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ABSTRACT
While many efficient proposals exist for solving the single-pair
shortest-path problem, a solution that sees the algorithmic solu-
tion in combination with efficient data management has received
considerably smaller attention. This work proposes a data manage-
ment approach for efficient shortest path computation that exploits
road network hierarchies and allow us to minimize the portion of
the network that is kept in main memory.

The proposed approach is insensitive to network changes as it
does not rely on any pre-computation, but only on given road net-
work properties. In that we specifically target large road networks
that exhibit a high degree of change (e.g., OpenStreetMap). Exten-
sive experimental evaluation shows that the presented solution is
both efficient and scalable and provides competitive shortest-path
computation performance without requiring a preprocessing stage
for the road network graph.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Graph algorithms; H.2.8 [Database Ap-
plications]: Spatial databases and GIS

General Terms
Algorithms

Keywords
Shortest Path computation, HBA*, Cell Manager, OpenStreetMap

1. INTRODUCTION
Although many previous publications introduced fast algorithms

for shortest-path (SP) computation ([4, 9, 6, 7, 12, 13, 2, 5, 14]),
most authors assume that the entire road network graph resides in
main memory. Additionally, many preprocessing algorithms, such
as the ALT [6], Highway Hierarchies [17] or Arc-flags [13] require
the storage of additional information related to the algorithm (land-
marks, shortcuts, arc-flags) to complement the original road net-
work graph. Others like Contraction Hierarchies [5] compact the
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original road network for SP computation but still need additional
information to output the actual shortest path. For a broad overview
of shortest path speed-up techniques up to 2008, one can refer to
[18].

On the other hand, through crowd-sourcing, road network graphs
are evolving rapidly (150,000 new ways are added to Open Street
Map [OSM] data per day) and therefore preprocessing algorithms
have to recompute their data structures frequently to keep provid-
ing accurate results. Additionally, edge weights may change over
time to represent fluctuations in traffic conditions. These weights
are common referred to as speed profiles. Therefore different ver-
sions of the same road network are required for SP computation
depending on the time of the day and vastly increasing the memory
size required to store the road network graph.

Compared to the literature devoted to engineering algorithms for
shortest paths, little attention has been paid to engineering an effi-
cient storage mechanism, i.e., the road network graph is not com-
pletely loaded into main memory but is instead fetched from sec-
ondary storage. Using a naive mechanism, which fetches nodes as
required during SP computation is not an option since a Dijkstra
search within a city may require many thousands node expansions.
Performing so many requests within a fraction of a second is far
too challenging for any database or file system. Consequently, road
network data should be fetched in tiles, to minimize the number of
queries to secondary storage.

Such an efficient storage manager for SP algorithms will be in-
valuable in the traditional routing server scenario, with a single
computer (or a cluster thereof) serving routing requests from many
clients. As more road network data through crowd-sourcing is
freely available, it will be difficult to store the entire dataset (world)
in main memory. Here, the algorithm’s data structures are kept
in main memory and road network data is fetched on demand.
The need for handling many parallel requests points us towards a
database-backed mechanism that can efficiently handle the number
of requests necessary to load road network data into main memory.

The main contribution of this paper is to propose an efficient stor-
age manager to support SP computation in connection with large
road network datasets stored on disk. Although this mechanism is
routing algorithm neutral, i.e., it would work with any traditional
routing algorithm (Dijkstra, A∗ ), it will be significantly faster and
more efficient when combined with a hierarchical algorithm, such
as HBA∗ [14]. The objective of this work is not to showcase a new
SP algorithm that outperforms existing solutions, but to introduce
an effective data management mechanism in combination with an
hierarchical routing algorithm like HBA∗ to minimize the portion
of the road network that is kept in main memory. Since the road



network graph is used as is, no SP algorithm-specific preprocess-
ing is required and therefore our solution can be used even with
dynamic speed profiles, i.e., a dynamic weight database of the road
network graph that changes over time [15].

2. THE HBA* ALGORITHM
In this section we will describe some basic concepts and we will

present the basic properties of HBA∗ algorithm, a hierarchical bidi-
rected A* variant initially presented at [14].

