
Revisiting R-Tree Construction Principles

Sotiris Brakatsoulas, Dieter Pfoser, and Yannis Theodoridis

Computer Technology Institute
P.O. Box 1122, GR-26110 Patras, Hellas
{sbrakats,pfoser,ytheod}@cti.gr

Abstract. Spatial indexing is a well researched field that benefited com-
puter science with many outstanding results. Our effort in this paper can
be seen as revisiting some outstanding contributions to spatial indexing,
questioning some paradigms, and designing an access method with glob-
ally improved performance characteristics. In particular, we argue that
dynamic R-tree construction is a typical clustering problem which can
be addressed by incorporating existing clustering algorithms. As a work-
ing example, we adopt the well-known k-means algorithm. Further, we
study the effect of relaxing the “two-way” split procedure and propose
a “multi-way” split, which inherently is supported by clustering tech-
niques. We compare our clustering approach to two prominent examples
of spatial access methods, the R- and the R*-tree.

1 Introduction

Classically, the term “Spatial Database” refers to a database that stores various
kinds of multidimensional data represented by points, line segments, polygons,
volumes and other kinds of 2-d/3-d geometric entities. Spatial databases include
specialized systems like Geographical Information Systems, CAD, Multimedia
and Image databases, etc.

However, the role of spatial databases is continuously changing and its im-
portance increasing over the last years. Besides emerging new “classical” ap-
plications such as urban and transportation planning, resource management,
geomarketing, archaeology and environmental modeling, new types of data such
as spatiotemporal seem to fall as well within the realm of spatial data handling.
In expanding the scope of what defines spatial databases, the demands to the
methods supporting such databases are altered. For example, traditionally in
indexing the scope is on improving query response time, however by facing a
more dynamic environment in which data is continuously updated/added, e.g.,
in a spatiotemporal context, other parameters such as insertion time gain in
importance, e.g.,[18].

The key characteristic that makes a spatial database a powerful tool is its
ability to manipulate spatial data, rather than to simply store and represent
them. The basic form of such a manipulation is answering queries related to
the spatial properties of data. Some typical queries are range queries (searching
for the spatial objects that are contained within a given region), point location

Y. Manolopoulos and P. Návrat (Eds.): ADBIS 2002, LNCS 2435, pp. 149–162, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



150 Sotiris Brakatsoulas et al.

queries (a special case of a range query in which the search region is reduced to a
point), and nearest neighbor queries (searching for the spatial objects that reside
more closely to a given object). To support such queries efficiently, specialized
data structures are necessary, since traditional data structures for alphanumeric
data (B-trees, Hashing methods) are not appropriate for spatial indexing due
to the inherent lack of ordering in multi-dimensional space. Multi-dimensional
extensions of B-trees, such as the R-tree structure and variants [9, 3] are among
the most popular indexing methods for spatial query processing purposes.

The vast majority of the existing proposals, including the original Guttman’s
R-tree that has been integrated into commercial database systems (Informix,
Oracle, etc.), use heuristics to organize the entries in the tree structure. These
heuristics address geometric properties of the enclosing node rectangles (mini-
mization of area enlargement in the R-tree, minimization of area enlargement
or perimeter enlargement combined with overlap increment in the R*-tree, etc.)
[17, 8].

In this paper, we argue that the most crucial part of the R-tree construction,
namely the node splitting procedure, is not more than a problem of finding some
clusters (e.g. 2) in a set of entries (of the node that overflows). We investigate
this idea and then go one step beyond by relaxing the “two-way” property of
node splitting. By adopting a “multi-way” split procedure, we permit clustering
to find real clusters, not just two groupings. We term the resulting R-tree variant
that adopts clustering in its splitting procedure cR-tree.

