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1George Mason University, Geography and Geoinformation5

Science, Fairfax, VA 22030, United States.6

2Emory University, Department of Computer Science, Atlanta,7

GA 30322, United States.8

*corresponding:katwal@gmu.edu.9

Abstract10

Accurately predicting commuting flows is crucial for sustainable urban11

planning and preventing disease spread due to human mobility. While12

recent advancements have produced effective models for predicting13

these recurrent flows, the existing methods rely on datasets exclusive14

to a few study areas, limiting the transferability to other locations.15

This research broadens the applicability of state-of-the-art commut-16

ing flow prediction models by employing features from freely accessible17

and globally available OpenStreetMap data. We show that the pre-18

diction accuracy of several state-of-the-art models using open data19

is comparable to location-specific and proprietary data. Our experi-20

ments indicate that consistent with theoretical and analytical models,21

building types, distance, and population are the determining charac-22

teristics for mobility related to commuting. Furthermore, our exper-23

iments show that predicted flows closely match ground truth flows.24

It helps establish the practical relevance of flow prediction models25

for real-world applications such as urban planning and epidemiology.26

Introduction27

Understanding how individuals routinely move from one place to another is28

as challenging as it is significant [1, 2]. Commuting flow prediction estimates29

1
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the number of people moving between regions in a geographic area based on30

descriptive features, such as population [3], distance to other locations [4], and31

land use type [5]. Commuting flow prediction is helpful in many applications,32

such as understanding migration patterns [6, 7], urban planning [8, 9], and33

epidemiology [10, 11]. Considering that commuting flows vary little from day34

to day [12, 13], the goal is typically to predict a set of static flows where35

each flow represents the average number of daily commuters between origin-36

destination pairs, i.e., home and work locations [14, 15]. Therefore, similar to37

other approaches [9, 16], we define the term flow prediction as the task of38

predicting repetitive static flows rather than forecasting flows along a series of39

points in time using historical data, which is a time series problem.40

Analytical flow prediction approaches include spatial interaction models41

such as the gravity model [17] and its extensions, including the radiation42

model [18–20], the intervening opportunities model [21, 22], and the competing43

migrants model [23]. Each model proposes different characteristics to predict44

accurate flows. For example, the gravity model assumes that the flow between45

locations is a function of two main characteristics: (i) the population at both46

locations and (ii) the distance between them. In another example, the inter-47

vening opportunities model replaces distance with the number of opportunities48

at the destination location that satisfy the trip objective [24]. Thus, when pre-49

dicting commuter flows, the “opportunity” in question might be the number50

of commercial businesses.51

More recently, machine learning models for commuting flow prediction far52

outperform the traditional mathematical approaches when comparing the pre-53

dicted flows with ground truth [16, 25–28]. These models leverage machine54

learning approaches that can more flexibly incorporate different features of55

the origin-destination and can capture complex and non-linear relationships in56

the data [29–31]. Many studies use spatiotemporal characteristics to address57

the flow prediction problem using neural networks [32–35], which can also be58

combined with ordinary differential equations [36]. A current state-of-the-art59

model, the Geo-contextual Multitask Embedding Learner (GMEL) [9] learns60

commuting flows based on origin-destination features and their spatial con-61

texts. GMEL uses 65 features derived from the 2015 NYC Primary Land Use62

Tax Lot Output (PLUTO)[37] dataset. In another example, the ConvGCN-RF63

model [38] uses convolutional neural network, graph convolutional network,64

and a random forest regressor to predict the commuting flow based on origin-65

destination features related to land use, as well as the residential and working66

population for homogeneous spatial units in the region of Beijing, China.67

Spadon et al. [39] derive 22 urban features from datasets provided by the68

Brazilian Institute of Geography and Statistics (IBGE) to predict intercity69

commuting in Brazil.70

Despite the ability of such models to accurately predict flows, these high-71

performing models use a large number of input features derived from location-72

specific data sets that are not available outside of the study area. It makes73

the use of the model in other data-poor study regions challenging. In addition,74
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given the variety of different input features used across models, it is difficult75

to compare models independent of the used data.76

Our goal in this research is to address the limitations that restrict the appli-77

cability of current commuting flow prediction models to arbitrary study areas.78

More precisely, we assess the effectiveness of these models by employing a min-79