2.1 The Single Pair Shortest-Path Problem
A road network is modeled as a directed graph G = (V, E), whose

vertices/nodes V represent intersections and edges E represent links
between intersections. Additionally, a real-valued weight function
w : E → R is given, mapping edges to weights, with weights typi-
cally corresponding to travel times. In this paper we will deal with
the single-pair shortest path problem (SPSP) of finding a shortest
path between a source vertex s and a target vertex t of the road
network directed graph.

The SPSP problem on a graph with non-negative edge weights
w(u, v) ≥ 0 can be solved by applying Dijkstra’s algorithm [4].
By exploiting knowledge about the structure of the graph, the A∗

algorithm [9] selects the next node u to be expanded by using the
cost d(u) of a shortest path from s to u (Dijkstra) in combination
with the estimated cost to the goal, h(u, t). A∗ is guaranteed to find
the optimal solution provided h never overestimates the real cost of
reaching the target.

In [14] the HBA∗ algorithm was introduced to efficiently solve
the SPSP problem by exploiting road network hierarchies to achieve
faster computation times and efficient memory usage. HBA∗ is a
variant of a bi-directed A∗ algorithm for SP computation in a hier-
archical road network. What follows is a brief discussion of road
network properties and a short description of the algorithm.

2.2 Hierarchical Road Networks
Roadmap data available from vendors usually provides road cat-

egory information for each road (edge). A typical example of road
categories on a road network, may include categories such as “Free-
way” or “Local Road”. In the road networks used (Section 4.1), low
numbers were assigned to higher road categories, i.e., the highest
road category was “1: Freeway” and the lowest was “13: Other
Road” for the OSM road network.

The road category information gives rise to interpret the network
as a hierarchical road network: Level Li of the road network con-
sists of all road segments of road categories j ≤ i, including all
nodes incident to those segments. Let G = (V, E) be the whole
road network with vertex/node set V and road segment/edge set E,
and let Li = (Vi, Ei). Then Vi ⊆ Vi+1 and Ei ⊆ Ei+1 for all i, and
V = ∪iVi and E = ∪iEi.

The significance of hierarchical road networks is evident on how
roads of varying importance would typically be used in a routing
task by a person. First, he searches for major roads connecting the
two areas of interest and then he finds access roads to those major
roads. The basic question is how we can mimic such route finding
behaviour in SP algorithms.

2.3 HBA* algorithm’s details
HBA∗ algorithm emulates this typical route finding behaviour by

alternating between running an A∗ algorithm from s to t (forward
search), as well as an A∗ algorithm from t to s (reverse search)
in the reverse graph. Each of those searches utilizes hierarchical
jumping (HJ), a technique that favours the use of higher category

roads to reduce the overall search space and improve the running
time of SP computation.

On hierarchical jumping we split roads in two different cell lev-
els. The first upper cell level (UCL) includes only roads of higher
importance (highways, major roads etc) and the second lower cell
level (LCL) includes the entire road network. If one of the opposite
A∗ searches expands a node and the edge leading to this particular
node belongs to UCL, it ignores all outgoing edges (smaller roads)
that do not belong to UCL. Therefore only nodes being reachable
by same or higher category edges are visited during node expan-
sion. Additionally, if one of the two A∗ searches is on UCL and
the opposite A∗ search is not, it freezes until the opposite search
reaches that same level. That partially ensures that the two searches
meet at the UCL i.e., at a higher category road. By adjusting which
road categories are assigned to UCL, we can manipulate the quality
of results that HBA∗ produces in contrast to the number of nodes
expanded. Therefore, if all available road categories were assigned
on UCL, the HBA∗ algorithm would fall back into a standard bi-
directed A∗ search.

If π f (u) is the Euclidean distance of node u from target node t
divided by the maximum speed of the road network (travel time
metric) and πr(u) is the Euclidean distance of node u from start
node s divided by the same maximum speed, π f and πr give lower
bounds for forward and reverse search respectively. Similar to [10],
HBA∗ uses p f (u) =

π f (u)−πr (u)
2 as the potential function for the for-

ward search and pr(u) = −p f (u) for the reverse one, which are
feasible and consistent and therefore provide optimal results in a
bi-directed A∗ search.