The paper is organized as follows. Section 2 provides the necessary back-
ground on R-trees and, particularly, the R-tree node splitting procedure. Section
3 proposes an algorithm that incorporates a well-known clustering technique,
namely the k-means, into this node splitting procedure. KMS (for k-means split),
in general, finds k clusters. The choice between 2, 3 or . . . k clusters is based
on the silhouette coefficient measure, proposed in [13]. Section 4 provides the
experimental results, in terms of performance, speed and tree quality obtained.
Section 5 briefly discusses the related work. Finally, Section 6 gives conclusions
and directions for future work.

2 Spatial Indexing

R-trees [9] are extensions of B-trees [6] in multi-dimensional space. Like B-trees,
they are balanced (all leaf nodes appear at the same level, which is a desirable
feature) and guarantee that the space utilization is at least 50%. The MBR
approximations of data objects are stored in leaf nodes and intermediate nodes
are built by grouping rectangles at the lower level (up to a maximum node
capacity M). Rectangles at each level can be overlapping, covering each other,
or completely disjoint; no assumption is made about their properties.

2.1 Performance and Index Characteristics

R-tree performance is usually measured with respect to the retrieval cost (in
terms of page or disk accesses) of queries. The majority of performance studies



Revisiting R-Tree Construction Principles 151

concerns point, range and nearest neighbor queries. Considering the R-tree per-
formance, the concepts of node coverage and overlap between nodes are impor-
tant. Obviously, efficient R-tree search requires that both overlap and coverage
to be minimized. Minimal coverage reduces the amount of dead area (i.e., empty
space) covered by R-tree nodes. Minimal overlap is even more critical than min-
imal coverage; for a search window falling in the area of n overlapping nodes, up
to n paths to the leaf nodes may have to be followed (i.e., one from each of the
overlapping nodes), therefore slowing down the search.

With the advent of new types of data, e.g., moving object trajectories, other
index characteristics such as insertion time, i.e., the time it takes to insert a tuple
into the index, gain in importance. A similar argument can be made about the
actual size of the data structure comprising the index. With emerging small scale
computing devices such as palmtops, the resources available to databases are
tightened and large index structures might be unusable. Overall, the performance
of an index should not only be measured in terms of its query performance
but rather in terms of a combined measures that incorporates all the above
characteristics.

2.2 On Splitting

Previous work on R-trees [3, 21, 8] has shown that the split procedure is perhaps
the most critical part during the dynamic R-tree construction and it significantly
affects the index performance. In the following paragraphs, we briefly present
the heuristic techniques to split nodes that overflow. Especially for the R-tree,
among the three split techniques (Linear, Quadratic and Exponential) proposed
by Guttman in the original paper [9], we focus on the Quadratic algorithm,
which has turned out to be the most effective in [9] and other studies.

R-tree (Quadratic Algorithm): Each entry is assigned to one of the two
produced nodes according to the criterion of minimum area, i.e., the selected
node is the one that will be least enlarged in order to include the new entry.

R*-Tree: According to the R*-tree split algorithm, the split axis is the one that
minimizes a cost value S (S being equal to the sum of all margin-values of
the different distributions). At a second step, the distribution that achieves
minimum overlap-value is selected to be the final one along the chosen split
axis.

On the one hand, the R-tree split algorithm tends to prefer the group with
the largest size and higher population. It is obvious that this group will be least
enlarged, in most cases [21]. A minimum node capacity constraint also exists;
thus a number of entries are assigned to the least populated node without any
control at the end of the split procedure. This fact usually causes high overlap
between the two nodes.

On the other hand, the distinction between the “minimum margin” criterion
to select a split axis and the “minimum overlap” criterion to select a distribution
along the split axis, followed by the R*-tree split algorithm, could cause the loss



152 Sotiris Brakatsoulas et al.

of a “good” distribution if, for example, that distribution belongs to the rejected
axis.