imal set of input features obtained from a globally accessible dataset called80

OpenStreetMap (OSM) [40]. Moreover, since numerous models are assessed81

using high-level metrics, such as Root Mean Square Error (RMSE), Coeffi-82

cient of Determination (R2), and Common Part of Commuters (CPC), which83

provide limited insight into the model’s ability to replicate authentic patterns84

intrinsic to commuting flows, we investigate the degree to which these models85

prove valuable in predicting significant mobility flows at different scales. The86

extensive analysis of flows explains some of the underlying phenomena driving87

commuting mobility. Motivated by features used in previous theoretical work,88

including the gravity model and intervening opportunities model, we consider89

three characteristics to address the flow prediction problem: building types,90

distance, and population. Specifically, we extract nine input features from open91

data based on these characteristics that potentially drive commuters’ mobility,92

as follows:93

• The number (count), density, and area of residential and non-residential94

buildings, respectively (six features),95

• Region population and population density (two features), and96

• Distance between census tracts (one feature)97

The feature generation leverages existing work on using a machine learning98

approach to classify OSM building types [41] beyond the information avail-99

able in OSM. Additionally, we use Open Source Routing Machine (OSRM),100

an OSM-based routing API [42], to generate trip duration between all pairs101

of regions used to represent distance. Using these features, we first provide a102

fair comparison of different models for predicting commuter flows. Our first103

case study focuses on New York City (NYC), USA, at the census tract gran-104

ularity, where we compare two state-of-the-art models, including GMEL [9]105

and Deep Gravity [27], and eXtreme Gradient Boosting (XGBoost) and ran-106

dom forests (RF) as out-of-the-box models commonly used for commuting107

prediction [25, 26, 39]. The 2015 Longitudinal Employer-Household Dynam-108

ics (LEHD) Origin-Destination Employment Statistics (LODES) data [43] is109

used to evaluate the effectiveness of our approach. We compare model per-110

formance using OSM-derived features with region-specific features unavailable111

outside the study area. Finally, we demonstrate the inherent flexibility of using112

OSM-derived features by predicting commuting flows for Fairfax County, USA.113

Results from both case studies validate the intuitive understanding that the114

destination flows, commuters going to workplaces, are concentrated in a few115

places.116
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Table 1: Notations used in the study

Notation Meaning
A = {a1, ..., an} The study region
ai A subregion of the study region
n The number of subregions
Tij The ground truth commuter flow from Region ai to Region aj
T̂ij The estimated commuter flow from Region ai to Region aj
dij Spatial distance between two subregions
Oi =

∑
j Tij The total outflow of region ai (to any other region)

Ii =
∑

j Tji The total inflow of region ai (to any other region)

Ôi =
∑

j T̂ij The estimated outflow of region ai (to any other region)

Îi =
∑

j T̂ji The estimated inflow of region ai (to any other region)

Results117

Results show that we can get accurate flow predictions between census tracts118

using features derived from open data, and population, building type, and119

distance are the significant characteristics driving commuting mobility. The120

evidence from experiments at multiple scales suggests our approach produces121

meaningful mobility patterns while providing notable insights into the com-122

muting flows. Before presenting our findings, we briefly define the commuting123

flow prediction problem.124

Problem Definition125

The commuting flow prediction problem can be defined as follows. Table 1126

summarizes the used notations.127

Definition 1 (Commuting Flow Prediction). Let A denote a study region128

partitioned into n smaller regions (a1, ..., an), such as census tracts in the129

United States. For each region ai, let fi denote a corresponding set of features,130

and for each pair of regions ai, aj , let dij denote a distance measure between131

regions. Given these features and distance, the task is to predict the commuting132

flow Tij for each pair of regions ai, aj ∈ A.133

Benchmark Results134

Using OSM data and the same set of derived features for New York City135

(NYC), Table 2 provides the commuting flow prediction accuracy for state-of-136

the-art models GMEL [9] and Deep Gravity [27], and out-of-the-box models137

XGBoost [44] and RF [45]. To evaluate model performance, we use the RMSE138

[46], the Coefficient of Determination R2 [47], and the Common Part of139

Commuters metric [48].140
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The RMSE is defined as follows:

RMSE(A) =

√∑
aij

(T̂ij − Tij)2

n

where A is the NYC study region, T̂ij is the predicted commuting flow (c.f.141

Definition 1), Tij is the ground truth flow obtained for NYC using LODES142

data, and n is the number of census tracts of NYC.143

RMSE values are notoriously difficult to interpret. For example, it is not144

clear to what degree a prediction with an RMSE of 2.279 is accurate. As145

such, we also provide the Coefficient of Determination R2 and Common Part146

of Commuters (CPC) to provide an additional evaluation of model accuracy.147

Although the R2 is well known and measures the fraction of variance explained148

by the model, the Common Part of Commuters (CPC) is less known. Thus,149

we define CPC, as follows:150

CPC(A) =
2
∑

aij
min(T̂ij , Tij)∑

aij
T̂ij +

∑
aij

Tij

CPC is 0 when predicted and ground truth flows do not overlap and 1 when151

both are identical [49].152

Based on the results presented in Table 2, GMEL has the lowest RMSE and153

highest CPC and R2 in comparison to XGBoost, Deep Gravity, and RF. Note154

that the two state-of-the-art models, GMEL and Deep Gravity, are originally155

implemented to predict commuting flow using a different set of input features,156

making them difficult to compare. Therefore, in order to evaluate the perfor-157

mance of the models independent of the data, the models are implemented158

using the same set of input features derived from OSM. The experiment shows159

that GMEL is the best-performing model compared to other models using the160

same features.161

Table 2: Evaluation of different flow prediction models using OSM data

Model RMSE CPC R2

GMEL 2.279 0.495 0.535
XGBoost 3.125 0.261 0.111

Deep Gravity 3.144 0.325 0.078
RF 3.228 0.218 0.051

Comparative Analysis162

Given our results showing that GMEL is the best-performing model, we next163

compare the performance of the originally proposed GMEL model, which164

leverages the PLUTO dataset [37] available only for New York City, with165

the performance of GMEL using globally available OSM data. To distinguish166
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between the two, we call the original model GMEL-PLUTO and our approach167

GMEL-OSM throughout the rest of the paper. In other words, GMEL-PLUTO168

uses region-specific PLUTO data for flow prediction, while GMEL-OSM uses169

features derived from OSM data.170

Table 3: Comparison of OSM and PLUTO data using GMEL model for NYC

Features RMSE CPC R2

GMEL-OSM 2.279 0.495 0.535
GMEL-PLUTO 2.084 0.536 0.611

Table 3 shows that a comparable level of prediction accuracy can be171

achieved overall when using features derived from globally accessible and freely172

available OSM data. The R2 value indicates that the three characteristics173

account for an 53.5% variation in commuting flows. Additionally, GMEL-OSM174

utilizes a smaller set of features to achieve accuracy close to GMEL-PLUTO175

with 65 features.176

To better understand the ability of the models to capture meaningful mobil-177

ity patterns beyond aggregate metrics, we also evaluate the predicted sum of178

outgoing commuters from an origin location ai denoted as Ôi =
∑

j T̂ij , which179

we call outflows, and the predicted sum of incoming commuters to a destina-180

tion location ai denoted as Îi =
∑

j T̂ji, which we call inflows. The Ôi and181

Îi for each region ai stemming from the GMEL-OSM and GMEL-PLUTO182

predictions are then compared to the ground truth values Oi =
∑

j Tij and183

Ii =
∑

j Tji derived from LODES data for NYC.184

Figure 1 shows the distribution of relative prediction errors for the out-185

flows Oi−Ôi

Oi
and the inflows Ii−Îi

Ii
for GMEL-OSM (Figures 1a and 1c) and for186

GMEL-PLUTO (Figure 1b and 1d). We observe that GMEL-OSM is compa-187

rable with GMEL-PLUTO to predict outflows, but performs somewhat weaker188

for inflows. It is likely due to the nature of commuting flows, with inflows being189

limited to a small group of destination census tracts (cf. discussion in the Data190

Section). Even so, the results show the practicality of predicted flows compared191

to ground truth data. Out of those census tracts where flow is over-predicted192

by more than 100%, many have a commuting flow count of 10 individuals or193

fewer. It indicates that our approach is capable of predicting real-world com-194

muting mobility at the tract level, where the flow count is generally more than195