Analogous to [6] the HBA∗ algorithm maintains the length µ of
the shortest path seen so far. Initially, µ = ∞. When an edge (u,w)
is scanned by the forward search and w has already been scanned
in the reverse direction, we know the length ds(u) of path s − u and
length dt(w) w-t path respectively. If µ > dsu + w(u,w) + dtw, we
have found a shorter path than those found before, so we update
µ and its path accordingly. Similar updates are done during the
reverse search. The HBA∗ algorithm terminates when the search in
one direction expands a vertex that has already been scanned in the
opposite direction. By using the aforementioned techniques, the
HBA∗ algorithm mimics human driving behaviour, i.e., when given
the choice, it selects higher category roads to reach a destination.

Since we effectively reduce the overall search space with HJ,
the algorithm’s performance in terms of memory consumption and
computation speed is dramatically improved. On a typical route,
during the middle portion of the search, the number of nodes ex-
panded is considerably reduced. This is further evident when ex-
amining the number of nodes in a per-category basis of a road net-
work. More than 50% of nodes on typical road networks respec-
tively belong to minor roads! Thus, by eliminating this portion of
the road network the SP search is considerably accelerated.

Still, hierarchical jumping in SP computation may eliminate can-
didate solutions and provide suboptimal results. To address this
issue, the concept of initialization buffer was introduced in [14].
Assuming that we want to compute a SP from node s to t, the ini-
tialization buffer I(ε) around both s and t prevents the use of HJ for
all vertices u ∈ I(ε) : {dist(u, t) < ε ∨ dist(u, s) < ε}. In [14] a
simple Euclidean distance measure was used to quantify the initial-
ization buffer. Although this approach was feasible, for travel time
metric graphs it is better to directly use the cost d(u) to reach this
node from origin of search.

What needed to be established was the optimal initialization buffer
ε in terms of cost d(u) rather than distance. Extensive experimen-
tation (omitted due to space limitation) for three road networks
showed that increasing ε leads to a logarithmic increase in the qual-



ity of HBA∗ results (thus decreasing the gap between HBA∗ and op-
timal Dijkstra results) and results in a linear increase in the number
of nodes expanded. The experiments also showed that, ε = 300s
is a good compromise for HBA∗ to (a) find almost optimal results
(less than 0.30% worse than optimal) and (b) still expand less than
40% of the nodes bi-directed Dijkstra does. Note that 300s is also a
logical time span to define neighbourhood searches. Consequently,
300s initialization buffer was used in all experiments of Section 5.

3. HIERARCHICAL DATA MANAGEMENT
The objective of this work is to develop an efficient storage man-

ager for hierarchical road network data for SP algorithms. This
section focuses on the design of respective data management tech-
niques that exploit the hierarchical structure of road networks.

In the routing server scenario, a server receives routing requests
from numerous clients. The server is assumed to have enough main
memory (MM) for the routing algorithm’s data structures but road
network data is fetched on demand. We propose an effective stor-
age manager that fetches road network data packed in cells from
secondary storage for use with SP routing algorithms. A database
was also chosen as the underlying storage mechanism to experi-
ment with varying cell schemas and provide support for parallel re-
quests. In this context, we refer to this storage manager as the Cell
Manager (CM). In a nutshell, we model the road network graph as
a set of hierarchical cells. In connection with the HBA∗ algorithm
and its HJ mechanism, hierarchical cells reduce the portion of the
road network that is kept in main memory.

3.1 Hierarchical Partitioning
Hierarchical jumping as used by the HBA∗ can be conceptualized

as shown in Figure 1. Here, the same road network is shown at
different levels of abstraction. The network on top includes only
major roads, while the network at the bottom includes all available
roads. On a typical car route, a driver initially moves on minor
roads, then moves to major roads and essentially chooses to ignore
lower category roads until getting close to the destination.