3 Clustering Algorithms and Node Splitting

As already mentioned, the split procedure plays a fundamental role in the R-tree
performance. As we described in Section 2, R-trees and R*-trees use heuristic
techniques to provide an efficient splitting of M + 1 entries of a node that over-
flows into two groups: minimization of area enlargement, minimization of overlap
enlargement, combinations, etc. This is also the rule for the vast majority of R-
tree variations.

Node splitting is an optimization problem which takes a local decision accord-
ing to the objective that the probability of simultaneous access to the resulting
nodes after split is minimized during a query operation. Clustering maximizes
the similarity of spatial objects within each cluster (intra-cluster similarity) and
minimizes the similarity of spatial objects across clusters (inter-cluster similar-
ity). The probability of accessing two node rectangles during a query operation
(hence, the probability of traversing two subtrees) is proportional to their simi-
larity (for the queries we study in this paper). Therefore, node splitting should:

– assign objects with high probability of simultaneous access to the same node,
and

– assign objects with low probability of simultaneous access to different nodes.

Taking this into account, we consider R-tree node splitting as a typical
Cluster(N, k) problem, i.e., a problem of finding the “optimal” k clusters of
N data objects, with k = 2 and N = M + 1 parameter values (Figure 1(b)).
According to this consideration, we suggest that the heuristic methods of the be-
fore mentioned split algorithms could be easily replaced by a clustering technique
chosen from the extensive related literature [20, 12, 13, 10].

(a) (b) (c)

Fig. 1. Splitting an overflowing node into (b) two and (c) three groups

Several clustering algorithms have been proposed, each of them classified in
one of three classes: partitioning, hierarchical and density-based. Partitioning



Revisiting R-Tree Construction Principles 153

algorithms partition the data in a way that optimizes a specified criterion. Hi-
erarchical algorithms produce a nested partitioning of the data by iteratively
merging (agglomerative) or splitting (divisive) clusters according to their dis-
tance. Density-based algorithms identify as clusters dense regions in the data.

3.1 k-Means Clustering Algorithm

Since we consider R-tree node splitting as a problem of finding an optimal bi-
partition of a (point or rectangle) set, we choose to work with partitioning al-
gorithms. Among several existing techniques, we have selected the simple and
popular k-means algorithm. The selection of k-means is due to the following
reasons.

– The k-means clustering algorithm is very efficient with respect to execution
time. The time complexity is O(k ·n) and the space complexity is O(n+ k),
thus it is analogous to the R-tree Linear split algorithm.

– K-means is order independent, unlike Guttman’s linear-split heuristic.

Moreover, the page split is a local decision. Thus, the simplicity of k-means
suits to the objective of the problem. Clustering algorithms that have been re-
cently reported [24, 19] focus on handling large volumes of datasets, which is not
our case.

Algorithm k-means. Divide a set of N objects into k clusters.
KM1 [Initialization]

Arbitrary choose k objects as the initial cluster centers.
KM2 [(Re) Assign objects to clusters]

Assign each object to the cluster to which the object is the most
similar, based on the mean value of the objects in the cluster.

KM3 [Update cluster centers]
Update the cluster means, i.e., calculate the mean value of the objects
in the cluster.

KM4 [Repeat]
Repeat steps KM2 and KM3 until no change.

End k-means

As formally described above, to find k clusters, k-means initially selects k
objects arbitrarily from the N -size data set as the centers of the clusters. After-
wards, in an iterative manner, assigns each object to its closest cluster, updates
the cluster centers as the mean of the objects that have been assigned to the cor-
responding cluster and starts over. The iteration stops when there is no change
in the cluster centers.

Before we proceed with the discussion of how to incorporate k-means into
the R-tree construction procedure, we give some details of the algorithm. We
intend to apply k-means to form clusters of points or rectangles when a leaf node
overflows and to form clusters of rectangles when an internal node overflows. For
the purpose of showing dissimilarity, we define the Euclidean distance for any two



154 Sotiris Brakatsoulas et al.

shapes (this includes points and rectangles) to be the diagonal of the respective
minimum bounding rectangle containing the respective shapes.