10.196

To assess the accuracy of the predicted inflows and outflows for census197

tracts, Figure 2 shows scatter plots comparing the ground truth flows against198

the predicted flows using GMEL-OSM (Figures 2a and 2c) and GMEL-PLUTO199

(Figures 2b and 2d). Both models tend to overestimate inflows that are smaller200

in the real world and underestimate large inflows, as indicated by the points201

that fall above and below the identity line. Likewise, both models also tend202

to overestimate smaller outflows. Again, while both models produce similar203
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(a) Percentage of under or overestima-
tion of NYC commuters’ outflows using
GMEL-OSM.
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(b) Percentage of under or overestima-
tion of NYC commuters’ outflows using
GMEL-PLUTO.
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(c) Percentage of under or overestimation
of NYC commuters’ inflows using GMEL-
OSM.
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(d) Percentage of under or overestimation
of NYC commuters’ inflows using GMEL-
PLUTO.

Fig. 1: Comparison of GMEL-OSM and GMEL-PLUTO commuters under or
overestimation in NYC flows.

results for outflows, GMEL-PLUTO (65 custom feature model) seems to per-204

form better when predicting the inflows, essentially confirming the results of205

Figure 1 at a more granular level.206

We note that the maximum number of commuters going to a census tract207

is much higher than coming from a home location, which is consistent in both208

prediction models and the ground truth. It indicates that the inflows are much209

denser to specific census tracts or workplaces. We investigate and explain this210

phenomenon in our Data Section.211

We can also map the differences between predicted and ground truth out-212

flows as presented in Figure 3 and inflows presented in Figure 4. Positive213

relative prediction errors indicate over-prediction and are depicted in shades of214

blue colors. In contrast, negative percentages indicate under-prediction and are215

shown in shades of red. Green shows a prediction largely matching the ground216

truth flows. Note that the large tracts in the south of the study area are mostly217
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(a) Comparison of NYC commuters’ out-
flows using GMEL-OSM with ground
truth.
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(b) Comparison of NYC commuters’ out-
flows using GMEL-PLUTO with ground
truth.
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(c) Comparison of NYC commuters’
inflows using GMEL-OSM with ground
truth (log-log scale).
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(d) Comparison of NYC commuters’
inflows using GMEL-PLUTO with
ground truth (log-log scale).

Fig. 2: Comparison of GMEL-OSM and GMEL-PLUTO commuters with
ground truth in NYC flows.

comprised of water, thus having small in and outflows. As a result, minor flow218

prediction errors for these census tracts provide high relative percentage errors219

and as such are shown as large light blue areas.220

Upon comparing Figures 3 and 4, we can see that GMEL-OSM and GMEL-221

PLUTO flow predictions are very similar in terms of the relative prediction222

error. Both approaches have less success in predicting destination flows. It is223

once again likely due to the large number of features used in GMEL-PLUTO224

that are likely better at capturing the inflows to destination census tracts. We225

discuss steps that we may take to address this in future work in the Discussion226

Section.227

To better understand the utility of predicted commuter flows, we also228

performed experiments focusing on a single origin (destination) tract to under-229

stand how well models can capture the distribution of destination (origin)230

tracts to (from) this tract. For this purpose, we select the census tract hav-231

ing the median outflow (GeoID: 36047037300, denoted as the Origin Median)232
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(a) Relative errors of NYC outflows using GMEL-OSM.

(b) Relative errors of NYC outflows using GMEL-PLUTO.

Fig. 3: Comparison of GMEL-OSM and GMEL-PLUTO in NYC outflows.
Plotly version 5.13.0 was used to generate the maps.

and the census tract having the median inflow (GeoID 36005024800, denoted233

as the Destination Median). We use these two census tracts to evaluate (i)234

the distribution of outflows from the Origin Median to understand how well235

the models can understand where people commute to (from one specific cen-236

sus tract) and (ii) the distribution of inflows from the Destination Median to237

understand how well our models can capture the distribution of where people238

commute from (to one specific census tract).239

Table 4 shows the results of these experiments. Out of all 448 census tracts240

in the NYC study region included in the test set, 354 tracts have a zero com-241

muting flow from the Origin Median. The remaining 94 census tracts having242
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(a) Relative errors of NYC inflows using GMEL-OSM.

(b) Relative errors of NYC inflows using GMEL-PLUTO.

