algorithm of 
[4, 19], which employs the Fréchet distance measure for curves [1]. A popular illus-
tration of the Fréchet distance is the following. Suppose a person is walking his dog, 
the person is walking on the one curve and the dog on the other. Both are allowed to 
control their speed but they are not allowed to go backwards. The Fréchet distance of 
the curves is the minimal length of a leash that is necessary for both to walk the 
curves from beginning to end. Using this distance measure, our global map-matching 
algorithm tries to match the tracking data geometry to a respective path in the road 
network by comparing it to the shapes of all possible paths in the road network. Al-
though conceptually quite an elaborate task, this can be accomplished in O(mnlogmn) 
time, with m being total number of nodes and edges of the road network and n the size 
of the tracking data to be matched [4].  

The global map-matching algorithm is therefore a shape-matching algorithm that 
matches one curve, the tracking data trajectory, to another curve, the road network 
path that most closely resembles the tracking trajectory. As such, the algorithm is 
predestined for matching historic data.  

Consider now the online map matching case, in which tracking data is matched as 
it is collected, i.e., in real time. Here, we apply the same global map matching algo-
rithm, but instead of exploiting the complete trajectory (which is not known), we take 
advantage of the available historic data, i.e., the tracking data available so far. Ex-
perimentation showed that typically a trajectory consisting of 10 position samples 
collected with a sampling rate of 30s can be matched with the same accuracy as 
longer trajectories, i.e., 10 position samples represent a reasonably large enough curve 
for the global map-matching algorithm to produce a good quality match when applied 
to the online case. Hence, to perform online map matching, we apply the global map 
matching algorithm on the trajectory formed by the current position estimate and the 9 
last position estimates. 

3.2   Deriving Travel Times 

Having mapped the tracking data to the road network, travel times are derived by 
mapping the travel times contained in the tracking data to the respective portions of 
the road network. The map-matching algorithm performs essentially shape matching 
and tries to find a path in the road network that most closely resembles the trajectory, 
i.e., the tracking data (cf. dotted line in Fig. 4). In the process, it maps all position 
samples (circles in Fig. 4) to the road network and all nodes along the corresponding 
path to the tracking data trajectory. Since the original tracking data contained the 
timestamp they were received, this information is transferred to the map-matched 
tracking data along the road network. The former can be seen as an effort to redis-
cover where on the road network the position samples would have been originally 
recorded. As such, these mappings are the ideal means for assigning travel times to 
the respective road network edges. Overall, the approach we employ is to uniformly 
map the time recorded between two consecutive position samples (e.g., ti+1 - ti) in 
Figure 4, to the respective portions of the road network. 
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Fig. 3. Distance and travel time assignment 

4   Experimental Evaluation 

The primary scope of our experimental evaluation is to establish the suitability of 
WPS data as a source to provide travel times. First, to provide a complete examina-
tion of the relevant technologies and potential uses, we provide an evaluation of WPS 
accuracy and coverage and also introduce map matching as a means to improve WPS 
accuracy. 

4.1   Experimental Setup 

The experimentation was carried out in the Zografou neighborhood of Athens, 
Greece. The area was selected (i) due its to geographical characteristics (mix of flat 
areas and hills), (ii) varying levels of WiFi AP density (0-15 APs/m2), (iii) typical 
urban structure with a mix of shops and residential areas, and (iv) fluctuating traffic. 

4.1.1   Data Collection 
Data was collected through wardriving over a period of two months in an area cover-
ing approximately 100,000m2. For data collection typical road speeds and driving 
habits were maintained. Driving speeds varied from 0kph (stationary for more than 
5mins) to 70kph. Fig. 5 shows a respective map of the Zografou area and the sampled 
locations on the road network where at least one WiFi AP was visible. 