The mean of a set of objects is also a key parameter in k-means. Although
the definition of the mean of a set of points may be straightforward, it is not
true for the mean of a set of rectangles (e.g., during internal node splitting). We
have adopted the following definitions.

The mean of N d-dimensional points xi(pi1 . . . , pid
), i = 1, . . . , N is defined

to be the following point.

x̂

(∑N
i=1 pi1

N
, . . . ,

∑N
i=1 pid

N

)

The mean of N d-dimensional rectangles ri(li1 , . . . , lid
, ui1 , . . . , uid

),
i = 1, . . . , N , where li1 , . . . , lid

the coordinates of the bottom-left corner and
ui1 , . . . , uid

the coordinates of the upper-right corner that define a rectangle, is
defined to be the following point which corresponds to the center of gravity [16].

x̂

(∑N
i=1

li1+ui1
2 area(ri)∑N

i=1 area(ri)
, . . . ,

∑N
i=1

lid
+uid

2 area(ri)∑N
i=1 area(ri)

)

3.2 Multi-way Node Splitting

It is a rule for all existing R-tree based access methods to split a node that
overflows into two new nodes. This number (i.e., two) origins from the B-tree split
technique. While for B-trees, it is an obvious choice to split a node that overflows
into two new ones, it cannot be considered as the single and universal choice when
handling spatial data. To illustrate this point, an alternative splitting to that of
Figure 1(b) could be the one in Figure 1(c).

By relaxing this constraint and by adopting the novel “multi-way” split pro-
cedure, we may reveal even more efficient R-tree structures. To our knowledge,
it is the first time in the literature to overcome the “two-way” split property of
multidimensional access methods [7] and this idea is implemented in the KMS
algorithm (for k-means split) that we present next.

Algorithm KMS. Divide a set of M + 1 entries into k nodes
(2 ≤ k ≤ kmax) by using k-means.
KMS1 [Initial Clustering]

k = 2.
Apply k-means on the M + 1 entries to find k clusters.
Compute s̄(k). /* average silhouette width */
max = s̄(k), kopt = k

KMS2 [Repeating step]
For k=3:kmax

Apply k-means on the M + 1 entries to find k clusters.
Compute s̄(k).



Revisiting R-Tree Construction Principles 155

If s̄(k) > max then
max = s̄(k), kopt = k.

end
end

KMS3 [Assign entries to nodes]
For k = 1:kopt

Assign the entries of the kth cluster to the kth node.
end

End KMS

KMS takes advantage of the k-means capability to find, in general, k clusters
within a set of N points in space. In other words, KMS addresses the gen-
eral Cluster(M , k) problem, thus it can be used to split a node that overflows
into two, three, or k groups. This “multi-way” split algorithm is a fundamental
revision of the classic split approach. In the rest of the section, we focus on al-
gorithmic issues while in [4], we describe implementation details with respect to
GiST (relaxing the “two-way” splitting of GiST is not straightforward at all).

Finding the Optimal Number of Clusters. K-means requires the number k
of clusters to be given as input. As described in literature, no a-priori knowledge
of the optimal number kopt of clusters is possible. In fact, comparing the com-
pactness of two different clusterings of a set of objects and, hence, finding kopt,
is one of the most difficult problems in cluster analysis, with no unique solution
[15].

To compare the quality of two different clusterings Cluster(M , k) and Cluster
(M , k+1) of a point data set and, recursively, find kopt, we use a measure, called
average silhouette width, s̄(k), proposed in [13]. I.e., for a given k ≥ 2 number of
clusters, the average silhouette width for k is the average value of the silhouette
widths, where the silhouette width of a cluster is the average silhouette of all
objects in the cluster. In turn, the silhouette of an object is a number that
indicates the closeness of an object to its cluster and varies in the range [-1, 1]:

s(i) =
b(i)− a(i)

max{a(i), b(i)}
where a(i) and b(i) are equal to the mean dissimilarity of object i to the rest of
the cluster objects where it belongs and to the next closest cluster, respectively.
The closer this value is to 1, the higher the object belongs to its cluster, compared
to the rest of the clusters.