Higher level
network only

Lower level
network

same
major road

Figure 1: Road network hierarchy

In order to exploit this behaviour in data management, we par-
tition the road network graph, both, with respect to space and hi-
erarchy. The road network is partitioned into a regular number of
cells. Each cell should typically contain the same number of nodes
and edges. Hierarchical partitioning refers to considering edges of
a certain category (highways, neighbourhood roads etc.) for a spe-
cific spatial partitioning resulting into two separate cell levels. A
cell belonging to the Upper Cell Level (UCL) contains high capac-
ity roads (low category numbers). A cell of the Lower Cell Level
(LCL) contains all available roads.

The mapping of road categories (those defined by the road net-
work data vendor) to UCL may change and depends on the specific
road network (size and roads distribution per road category). In
our experimentation we use commercial road networks (Athens and
Vienna) for which road categories 1 to 5 are mapped to the UCL,
while for the OSM road network of Germany road categories 1 to 7

belong to the UCL. This flexibility is necessary, since different road
network vendors use a different categorization for road networks.

3.2 Spatial Partitioning
Apart from the hierarchical decomposition of the road graph we

need to consider the spatial partitioning of the graph, i.e., how many
nodes a cell contains. Too many nodes per cell mean unnecessary
data is moved through the network, too few and the number of re-
quests to the CM increase. The authors in [19] suggest medium-
sized cells as the best choice. In our case, experimentation showed
that we obtain best results for each cell containing roughly hundred
nodes.

Having established the best choice number of nodes per cell ν,
we need to enforce this choice for both cell levels. The number
of cells per cell level c(l), with l = {l ∈ L; L = {UCL, LCL}} is
calculated by the formula c(l) =

n(l)
ν

where n(l) is the total number
of nodes assigned to cell level l. Consequently, c(l) is related to the
cell level’s available nodes.

Having established some soft limits for c(l), we have to resolve
how nodes are assigned to cells. We can either use a regular rectan-
gular grid where all cells of the same cell level have the exact same
size for a particular road network or use a tool such as METIS [11]
for partitioning the road network graph for each cell level. METIS
is a set of serial programs for partitioning graphs and reducing com-
munication volume between cells (i.e., minimizing cross edges).

Since HBA∗ is exploiting hierarchies will mostly request UCL
nodes. Provided that UCL cells are larger (since they cover a big-
ger geographical area) but contain only a subset of all available
nodes and edges (since they include only major roads and their in-
tersections), the total number of cells loaded will be significantly
lower when compared to Dijkstra’s algorithm. Figure 1 illustrates
the cells being loaded for a typical route. All cells contain roughly
the same number of nodes and edges. Larger cells belong to the
UCL and cover only high-capacity roads. During the middle por-
tion of the search (HJ), only the UCL portion of the network is
evaluated and only UCL cells are retrieved, while for the beginning
and the end of the search small cells of the LCL are fetched.

The obvious advantage of the METIS partitioning is that truly
all cells almost contain the same number of nodes contrary to the
simple rectangular grid where certain cells are empty and others
are overpopulated, including up to 1000 nodes, instead of the de-
sired range of 100 to 200 nodes per cell. The partitioning schemas
and their performance is described in Section 4. Partitioning the
road network by either method requires minimal effort (the METIS
splitting even for the larger road network of Germany takes less
than 30s on an average workstation) and time since it only takes
into account the nodes’ position (rectangular grid) or connections
(METIS). In that sense, it does not depend on the underlying SP
algorithm.

3.3 Cell Manager
The Cell Manager (CM) implements a storage manager for a

road network based on the aforementioned spatio-hierarchical par-
titioning model. CM manages the creation and management of the
main memory graph data structure for the SP algorithm based on
node requests and by retrieving the respective cells from secondary
storage. CM maintains a least-recently used (LRU) cache of cells
that can hold a limited subset of road network graph data (accord-
ing to MM limitations). The LRU policy aligns itself well with
the SP algorithm, allowing us to discard "aged” and not frequently
used cells safely. The architecture of the Cell Manager is shown
in Figure 2. The LRU cache of cells may only store a subset of
all available cells of both cell levels combined. Additionally, each



Figure 2: Hierarchical partitioning of road network

node contains information about its neighbor nodes and the cell
they belong to (mainly for cross edges).