Fig. 4: Comparison of GMEL-OSM and GMEL-PLUTO in NYC inflows.
Plotly version 5.13.0 was used to generate the maps.

non-zero commuting flows capture a total of 244 commuters. Using GMEL-243

OSM, we have 332 predicted zero commuting flows and 116 predicted non-zero244

commuting flow. Out of the predicted 116 predicted non-zero flows, 48 match245

with the 94 ground truth non-zero flows. Out of the 332 predicted zero flows,246

286 match with the 354 ground truth flows. It yields an overall 74.5% accuracy247

in predicting whether any census tract has a non-zero flow from the Origin248

Median. Note that we round predictions to the nearest integer for this exper-249

iment, such as that a predicted zero flow is equivalent to a predicted flow of250

less than 0.5 individuals. We observe that for GMEL-PLUTO, the accuracy251
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Table 4: Single origin and destination census tract predictions

Census Tract Approach Zero Flows Non-Nero Flows Sum of
Count Count Commuters

(Matching) (Matching)

Origin Median
Ground Truth 354 (354) 94 (94) 244
GMEL-OSM 332 (286) 116 (48) 212

GMEL-PLUTO 345 (304) 103 (53) 201

Destination Median
Ground Truth 411 (411) 46 (46) 81
GMEL-OSM 418 (393) 39 (21) 43

GMEL-PLUTO 427 (398) 30 (17) 32

is higher at 79.6%, indicating that the model can better predict destination252

flows by leveraging PLUTO data.253

Similarly, by considering only the Destination Median as a single desti-254

nation, GMEL-OSM and GMEL-PLUTO matched 90.5% and 90.8%, respec-255

tively, out of 457 origin tracts in the test set. We observe that the destination256

median has a relatively small number of only 81 incoming commuters in the257

ground truth. It is explained by the long-tail distribution of inflows, which we258

further investigate and explain in the Data Section.259

Overall, we observe that while GMEL-OSM and GMEL-PLUTO provide260

very accurate flow predictions when aggregated to census tracts, the prediction261

of individual origin-destination flows remains challenging. The reason is that262

the vast majority of origin-destination flows are zero and among the non-zero263

flows, most flows are less than five individuals. Despite these small numbers,264

which correspond to rare events of individual origin-destination commutes,265

both GMEL-OSM and GMEL-PLUTO give good results.266

Based on the results presented so far, we can conclude that there are267

marginal gains in performance by using a large number of region-specific fea-268

tures using GMEL-PLUTO, and we can achieve similar results with a small269

set of features derived from open data that is globally available. To examine270

whether GMEL-OSM is usable in other regions, we trained and tested the271

model for Fairfax County in Virginia and compared the predicted flows with272

the LODES data as ground truth. Note that we cannot compare GMEL-OSM273

with GMEL-PLUTO because the latter approach uses NYC-specific data,274

which is publicly unavailable for Fairfax.275

Histograms in Figure 5 show the relative percentage errors of outflows and276

inflows at the tract level compared to the ground truth. Figure 6 demonstrates277

the trend of flow prediction for outflows and inflows, respectively. We observe278

that the model performance in Fairfax, VA is comparable, if not better than the279

NYC case study using GMEL-PLUTO. Based on the histograms, it appears280

that the commuting inflows for Fairfax are easier to predict and less extreme281

than in NYC.282

Additionally, we trained GMEL-OSM using NYC data and tested the pre-283

trained model to predict the commuting flows for Fairfax to determine whether284

the model is useful in locations where training commuting flow data (obtained285

for the U.S. from LODES data) is not available. Table 5 shows that the model286
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(a) Percentage of under or overestima-
tion of Fairfax commuters’ outflows using
GMEL-OSM.
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(b) Percentage of under or overestima-
tion of Fairfax commuters’ inflows using
GMEL-OSM.