Having defined silhouettes s(i) of objects and average silhouette widths s̄(k)
of clusters, we now define kopt to be the number k that gives the maximum
average silhouette width, called silhouette coefficient, SC [13]:

SC = s̄(kopt) = max
2≤k≤M

s̄(k)

Hence, the clustering kopt we select is the one that corresponds to average
silhouette width equal to SC.



156 Sotiris Brakatsoulas et al.

Restricting the Maximum Number of Clusters. The silhouette coefficient
is considered as a good measure to find the optimal number of clusters in [13].
However, in practice, it is expensive to set kmax = M + 1 in order to apply
k-means for all possible k values. Instead of that, we considered kmax to be a
parameter to be tuned and found that kmax = 5 was a “safe” choice. This choice
is discussed in more detail in the extended version of this paper [4].

4 Experimental Results

This section presents the methodology used for the evaluation of our proposals
and the obtained results in terms of speed of index construction, query perfor-
mance, and index quality.

For a common implementation platform and for a fair comparison, we selected
the GiST framework [11]. We used the original R-tree implementation included in
GiST software package, but modified versions of the GiST framework were used
allowing for an R*-tree implementation with forced reinsertion support and the
realization of the cR-tree. The cR-tree differs from the R-tree only by its splitting
routine, the rest of the R-tree construction procedure remains unchanged (e.g.,
the ChooseSubtree routine that traverses the tree and finds a suitable leaf node
to insert a new entry). More details on GiST and our implementation can be
found in [4].

In this study, we considered the following data sets (illustrated in Figure 2).

Random. A synthetic data set of 80,000 points, generated by a random number
generator that produced x- and y- coordinates.

Clustered. A synthetic data set of 80,000 points, generated using the algorithm
RecursiveClusters as introduced in [4].

Sierpinsky. A fractal data set of 236,196 points generated by outputting the
center points of the line segments of a fractal Sierpinsky data set. The gen-
erator used can be found in [23].

Quakes. A real data set of 38,313 points, representing all epicenters of earth-
quakes in Greece during the period 1964-2000. It is publicly available through
the web site of the Institute of Geodynamics, National Observatory of Athens,
Greece [http://www.gein.noa.gr].

The construction of the indices was realized in the two step fashion followed
by the GiST framework: bulk loading using the STR algorithm [14], as a first
step, and successive insertions, as a second step. The following settings apply to
all experiments we conducted.

– In each test case, 25% of the available data were used for bulk loading and
the remaining 75% were used for dynamic insertions.

– The page size is set to 2Kbytes, thus corresponding to 55 two-dimensional
points (leaf level) or 45 two-dimensional rectangles (intermediate level).

– For each test, we run 1,000 queries and present the average result.
– For each data set, the queries we exercise follow its distribution.

http://www.gein.noa.gr


Revisiting R-Tree Construction Principles 157

RANDOM POINTS CLUSTERED POINTS

QUAKES DATA SET SIERPINSKY DATA SET

Fig. 2. 2-dimensional test data sets

The following performance studies compares the cR-, R-, and R*-tree in
terms of

Insertion Time. The time needed for the second construction step of the in-
dices (i.e., dynamic insertions of the 75% of the data sets) using an Intel
900MHz - 256MB RAM system.

Query Performance. The number of I/O operations for range and nearest
neighbor query loads.

Index Quality. The quality of the indices, measured in terms of leaf utilization,
sum of leaf node rectangles’ perimeters, areas, and overlap.