With HBA*, cells belonging to UCL are never unloaded, since
they are frequently used. As soon as the SP algorithm expands ad-
ditional nodes, CM implicitly loads all the necessary cells (if they
are not present in the cache). The CM knows the neighbouring
cells of a node. Thus, should a node outside the current cell be ex-
panded and provided its cell is not present in CM’s LRU cache, the
cell is retrieved from secondary storage. It is easy to use CM with
traditional routing algorithms like Dijkstra or A∗ . Here however,
only the LCL (including all edges) is used and we cannot exploit
CM’s hierarchical features. In that sense, CM is routing algorithm
neutral.

With respect to the database schema, all cells of both cell levels
are stored in two separate db tables and are indexed by cell IDs
for fast retrieval. Each cell is stored in the database as a set of
records, one for each node. For each node, edge information is
stored as a set of neighboring nodes. For space reasons this data is
not stored as separate attributes but as a single compact string for
each edge. CM is also database neutral, since it does not use any
vendor specific data types and therefore can be implemented on any
standard RDBMS. On our current implementation PostgreSQL[16]
was used due to its overall enterprise spatial capabilities.

In conclusion, CM provides a storage manager for road networks
based on spatio-hierarchical partitioning and implementing a LRU
buffering strategy that fits to the road network traversal of the hier-
archical shortest-path algorithms.

4. EXPERIMENTAL SETTING
Our experimental evaluation compares the performance of bi-

directed Dijkstra and the HBA∗ algorithm using the Cell Manager
as the storage manager. The comparison will be in terms of (i)
loaded cells, (ii) total nof nodes loaded in MM and (iii) computa-
tion time. Two separate tiling schemas, rectangular grid and METIS
partitioning, will also be compared in for efficiency and speed.

Experiments have been conducted on a Intel Core 2 Duo CPU
clocked at 3.00 GHz with 8Gb main memory, running Ubuntu 10.10
64bit (kernel 2.6.35 − 28). The HBA∗ algorithm and the Cell Man-
ager have been implemented in Java and 64bit PostgreSQL 9.0.3.

4.1 Road Networks
We used two commercial city size (Athens and Vienna) road

networks and one crowdsourced country size network (Germany).
The rationale behind this was to assess the performance of the stor-
age manager and SP algorithm for commercial vs. user-generated

Athens Vienna Germany
Road categories 1-9 1-9 1-13
Total nof nodes 140,633 55,954 3,554,665
Total nof edges 206,428 74,783 4,375,777

Table 1: Available road categories and sizes of road networks graphs
Road categories Nodes Nodes at UCL /
assigned at UCL at UCL Total nodes

Athens 1-5 20,101 14.3%
Vienna 1-5 17,199 30.7%
Germany 1-7 695,251 19.6%

Table 2: Road categories assigned to cell levels and nodes distribution

networks as well as small-scale to large-scale networks. The two
commercial networks [20] cover the greater metropolitan areas of
Athens, Greece and Vienna, Austria and comprise of nine cate-
gories, with 1 corresponding to highways up to 9 for dirt roads.

The country-scale network covering Germany was derived from
OSM data provided by Cloudmade [3]. Using a user-generated
road network that frequently gets updated plays to the strengths of
the HBA∗ algorithm when used in connection with the Cell Man-
ager, since this approach does not rely on preprocessing the road
network graph.

For all three road networks a travel time metric was used by as-
signing typical speeds to each road category. Table 1 summarizes
the properties of the three road networks used.

4.2 Cell Partitioning
Two cell levels were used for all road networks . The Upper Cell

Level (UCL) included major roads (road categories 1-5 for Athens,
Vienna and road categories 1-7 for Germany). The Lower Cell
Level (LCL) includes the entire road network graph. Assigning
road categories to cell level UCL conformed to the actual meaning
of road categories in the respective road networks, i.e., road cate-
gories 1-7 for Germany are basically the same roads as road cate-
gories 1-5 for Athens or Vienna). The tiling schemas used for each
road network aim at having roughly 100 - 200 nodes in a single cell
(cf. Table 3).