Our data set consists of records of the form <tid, x, y, t, AP>, where tid is the 
unique id of a trajectory, x and y are the GPS coordinates, t is the timestamp of the 
measurement, and AP is a list of the APs (BSSID) and their respective received signal 
strength (RSS). The sampling rate during data collection (i.e., every when a meas-
urement is taken from the environment) was 5sec. In total, we collected roughly 
200MBs of data, and we divided them (70%-30%) into two separate sets: (a) the 
training data, which were used to create the maps for the WPS techniques, and (b) the 
testing data, which were used to assess the WPS accuracy and to calculate travel 
times. 

Concerning the chosen wardriving approach, instead of multiple passes from each 
road segment (which may reveal more APs, produce more samples for an AP, etc.), 
we performed at most one pass. This implies that the collected data set may be less 
complete than it could be, but resembles a realistic large scale mapping effort to cre-
ate the radio map of any given region. 

The equipment that was used comprised an Intel Core Duo laptop with a single 
802.11a/b/g NIC and two Bluetooth GPS devices, all situated in the passenger com-
partment. We used Kismet [9] with a set of custom add-ons to extract geocoded WiFi 
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measurements. All wardriving logs were later offloaded to a PostGIS database. Our 
WPS algorithms (centroid, fingerprinting) were developed in C/C++ and the map-
matching algorithm was implemented in Java. Certain auxiliary process-
ing/visualization tools were developed in PHP, Python, and Java. Accurate map data 
for the road network of Zografou were provided by Eratosthenis S.A. The experi-
ments were executed by three Windows 2000 servers over a period of two weeks. 
Visualization of the results was performed with QGIS [15]. 

 

Fig. 4. Zografou map and WiFi AP locations 

4.1.2   WPS Feasibility 
The following interesting observations can be made with respect to the data. First, the 
total number of unique APs discovered was 2,184, and on average we observed 5 APs 
for each sampled location. Considering the covered geographic area, this yields 2.1 
APs per 100m2. Second, in most cases when WiFi was not available, then GPS was 
not available as well (e.g., under a bridge, near a large building). Third, almost all 
APs were available 24/7. Overall, these facts confirm the increased penetration of 
WiFi networks in urban environments and constitute a foundation for the proliferation 
of WiFi-based WPS as a ubiquitous and dependable alternative to GPS.  

4.2   WPS Positioning Accuracy 

4.2.1   WPS Accuracy and Coverage 
The following experimentation evaluates WPS techniques in terms of accuracy and 
coverage. In particular, we used our training data to create the radio maps and the 
testing data to calculate the position estimates based on these maps. We experimented 
with all permutations of means described in Section 2. For each point in the testing 
data, the position estimate provided by each WPS algorithm for specific parameter 
settings is compared to the respective GPS measurement taken (ground truth). 

Table 1 shows the results concerning accuracy using a ranking based on the aver-
age error of the WPS estimates. In addition, for each result its respective coverage 
(i.e., the percent of times the technique can provide an answer) is stated. For each 
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class of WPS algorithms (centroid, fingerprinting) the best three accuracy achieving 
parameter settings are presented. What can be observed is that given the right parame-
ters, fingerprinting achieves the best positioning accuracy (25.24m). However, the 
results overall only differ slightly. What is of interest is the respective coverage that 
can be achieved with each method. For example, the best performing fingerprinting 
method has a coverage of 56%, i.e., the technique cannot provide a position estimate 
44% of the time. This behavior is caused by the WPS algorithms themselves and by 
our wardriving approach to collect training data. For example, centroid<k=1, 60-80-
90> provides an estimate based only on APs with RSS below 60. The estimate will be 
more accurate because the required RSS threshold is low, but since this is also highly 
selective, there are many instances where RSS below 60 is not available. 

Table 1. WPS accuracy compared to GPS 

 Average Error (m) Coverage (%) 
Centroid <k=1, 60-70-80> 26.61 74 
Centroid <k=1, 65-80-80> 26.65 82 
Centroid <k=1, 75-85-90> 26.82 64 
Fingerprinting <6-1-5> 25.24 56 
Fingerprinting <6-1-4> 26.40 54 
Fingerprinting <6-1-6> 26.57 56 

 
Table 2 ranks WPS techniques based on their coverage values. As expected, the 

techniques producing the best coverage underperform in terms of average error. To 
design an actual wireless positioning system one needs to consider this trade-off be-
tween accuracy and coverage, i.e., is providing a more accurate estimate better than 
always providing a crude estimate?  