4.1 Insertion Time

Besides the query performance of an index, the insertion time is equally impor-
tant since it is a measure of robustness and scalability, while it is a critical factor
for emerging applications that are required to manage massive amounts of data
in a highly dynamic environment efficiently. We compare the three structures
by measuring the time required for the second step of the tree construction (the
dynamic insertions). The results appear in Figure 3. What can be observed is
that insertions in the cR-tree can be done as fast as in the original R-tree and
up to six times faster than in the R*-tree.



158 Sotiris Brakatsoulas et al.

4.2 Query Performance

It is common practice in the spatial database literature to compare access meth-
ods in terms of node (or page) accesses for various query loads. We compare the
performance of the R-tree variants for range and nearest-neighbor queries.

Figure 5 shows the experimental results for various range query sizes. Overall
can be stated that the cR-tree performance is at the level of the R*-tree and,
thus, also outperforms the R-tree. In particular, the performance of the cR-tree
is almost identical to that of the R*-tree for the random, the clustered, and
the Sierpinsky data sets. For clustered data and small range queries, it even
outperforms the R*-tree.

Similar results are also obtained for nearest neighbor queries (Figure 4). The
cR-tree performs at the level of the R*-tree and clearly outperforms the R-tree.

4.3 Index Quality

The quality of an index, i.e., the resulting tree data structure, cannot be easily
quantified and remains an open issue in the theory of indexability. Nevertheless,
we have selected two factors as indicators of the quality of an index: space uti-
lization and sum of node rectangles perimeters at the leaf level. The higher the
space utilization the more compact the index, thus the less expensive its mainte-
nance in terms of storage. The effect of this parameter in the R-tree performance
also has been shown in [22] and other studies. The same is true for the perimeter
[17]. The R*-tree has also revealed the effect of the perimeter (or, margin in [3])
as already discussed in Section 2.

Although the cR-tree does not impose any restrictions regarding the uti-
lization of nodes resulting from a split, contrary to the R-tree (50% minimum
utilization) and the R*-tree (40% minimum utilization), it achieves competitive
space utilization as illustrated in Figure 6. The lowest value achieved is 66% for
the Quakes data set, while the highest is 69% for the random data set.

The perimeter measure is better for the cR-tree as compared to the R-tree
(see Figure 6). The improvement in the R-tree quality by incorporating clustering
is a fact(40% - 60%). The quality of the cR-tree is in general close to that of the
R*-tree (for clustered data even better).

The parameters related to the tree quality support the results of the query
performance reported in the previous sections. Overall, the cR-tree data struc-
ture appears to be similar to the R*-tree. Thus, also its query performance is
more similar to the R*-tree than it is to the R-tree.

4.4 Summary

The cR-tree query performance is competitive with the R*-tree and by far better
than that of the R-tree. This query performance is achieved by not having to
comprise on the insertion time. Here, the cR-tree is at the level of the R-tree and
thus much faster than the R*-tree. The statistics collected on the index quality
support the fact that the resulting tree data structure of the cR-tree is more
similar to the R*- than to the R-tree.