Fig. 5: Commuters under or overestimation using GMEL-OSM for Fairfax.

trained in NYC and transferred to Fairfax provides acceptable results by287

explaining 62.1% of the variation in the commuting flows of Fairfax, compared288

to 70.2% using the model that was trained using Fairfax LODES data.289

Table 5: Comparison of GMEL-OSM in Fairfax using transfer learning

Training data RMSE CPC R2

Fairfax 6.476 0.643 0.702
NYC 7.427 0.572 0.621

Discussion290

Results for the two study areas show that commuting flows can be accurately291

predicted using features derived from OSM data, which is globally available292

and freely accessible. Comparative results reveal that GMEL-OSM achieves293

accuracy close to region-specific GMEL-PLUTO, which outperforms other294

state-of-the-art models but cannot be used outside NYC due to a lack of input295

data for other regions. The learning framework of GMEL-OSM relies on geo-296

graphic contextual information [50] for predicting commuting flows between297

origin-destination pairs of subregions. Our findings suggest that the OSM298

data captures the contextual information very well for the origin and desti-299

nation locations, providing a rich and effective source of input features for300

GMEL-OSM. Besides aggregated results, the in-depth analysis demonstrates301

the usefulness of the predicted flows for urban planning [51], disease trans-302

mission [52, 53], and other applications [54, 55]. We find that inflows are303

concentrated in a few destinations while outflows are more evenly distributed,304

validating the intuition that people commute to a few workplaces and reside in305

dispersed locations. Our analysis shows that GMEL-OSM effectively captures306
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(a) Comparison of Fairfax commuters’
outflows using GMEL-OSM with ground
truth.
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(b) Comparison of Fairfax commuters’
inflows using GMEL-OSM with ground
truth (log-log scale).

Fig. 6: Comparison of GMEL-OSM commuters prediction with ground truth
for Fairfax flows.

this divergent phenomenon, matching the trend of outflows and inflows in the307

ground truth. Additionally, we also illustrate that the number of residential308

and non-residential buildings in census tracts plays a crucial role in predicting309

commuters’ mobility. Our results indicate that building types, distance, and310

population are the essential characteristics driving commuting mobility.311

While the population can be estimated at a fine-grained scale using OSM312

data [56, 57], for simplicity, we utilized the U.S. Census data as a proxy for313

this. In future work, we plan to extend our proposed approach for generat-314

ing population features, alleviating the need for census data. To investigate315

the explainability of the input features, we might explore a unified mechanism316

for interpreting predictions such as SHapley Additive exPlanations (SHAP)317

[58]. It would help us understand which features are useful for better commut-318

ing flow predictions, potentially leading to more suitable feature selection for319

improving the performance of our approach. Where we found relatively weaker320

prediction accuracy for the destination flows, there is an opportunity to exam-321

ine what features might improve this aspect of the predictions. Prior work322

shows the effectiveness of points of interest (PoIs) [59] and land use [60, 61]323

for predicting flows. Therefore, we would explore types of PoIs and land use324

as other characteristics driving mobility. Finally, our transfer learning results325

for Fairfax County show promise for future work in which we would plan to326

apply our approach to regions where LODES or equivalent commuting data is327

not publicly unavailable, potentially outside the U.S.328

Methods329

Models330

We aim to predict commuting flows from three characteristics operationalized331

using globally available and openly accessible data. Therefore, we examine332
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four models including GMEL, Deep Gravity, XGBoost, and random forest333

(RF), comparing their performance using the same set of features derived334

from OSM. GMEL employs graph representation learning by using the graph335

attention network (GAT) framework for capturing the geographic contextual336

information from the nearby regions for commuting flow predictions. Given the337

potentially unique characteristics of the regions, it uses two GATs separately338

for origin and destination locations. As described in the proposed model [9],339

we used one hidden layer and an embedding size of 128 as hyperparameters for340

GMEL-OSM. Deep Gravity utilizes deep neural networks to generate mobility341

flows using features retrieved from OSM and census data [27]. The main fea-342

tures include land use, points of interest, road networks, and the population343

of the study region. XGBoost is a regression tree gradient boosting model,344

a highly scalable learning system capable of efficiently handling sparse data345

and supporting multicore parallel computing for quick model exploration [44].346

XGBoost has been shown to outperform traditional mathematical gravity and347

radiation models for commuting flow prediction using U.S. Census data [25].348

Random forests are the ensemble of individual tree predictions averaged for349

regression problems and the prediction with maximum votes selected for clas-350

sification problems [45]. Compared to the gravity model and artificial neural351

networks, the accuracy for the random forest is higher for predicting commut-352

ing flows in NYC in previous work [26]. As described in Results Section, we353

evaluate the comparative performance of these models for our approach using354

the parameters and configurations prescribed in the proposed studies.355

Data356

We use real-world commuting flows obtained from the Longitudi-357

nal Employer-Household Dynamics (LEHD) Origin-Destination Employment358

Statistics (LODES) 2015 dataset [43, 62] as ground truth for training and test-359

ing the models. LODES data captures the raw number of commuters between360

two regions at the census block level, and we aggregated it at the census tract361

level.362

Across the 2,168 NYC census tracts, there are 21682 = 4, 700, 224 pair-363

wise flows, of which 905,837 are non-zero with a total of 3,031,641 commuters.364