Table 2. WPS coverage 

 Average Error (m) Coverage (%) 
Centroid <k=1, weighted> 35.52 94 
Centroid <k=1, 70-80-85> 47.11 93 
Centroid <k=1, 65-75-80> 47.15 92 
Fingerprinting <6-2-6> 36.45 82 
Fingerprinting <2-4-6> 51.53 81 
Fingerprinting <6-6-1> 48.93 78 

One conclusion to the above question is to provide a hybrid WPS technique for 
centroid and fingerprinting. In particular, we obtain an estimate from the best per-
forming technique in terms of accuracy, but should the said technique not be available 
(coverage), we obtain an estimate from the technique with the best coverage. These 
hybrid WPS techniques have high coverage (> 96%) with an acceptable increase in 
average error (cf. Table 3). 
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Table 3. Average error and coverage of the hybrid WPS techniques 

 Average Error (m) Coverage (%) 

Hybrid Centroid 32.77 99 

Hybrid Fingerprinting 28.40 96 

Unless stated otherwise, hybrid WPS techniques will be used through the rest of 
our experiments, denoted as WPS-C and WPS-F for hybrid centroid and hybrid fin-
gerprinting respectively. 

4.2.2   Map Matching to Improve WPS Accuracy 
Map-matching is known as a technique to relate tracking data to a map dataset. One 
can also see it as a method for imposing geometric constraints (shapes of paths in the 
road network) to tracking data. As such, this technique might be a viable means to 
“correct” WPS data and improve its accuracy. In this experiment, we utilize two map-
matching algorithms, a simple one (called naive) that maps position samples to the 
closest point on the road network and the online algorithm presented in Section 4.2, 
which exploits shape information. To compare the various approaches in terms of 
accuracy, we calculated the average error and standard deviation for the complete 
WPS dataset with respect to the GPS measurements.  

The results are given in Table 4 and confirm the findings in the relevant literature, 
with fingerprinting providing more accurate results than centroid. However, note that 
in both cases the average error is roughly 30m. Further, while the naïve map-matching 
algorithm only marginally reduces the average error (~1m), the shape-based map-
matching algorithm reduces the average error by 37% (WPS-C) and 25% (WPS-F). 
This happens, because in contrast to a naïve map-matching approach, the shape-based 
algorithm exploits past WPS estimates to produce a trajectory that best fits the road 
network. Hence, an extremely important side-effect of proper map-matching, stem-
ming from its inherent robustness towards inaccurate data, is the improvement of the 
accuracy provided by WPS. Combining WPS with map-matching reduces the average 
error of WPS (~20m) very close to the average error of GPS in urban environments 
(5-15m). This observation clearly opens the room for more research and experimenta-
tion, since in the WPS literature GPS is always considered as the ground truth for 
calculating the average error. Obviously, this is something needed to be questioned 
given our findings. Our future work and current experimentation is focused on ex-
ploiting GNSS available in Greece of greater accuracy (<1m), such as Galileo CS [20] 
and HEPOS [21]. 

Table 4. WPS average error and standard deviation 

 
Avg. 
Error 
(m) 

Stdev. 
(m) 

Avg. 
Error with 
naïve mm 

(m) 

Stdev. 
with naïve 

mm 
(m) 

Avg. 
Error with 

mm 
(m) 

Stdev. with 
mm 
(m) 