Revisiting R-Tree Construction Principles 159

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3

RANDOM CLUSTERED QUAKES SIERPINSKY

S
E
C
O
N
D
S

AVERAGE INSERTION TIME

cR

R

R∗

Fig. 3. Average time for one insertion

0

1

2

3

4

5

6

7

8

9

RANDOM CLUSTERED QUAKES SIERPINSKY

A
V
E
R
A
G
E

I/
O
s

NN QUERIES

cR

R

R∗

Fig. 4. Average I/Os for NN queries

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

RANDOM DATA − RANGE QUERIES

QUERY SIZE IN % OF WORKSPACE PER DIMENSION

A
V

E
R

A
G

E
 I/

O
s

cR
R
R*

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

CLUSTERED DATA − RANGE QUERIES

QUERY SIZE IN % OF WORKSPACE PER DIMENSION

A
V

E
R

A
G

E
 I/

O
s

cR
R
R*

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

10
3

SIERPINSKY DATA − RANGE QUERIES

QUERY SIZE IN % OF WORKSPACE PER DIMENSION

A
V

E
R

A
G

E
 I/

O
s

cR
R
R*

10
−3

10
−2

10
−1

10
0

10
1

10
0

10
1

10
2

QUAKES DATA SET − RANGE QUERIES

QUERY SIZE IN % OF WORKSPACE PER DIMENSION

A
V

E
A

R
A

G
E

 I/
O

s

cR
R
R*

Fig. 5. I/O operations for range queries



160 Sotiris Brakatsoulas et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RANDOM CLUSTERED QUAKES SIERPINSKY

UTILIZATION

cR

R

R∗

0

0.5

1

1.5

2

2.5
x 10

4

RANDOM CLUSTERED QUAKES SIERPINSKY

SUM OF PERIMETERS

cR

R

R∗

Fig. 6. Quality metrics for the leaf level

5 Related Work

As already discussed, the vast majority of the R-tree based access methods uses
heuristics to organize data (and to split nodes). An exception worth mentioning
is [8]. This work proposes a locally optimal split algorithm of polynomial time
and a more global restructuring heuristic, whose combined effects outperform
R-trees and Hilbert R-trees. However, the extra time for local optimality does
not always pay off since the index is dynamic and new insertions may retract
previous decisions.

Related to the above, from a theoretical point of view, several researchers
have addressed the following problem. Given a set of axis-parallel rectangles in
the plane, the problem is to find a pair of rectangles R and S, such that (i) each
member of the set is enclosed by R or S and (ii) R and S together minimize
some measure, e.g., the sum of the areas. Algorithms that solve this problem in
O(n · logn) time have been proposed in [2].

In the field of coupling clustering and spatial indexing, to our knowledge,
it is the first time to incorporate a clustering algorithm into a dynamic spatial
access method. Related work includes [5], which proposed GBI (for Generalized
Bulk Insertion), a bulk loading technique that partitions new data to be loaded
into sets of clusters and outliers and then integrates them into an existing R-
tree. That work is not directly comparable with ours, since it considers bulk
insertions.

6 Conclusion

Spatial data are organized in indices by using several heuristic techniques (min-
imization of area or perimeter enlargement, minimization of overlap increment,
combinations, etc.). In this paper, we investigated the idea to examine data or-
ganization, especially node splitting, as a typical clustering problem and replace



Revisiting R-Tree Construction Principles 161

those heuristics by a clustering algorithm, such as the simple and well-known k-
means. We proposed a new R-tree variant, the cR-tree that incorporates cluster-
ing as a node splitting technique and, thus, relaxes the “two way” split property,
allowing for “multi-way” splits. The main result of our study is the improved
overall performance of the cR-tree. It combines the “best of both worlds,” in that
the insertion time is at the level of the R-tree and the query performance is at
the level of the R*-tree. The fast insertion time makes the cR-tree preferable for
data intensive environments. At the same time it does not rely on complex tech-
niques such as forced-reinsertion that would reduce the degree of concurrency
achieved due to the necessary locking of many disk pages. This makes the cR-
tree also a suitable candidate for a multi-user environment. It can be seen that a
simple clustering algorithm, which is easily implementable in practice, creates an
access method that is fast in the tree construction phase without compromising
in query performance. Consequently, the “multi-way” split deserves some more
attention since it may result in very efficient indices. Additional improvements
may be achieved by working towards the following directions.

– Tuning of k-means. A weakness of k-means is that it is sensitive to the
selection of the initial seeds and may converge to a local minimum. Several
variants have been proposed to address that issue [1].

– Further experimentation with other clustering algorithms, especially hierar-
chical algorithms, instead of k-means. Using a divisive (or agglomerative)
hierarchical algorithm, KMS would not have to restart clustering for each k
up to kmax (or down to 1, respectively).

– Apart from the silhouette coefficient measure proposed in [13], investigation
of other criteria to find the optimal number of clusters.