Similarly, across the 263 Fairfax County census tracts, there are a possible365

69,169 flows out of which 34,366 are non-zero flows, capturing 259,792 com-366

muters. Unlike prior work [9, 12, 26], we include flows that are zero in the367

ground truth LODES data. While LODES data does not explicitly include368

zero flows in their data, the omitted flows between a pair of census tracts are369

implicitly assumed to be zero values, which are missing from the evaluation370

of prior work [9, 12, 26]. However, omitting such flows creates biased models371

that learn that any pair of origin-destination census tracts must always have372

at least a flow count of one commuter. Our experiments include all pairs of373

census tracts, including zero flows, eliminating the bias. In other words, we374

add zero flows to training and test sets of all evaluated models to allow a fair375

evaluation. We note that due to this difference, the quantitative results we376
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report in the aggregated metrics in the Results Section (such as Table 2) are377

generally lower than reported in prior work, as our results include cases of378

flows where models predict a non-zero flow instead of a zero flow count in the379

ground truth. For training and testing, we split the flows into a 60% training380

set, a 20% validation set, and a 20% test set.381

Table 6 presents the descriptive statistics for the NYC and Fairfax County382

LODES outflows Oi and inflows Ii aggregated at the tract level. We notice383

a much higher standard deviation of the inflow of commuters in both study384

regions. The maximum count of commuters for the inflows also highlights the385

significant difference in variance. Furthermore, the 3rd quantile values in both386

cases show the skewness in the distribution of commuters. These results demon-387

strate the concentrated nature of inflows in comparison to outflows, where the388

majority of commuters move to a small set of destination census tracts. There-389

fore, as our results suggest, it is much harder to predict the commuters’ count390

for inflows.391

Table 6: Descriptive statistics of ground truth data Data

Study Flow Mean Standard Min 25% Median 75% Max
Area Type Deviation

NYC
Outflows 280 176 4 168 244 350 1604
Inflows 280 817 1 34 81 190 10243

Fairfax
Outflows 197 120 5 111 173 255 904
Inflows 197 482 1 21 67 180 5702

OSM is an open-source collaborative project that provides free access to392

geographic data collected by volunteers at the global level [40]. The OSM393

data is structured as a set of elements such as nodes, ways, and relations that394

represent points of interest, polylines or polygons, and more complex shapes395

consisting of relationships between simple elements. Tags of key and value pairs396

can describe all the elements. For instance, a polygon can be tagged with the397

key as building and value as a residential, describing a residential building.398

This way, OSM data provides extensive coverage of points, buildings, roads,399

parking lots, and many other types of geographic information via editable400

maps. The OSM data we used for this work consists of 1,090,752 NYC and401

204,671 Fairfax building footprints.402

Features403

The features used in the models for predicting the flows are derived from OSM404

and the 2010 U.S. Census data [63]. Previous work shows that building types405

are missing from a vast majority of OSM data, and the spatial and non-spatial406

features of the data can be used to categorize buildings into residential or407

non-residential types [41]. We use this classification method to label the OSM408

buildings data and derive six input features for our study. In the first step of409

data preparation, we classify buildings for NYC and Fairfax. And in the second410
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step, we calculate the count, area, and density of two building types for each411

census tract, resulting in six features.412

We use population and the population density for each tract as two more413

input features. Although population estimates can be derived from OSM fea-414

tures in the same way [56, 57], we use census data as a proxy for this approach.415

Finally, we obtain the trip duration between the centroids of census tracts416

using Open Source Routing Machine (OSRM) [42] and use it as the edge fea-417

ture for the geo-adjacency network of GMEL-OSM. OSRM also relies on the418

maps from the OSM road network for calculating the shortest paths between419

O-D pairs.420

Data availability421

Data are available from OSF at https://osf.io/sxzar/422

Code availability423

The code is available in a GitHub repository at https://github.com/heykuldip/424

commuting flows prediction425
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