Since the rectangular grid ignores graph structure or density of
nodes, certain cells are overpopulated (>1000 nodes per cell) and
more than 20% of the cells at each cell level are empty . In contrast,
with METIS partitioning the number of nodes per cell was almost
constant. That is why the METIS partitioning performed better in
every experiment we conducted.

The proposed cell hierarchy is directly linked to the operation of
the HBA∗ algorithm and road network properties. UCL nodes com-
prise only 14,3%, 30,7% and 19.6% of the total number of nodes
for Athens, Vienna and Germany respectively (Table 2). Since
HBA∗ uses higher category roads, it will mostly use UCL (out-
side the initialization buffers area) and reads fewer cells from sec-
ondary storage. This behavior gives HBA∗ the scalability and speed
in memory constrained environments for handling large road net-
works. Additionally in Vienna, where UCL nodes comprise 30% of
the network, HBA∗ in almost all cases finds optimal results (Table
4).

4.3 Shortest-path Queries
Two different SP query types were used in the experimentation

(cf [19]). In the cold query case for the 1000 random queries that
Part. Part. Avg. nodes Avg. nodes

schema schema per cell per cell
UCL LCL UCL LCL

Athens 13 x 13 39 x 39 118 92
Vienna 13 x 13 26 x 26 101 82
Germany 64 x 64 128 x 128 169 216

Table 3: Partitioning statistics



Quality Nodes Nodes
of Results (%) Expanded (%) Expanded

Athens 0.26% 38.93% 4,999
Vienna 0.07% 32.52% 1,708

Germany 0.29% 3.72% 11,188
Table 4: Algorithm comparison for the three road networks graphs

Cells Nodes loaded Computation Computation
Loaded in MM time (%) time (ms)

Athens
HBA* Regular 8.2% 113.9% 56.2% 56

HBA* Metis 45.51% 50.1% 41.6% 44
Vienna

HBA* Regular 19.2% 86.2% 46.8% 21
HBA* Metis 46.6% 53.14% 43.3% 20

Germany
HBA* Regular 5.3% 9.5% 3.9% 97

HBA* Metis 7.4% 7.1% 3.5% 91
Table 5: Results for rectangular grid and METIS (Cold SP queries)

are executed, the LRU cache (implemented by the CM) is cleared
after each query. This is an efficient way to determine the cost of the
first query in an un-initialized system. For warm queries the LRU
cache is not cleared. This determines the "true" average query time
for the routing server scenario.

In secondary storage experiments for mobile devices ([8],[19]),
the cold query experiments were the most important ones (the de-
vice will not perform thousands of SP computations). In our case,
since we emulate the routing server scenario, computation time of
warm query experiments is more important, since the same server
will satisfy thousands of SP requests.

5. EXPERIMENTAL RESULTS
What follows below are experiments contrasting the performance

of the HBA∗ algorithm with that of bi-directed Dijkstra, when us-
ing the Cell Manager. In contrast to related work (cf. [19] and [5]),
where outputting the complete shortest path is considered a sepa-
rate task independent from the actual SP calculation, this task is
included in all times reported in our experiments.

5.1 SP Quality
The first set of experiments contrasts the performance of HBA∗

SP computation with bi-directed Dijkstra in terms of quality of re-
sults and number of nodes expanded. These sizes are independent
of the CM’s tiling schema and depend only on the actual algo-
rithms. Bi-directed Dijkstra is used as the benchmark in all experi-
ments and relative percent measurements relate to the performance
on this algorithm.

Although HBA∗ due to HJ does not guarantee optimal results, in
reality the results it produces are close to identical to the optimal
Dijkstra results. Table 4 shows that for Germany it produces on
average 0.3% worse results. Even better numbers apply to Athens
and Vienna (0.26% and 0.07% respectively). On the other hand, in
Germany, HBA∗ expands only 3.7% of the nodes that bi-directed
Dijkstra expands, by utilizing less than 20% of the road network.

5.2 Cold SP queries
In order to assess the performance for cold queries, we compare

the rectangular grid and the METIS partitioning, in terms of cells
and nodes loaded. The former represents the number of requests to
the CM, whereas the latter stands for the data fetching into memory.
In addition, we also assess the computation time in each case. Bi-
directed Dijkstra experiments were conducted using METIS par-
titioning. The results for 1000 random SP queries conducted for
each of the three networks are presented in Table 5.