References

[1] M.R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.
[2] B. Becker, P.G. Franciosa, S. Gschwind, S. Leonardi, T. Ohler, and P. Widmayer.

Enclosing a set of objects by two minimum area rectangles. Journal of Algorithms,
21:520–541, 1996.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an effi-
cient and robust access method for points and rectangles. In Proceedings ACM
SIGMOD Conference, pages 322–331, 1990.

[4] S. Brakatsoulas, D. Pfoser, and Y. Theodoridis. Revisiting R-tree construction
principles. Technical report, Computer Technology Institute, Patras, Greece,
2002. http://dias.cti.gr/~pfoser/clustering.pdf.

[5] R. Choubey, L. Chen, and E.A. Rundensteiner. GBI: A generalized R-tree bulk-
insertion strategy. In Proceedings SSD Symposium , pages 91–108, 1999.

[6] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–127, 1979.
[7] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing

Surveys, 30(2):381–399, 1998.
[8] Y.J. Garcia, M.A. Lopez, and S.T. Leutenegger. On optimal node splitting for

R-trees. In Proceedings 24th VLDB Conference, pages 334–344, 1998.
[9] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Pro-

ceedings ACM SIGMOD Conference , pages 47–57, 1984.

http://dias.cti.gr/~pfoser/clustering.pdf


162 Sotiris Brakatsoulas et al.

[10] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2001.

[11] J. Hellerstein, J. Naughton, and A. Pfeffer. Generalized search trees for database
systems. In Proceedings 21st VLDB Conference , pages 562–573, 1995.

[12] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Com-
puting Surveys, 31(3):264–323, 1999.

[13] L. Kaufman and P. Rousseeuw. Finding Groups in Data: an Introduction to
Cluster Analysis. Wiley, 1990.

[14] S. Leutenegger, M. Lopez, and J. Edgington. STR: A simple and efficient algo-
rithm for R-tree packing. In Proceedings 12th IEEE ICDE Conference , pages
497–506, 1997.

[15] G. Milligan and M. Cooper. An examination of procedures for determining the
number of clusters in a data set. Psychometrica, 50(2):159–179, 1985.

[16] J. O’Rourke. Computational Geometry in C. Cambridge University Press, second
edition, 1998.

[17] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer. Towards an analysis of range
query performance. In Proceedings 12th ACM PODS Symposium , 1993.

[18] D. Pfoser, C.S. Jensen, and Y. Theodoridis. Novel approaches to the indexing of
moving object trajectories. In Proceedings 26th VLDB Conference , pages 395–
406, 2000.

[19] S.Guha, R.Rastogi, and K.Shim. CURE: an efficient clustering algorithm for large
databases. In Proceedings ACM SIGMOD Conference , pages 73 – 84, 1998.

[20] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press, 1999.
[21] Y. Theodoridis and T. Sellis. Optimization issues in R-tree construction. In

Proceedings International Workshop on Geographic Information Systems, pages
270–273, 1994.

[22] Y. Theodoridis and T. Sellis. A model for the prediction of r-tree performance.
In Proceedings 15th ACM PODS Symposium , pages 161–171, 1996.

[23] Leejay Wu and C. Faloutsos. Fracdim. Web site, 2001. URL:
http://www.andrew.cmu.edu/~lw2j/downloads.html current as of Sept. 30,
2001.

[24] T. Zhang, R. Ramakrishnan, and M. Linvy. An efficient data clustering method for
very large databases. In Proceedings ACM SIGMOD Conference , pages 103–11,
1996.

http://www.andrew.cmu.edu/~lw2j/downloads.html

	Introduction
	Spatial Indexing
	Performance and Index Characteristics
	On Splitting

	Clustering Algorithms and Node Splitting
	k-Means Clustering Algorithm
	Multi-way Node Splitting

	Experimental Results
	Insertion Time
	Query Performance
	Index Quality
	Summary

	Related Work
	Conclusion