WPS-C 32.77 49.80 31.74 48.34 20.47 19.74 
WPS-F 28.40 42.48 28.36 41.68 21.15 22.16 
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Moreover, we performed a set of experiments to assess the impact of the data col-
lection speed, and AP density, towards WPS accuracy. In particular, to assess the 
impact of the data collection speed (i.e. frequency of collecting measurements from 
the environment), we removed records from the collected data to simulate frequencies 
ranging from 2Hz to 0,2Hz (Fig.5a). Further, we sampled our entire data set to ran-
domly remove APs in order to simulate densities up to only 25% of the original one 
(Fig.5b). Our results illustrate that centroid is the most robust technique, maintaining 
an acceptable average error at all times. 
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Fig. 5. Average error dependence from (a) measurement period and (b) AP density 

4.3   Extracting Travel-Time Maps 

To establish the feasibility of using WPS data to derive travel times, we compared the 
travel times produced from GPS data to the ones produced from WPS data for the 
same trajectories. The format of the collected testing data was <tid, x, y, t, AP>, 
where tid the trajectory id, x and y the GPS coordinates, t the timestamp of the meas-
urement, and AP the WiFi-related measurements, i.e., AP BSSIDs and RSS. For the 
testing data, WPS-C and WPS-F were used to produce WPS estimates, resulting in 
trajectory data of the form of <tid, x, y, t, xc, yc, xf, yf>, where xc, yc, xf, and yf are 
the coordinates produced by the centroid and fingerprinting algorithms respectively. 
For the three types of trajectory data, GPS, WPS-C, and WPS-F, global map-
matching was applied, and using the approach detailed in Section 3, the respective 
travel times were derived for each case. Consequently, for each road segment in our 
network, we established three different travel time estimates, (i) GPS, (ii) WPS-C and 
(iii) WPS-F. Versions of the travel time dataset were produced for sampling rates of 
5, 10, 20, and 30secs.  

4.3.1   Qualitative Evaluation 
In order to compare the trajectories produced by GPS and WPS position data, we will 
define the measures of recall and precision. Let }{gGi = , be the set of vertices pro-

duced by the map-matching algorithm on GPS data, for trajectory i. Also, let 
}{wWi =  be the set of vertices produced by the map matching algorithm on WPS data 

for the same trajectory. The intersection ii WG ∩  contains the vertices the two sets 

have in common. Recall R and precision P can be defined as follows:  
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i

ii
i G

WG
R

∩
=          

i

ii

W

WG
P

∩
=  (1) 

R indicates the fraction of road segments covered by GPS trajectories that is also 
covered by WPS. Ideally, R should be equal to 1, i.e., WPS returns all the road seg-
ments GPS does (but possibly more). Further, P indicates the fraction of road seg-
ments covered by WPS trajectories that is also covered by GPS. Again, we want P to 
be equal to 1, i.e., WPS does not produce road segments not produced by GPS. 
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Fig. 6. Recall and precision for the WPS derived trajectories in our entire data set 

In Fig.6, the values of recall and precision for our entire data set using varying 
sampling rates are shown. Common to all cases, recall is high, close to 100%. Notice 
that recall is optimal for a sampling rate of 10s while precision is best for a sampling 
rate of 30s. This was expected, as for low sampling rates, the sampling error domi-
nates the measurement error in the map matching process. Thus, both WPS and GPS 
produce practically the same trajectories. 

Fig.7 illustrates the above by giving a sample trajectory that accurately represents 
our findings for the entire data set. Fig.7(a) shows raw GPS tracking data while 
Fig.7(b) shows the WPS estimates derived by the WPS-C technique. Notice that al-
though the ‘noise’ in WPS estimates is apparent (with several outliers as well), the 
trajectory can easily be distinguished. Fig.7(c),(d) show the produced trajectories after 
applying our map matching algorithm using a sampling rate of 30s. Fig. 7(e),(f) show 
details of the trajectory, highlighting specific map-matching cases. 