Results show that the combination of HBA∗ and CM provides av-

(a) Bidirected Dijktra (b) HBA* (METIS)

Figure 3: Cold SP queries - computation times [Germany]

(a) Bidirected Dijktra (b) HBA* (METIS)

Figure 4: Cold SP queries - nodes loaded [Germany]

erage computation times of less than 100ms for Germany. This is
achieved with no preprocessing and the entire road network graph
stored on disk. On average for a SP query for Germany 27,000
nodes are loaded, which is roughly 0.8% of the total road network
graph. Bi-directed Dijkstra on the other hand had an average com-
putation time of 5.5s for Germany (60 times slower) and had to load
on average 15% of the total road network.

Another obvious result is that METIS partitioning is more ef-
fective and results in better computation times, e.g., by 5-12 ms
for all networks. The METIS effectiveness is credited to the fact
that all cells have about the same size and therefore the nof nodes
fetched is minimal. For Germany METIS partitioning loads on av-
erage 27,127 nodes per search, whereas the regular grid feches an
average of 35,380 nodes per search.

Fluctuations in computation times and fetched number of nodes
in relation to Euclidean distance between origin and destination of
search for Germany are presented in the box and whisker plots of
Figure 4. The figures show experiments for bi-directed Dijkstra and
HBA∗ with METIS partitioning. Athens and Vienna results are also
similar.

Results show that the nof nodes loaded in MM follow similar pat-
tern to computation times, i.e., the nodes retrieved from secondary
storage are the main contributing factor to the performance of CM
and SP algorithm. We also see that the larger the graph, the greater
the advantage of our approach. This is due to the use of mainly
UCL in path computation. The closer the origin and the destination
are, the smaller is the advantage of a hierarchical SP algorithm.

5.3 Warm SP queries
The previous section established that the combination of CM and

HBA∗ is efficient for all road network graphs when all graph data
is stored on secondary storage. Still, since we emulate the rout-
ing server scenario, those results are not the typical case. A rout-
ing server performs countless SP computations and therefore most
popular cells are already loaded in MM. For these warm query ex-
periments, we performed 1000 SP random queries to "warm up"
the CM’s LRU cache and then performed another set of 1000 SP
queries, for which we then recorded the computation times. METIS
partitioning was used in all experiments.

Table 6 gives average running times. This table should be com-



Computation time % Computation time (ms)
Athens 40.5% 6
Vienna 40.2% 2

Germany 3.4% 13
Table 6: Warm SP queries - Computation times

(a) Vienna (b) Germany

Figure 5: Warm SP queries - computation times

pared to Table 5. The avg. running time for Germany has been re-
duced from 91ms to 13ms, i.e., a speedup of 7. Similar speedups of
10 and 8 apply to Vienna and Athens, respectively. These speedups
can be largely attributed to the reduced number of accesses to the
CM.

The computation times as function of the Euclidean distance be-
tween origin and destination are shown in Figure 5 for Germany.
We see that the combination of CM and HBA∗ for warm queries
provides computation times similar to typical main memory SP al-
gorithms. This is expected since HBA∗ utilizes mainly UCL, which
contains a small fraction of total nodes and therefore is expected to
fit in MM. Additionally, our approach requires no preprocessing
and uses no pre-computed routes (and therefore requires no un-
packing routines). This makes is suitable for dynamic networks in
which either the edge weights change or the network graph itself
(OSM). This creates a significant advantage for this approach over
novel SP algorithms, like Contraction Hierarchies [5] or Transit
Node Routing [2].

6. RELATED WORK
The idea of partitioning a graph for SP computation is not new.

Maue et al. [12] partitioned the graph into clusters and precom-
puted distances between border nodes of clusters in order to prune
their modified Dijkstra’s algorithm. Möhring et al. [13] also di-
vided the graph into partitions and gathered information on whether
each edge is on a shortest path into a given region. For each edge
this information is stored in a arc-flag vector to be used in their
Dijkstra computation to avoid exploring unnecessary paths.