4.3.2   Quantitative Evaluation 
Having established how trajectories produced by WPS fare in comparison to GPS, in 
the following, we compare the respective travel times derived from these approaches. 
Given the set of links for which WPS and GPS derived travel times are available, we 
calculated the average error of WPS compared to GPS derived travel times, as shown 
in Fig.8. What can be readily observed is that the optimal sampling period is 10s, with 
no real difference between the two WPS techniques. For a period of 30s, the errors are 
80.3% (WPS-C) and 125.4% (WPS-F). This could be interpreted as a serious problem 
for map matching based on WPS data for lower sampling frequencies, since most 
travel time databases are calculated from fleet management logs with sampling peri-
ods of 20-30s.  
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(a) GPS data (b) Centroid WPS data 

 
 

(c) map-matching GPS data (d) map-matching WPS data 

  

(e) detail view of (c) (f) detail view of (d)  

Fig. 7. Sample trajectory 
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Fig. 8. Average error of WPS derived travel times compared to GPS derived travel times 
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Fig. 9. Speed profile matches for GPS and WPS derived travel times, for various sampling 
periods: (a) 5sec, (b) 10sec, (c) 20sec, and (d) 30sec 

However, for the creation of dynamic road network profiles, travel times are used 
to classify road network links. For example, suppose that a road category is defined as 
including speeds ranging from 10-20kph. Here two road links with respective travel 
times of 10.5 and 19.5kph will be subsumed under the same category. This quantiza-
tion is beneficial, because it results to lower storage requirements, faster route calcu-
lation, and routes of similar quality. 

We experimented with such quantization in travel time speeds and introduced for 
our experiments five road categories characterized by the following speeds (in kph): 
[0-10), [0-20), [20-30), [40-50), [50,∞). We classified all road links based on GPS and 
WPS data, and for various sampling frequencies. Further, for each road link in our 
network, we compared the classification produced from GPS, WPS-C, and WPS-F. 
Our results are shown in Fig. 9. For example, in Fig. 9(a), 75% of the road links are 
classified under the same category for WPS-C, compared to GPS. For WPS-F, this 
number is close to 90%. From Fig.9, we can also observe that for sampling rates of 5s 
and 10s, at least one of the two WPS techniques derives the same road categories for 
90% of the road links. As the sampling rate decreases, this percentage is reduced to 
roughly 60%, with additional 25% of the road links classified to one category higher 
or lower. Therefore, we can conclude that for higher sampling rates, WPS produces 
very accurate travel times which are indeed comparable to GPS. For lower sampling 
rates (30s) the results are encouraging, since at least 80% of the derived travel times 
fall within the same or a directly neighboring category. 
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What follows in Fig.10 is the actual link classification based on GPS and WPS. 
Fig.10 shows the percentage of road links that fall in one of our five categories for 
GPS, WPS-C and WPS-F. It is evident that for small and high sampling rates alike, a 
WPS derived classification is very similar to a GPS classification. 
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Fig. 10. Road segment classification for (a) 5sec and (b) 30sec 

5   Conclusions and Future Work 

We have evaluated the use of WPS data as an alternative data source for extracting 
travel times for road networks. We adapted and evaluated various classes of the cen-
troid and fingerprinting WPS algorithms. Further, we applied map matching as a post 
processing filter to improve WPS accuracy and demonstrating significant gains. In 
addition, we extracted travel times from GPS and WPS data with a map-matching 
algorithm. Our evaluation demonstrated that for measurement periods up to 10sec, the 
produced travel times are practically identical to the ones derived from GPS data. 
Further, when applying a typical speed profile classification on travel times, even for 
sampling rates of up to 30sec, the produced travel times are still of respectable qual-
ity. Finally, we showed that through our analysis of WPS data, the distribution of road 
segments to speed profiles can be accurately discovered. 

Our ongoing work evolves around further exploring and manifesting the benefit 
and potential uses of huge amounts of crowd-sourced WPS data. In this respect, our 
efforts are focused on three fronts. First, improve the accuracy of WPS techniques by 
integrating map matching into the WPS algorithms. Second, explore different uses for 
WPS data, such as routing (by fully replacing GPS), and automatic road network 
construction. Third, we aim to model and accommodate the inherent inaccuracy of 
wireless positioning data sources into spatiotemporal tasks and algorithms. 
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