Both approaches considered METIS as a clustering algorithm
and results are similar to ours in the sense that METIS yields the
highest speed factors. Unfortunately, both those approaches re-
quire extensive preprocessing time. In [13] the preprocessing time
for smaller road networks than our Germany OSM network ranged
from 2 to 16 hours. In [12] preprocessing time for their Germany
network (similar to ours), was 9 hours. But even then, SP compu-
tation in [12] for similar sized road networks took on average 62ms
(5 times slower than our warm queries average time).

Other attempts on using secondary storage for road network data
[8], [19] experimented with running routing requests on mobile de-
vices. Goldberg and Werneck [8] implemented the ALT algorithm
[6] on a Pocket PC and achieved on the largest road network used
(North America, 29.9×106 nodes) an average running time of 329s.
The preprocessing time required was 208 minutes. Sanders et al
[19] implemented a mobile implementation of Contraction Hier-
archies [5] on a Nokia N800 device and achieved on the European
road network (18×106 nodes) an average running time of 458ms for

calculating the complete shortest path. Using pre-unpacked paths,
the computation time for Europe improved to 97ms. The prepro-
cessing time for mobile contraction hierarchies was 31 minutes for
the European road network.

All previous secondary storage attempts arranged the data in
blocks and accessed them blockwise similar to our cell partition-
ing. They also used the same LRU caching policy. Additionally,
in order to assign nodes to blocks, they exploited the locality prop-
erties of the data, meaning that their nodes were ordered by spa-
tial proximity (nodes with similar IDs should be nearby). Like the
present approach, Sanders et al. [19] divided nodes in two groups,
one group containing more important nodes and the other contain-
ing the rest of the nodes.

The main differences between previous and the present approach
are that here the road category information already present in the
road dataset is used to distinguish important and unimportant nodes
(and therefore no preprocessing was required). Additionally, we
did not use any particular node ordering (in order to avoid any pre-
processing time) for both METIS and the rectangular grid.

Using the road network graph in its original format has other ob-
vious advantages as well. For one, no special path unpacking rou-
tines are required to output the shortest path. For example, Sanders
et al. [19] need to explicitly store pre-unpacked paths as sequences
of original node IDs. Additionally, when using dynamic weights
(time-dependent routing), several versions of the road network (not
just edge weights but new shortcuts and new pre-unpacked paths)
need to be computed for all previous preprocessing algorithms.

7. CONCLUSION
This work introduced the Cell Manager (CM) as an efficient,

hierarchical storage manager and companion to hierarchical SP al-
gorithms. In this work, we specifically investigated the HBA∗ al-
gorithm with the CM. The CM uses a spatio-hierarchical tiling
schema to partition the network into a set of tiles according to spa-
tial distribution and road network hierarchies. Two space partition-
ing algorithms, a regular grid partitioning and the METIS [11] were
used.

Our extensive experimentation with two city road networks and
the crowd-sourced OSM road network of Germany showed that
the CM facilitates fast computation times, efficient memory usage,
minimal number of queries and almost optimal results when used
in connection with the HBA∗ shortest path algorithm. The METIS
tiling schema has also proved to be more effective than the regular
grid, both in terms of resulting computation time and fetched road
network size. Overall, HBA∗ and the aforementioned Cell Manager
provide an efficient and scalable solution for serving multiple rout-
ing requests in a routing server scenario. Since the road network
graph does not require any SP specific preprocessing and is used
in its original form, both the CM and HBA∗ can also be used with
dynamic networks and speed profiles.

Our ongoing and future work is as follows. Although the Cell
Manager was implemented using a database, it could also be im-
plemented using embedded DBs or files. Therefore an implemen-
tation of CM and HBA∗ on a mobile device may be extremely ben-
eficial. On the other hand, since HBA∗ due to its hierarchical nature
provides slightly sub-optimal results we need to establish how this
error can be quantified. The best approach would be to find an error
estimate based on road network graph properties such as the high-
way dimension [1]. By predicting the error of HBA*, we may be
able to minimize its limited sub-optimality by successfully tweak-
ing its parameters.
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