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Abstract

Vehicle tracking data is an essential “raw” ma-
terial for a broad range of applications such
as traffic management and control, routing,
and navigation. An important issue with this
data is its accuracy. The method of sampling
vehicular movement using GPS is affected by
two error sources and consequently produces
inaccurate trajectory data. To become use-
ful, the data has to be related to the under-
lying road network by means of map match-
ing algorithms. We present three such algo-
rithms that consider especially the trajectory
nature of the data rather than simply the cur-
rent position as in the typical map-matching
case. An incremental algorithm is proposed
that matches consecutive portions of the tra-
jectory to the road network, effectively trad-
ing accuracy for speed of computation. In
contrast, the two global algorithms compare
the entire trajectory to candidate paths in the
road network. The algorithms are evaluated
in terms of (i) their running time and (ii) the
quality of their matching result. Two novel
quality measures utilizing the Fréchet distance
are introduced and subsequently used in an
experimental evaluation to assess the quality
of matching real tracking data to a road net-
work.

1 Introduction

As roads become more and more congested, much re-
search is conducted in the area of traffic estimation and
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prediction systems (TREPS). TREPS use traffic mod-
els together with sensor data to assess the current and
to predict the future traffic conditions in the road net-
work. Currently, the data component consists of traf-
fic counts (quantitative data) obtained by stationary
sensors, typically loop detectors, which are deployed
throughout the road network. In recent years, a new
sensor technology is utilized to complement station-
ary sensor networks. Floating car data (FCD) refers
to using data generated by one vehicle as a sample to
assess the overall traffic conditions (“cork swimming
in the river”). Typically this data comprises basic ve-
hicle telemetry such as speed direction and most im-
portantly the position of the vehicle. Recording the
position of vehicles in time produces tracking data, of
which, in connection with a road network, travel time
data (qualitative data) is derived. Having large num-
bers of vehicles collecting such data for a given spatial
area such as a city (e.g., taxis, public transport, utility
vehicles, private vehicles, etc.) will create an accurate
picture of the traffic condition in time and space [10].
Data management techniques for such FCD collections
are presented in [6].

The tracking data is obtained by sampling the po-
sitions using typically GPS to produce data that in
database terms is commonly referred to as trajecto-
ries. Unfortunately, this data is not precise due to the
measurement error caused by the limited GPS accu-
racy, and the sampling error caused by the sampling
rate [14]. A pre-processing step that matches the tra-
jectories to the road network is needed. This technique
is commonly referred to as map matching.

Most map-matching algorithms are tailored towards
mapping current positions onto a vector representa-
tion of a road network. Onboard systems for vehicle
navigation utilize besides continuous positioning also
dead reckoning to minimize the positioning error and
to produce accurate vehicle positions that can be easily
matched to a road map. In the given context, the en-
tire trajectory given as a sequence of historic position
samples needs to be mapped. The fundamental dif-
ference in these two approaches is the error associated
with the data. Whereas the data in the former case is
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mostly affected by the measurement error, the latter
case is mostly concerned with the sampling error.

We present three map-matching algorithms that
map a trajectory onto a road network by matching
geometries. The methods differ in the portion of the
trajectory they consider for this task. The first ap-
proach employs an incremental match of the position
samples by pursuing a local match of geometries, i.e.,
matching a portion of the trajectory onto a path in the
road network by using a measure composed of distance
and angles between the curves. This approach effec-
tively trades accuracy for speed of computation. The
second approach aims for a global match mapping the
entire trajectory to a candidate curve in the road net-
work. Two similarity measures are used, the Fréchet
distance and the weak Fréchet distance, resulting in
two different map-matching algorithms which guaran-
tee to find a matching curve with optimal distance to
the trajectory.

Assessing the quality of the matching result is chal-
lenging since for vehicle tracking data typically the
“true” path of the vehicle in the road network is not
known. Thus, in order to still be able to evaluate the
quality of the matching result, a distance measure be-
tween the trajectory and the matched path in the road
network is needed. We propose two quality measures:
(i) the Fréchet distance and (ii) the average Fréchet
distance. In an experimental evaluation, real track-
ing data is used to evaluate the matching results in
a practical setting. The speed of computation is as-
sessed through analytical cost formulae detailing the
running times of the algorithms.

The Fréchet distance for two curves has been pro-
posed by Fréchet [8], and Alt et al. [2] gave an al-
gorithm for its computation. Although of practical
interest, variations of the Fréchet distance such as
summed or average Fréchet distance (c.f. Section 5.2)
have not yet been considered in the literature. Com-
puting the integral Fréchet distance is an open problem
and addressed in this work. Alt et al. [1] give a map-
matching algorithm based on the Fréchet distance. We
will sketch this algorithm in Section 4.3. In addition,
we propose to utilize the weak Fréchet distance which
results in a map-matching algorithm with a reduced
running time while at the same time producing iden-
tical matching results for trajectories.

Work in the area of map-matching vehicle positions
exists towards augmenting GPS positioning with other
methods such as dead reckoning to reduce the mea-
surement error and to achieve better map-matching
results (cf. [15]). Greenfeld [9] introduces a map-
matching strategy based on distance and orientation
that does not assert any further knowledge about the
movement besides the position samples. This algo-
rithm serves as the basic strategy for the algorithm
introduced in Section 3. Civilis et al. [7] in their work
on location update techniques for the tracking of users

in location-based services introduce a map-matching
algorithm that is based on edge distance and direction
similar to [9]. The tracking data itself is obtained by
using an active sampling technique based on predicted
and measured positions. By controlling the sampling
rate, the sampling error can be kept minimal and the
map-matching algorithm is presented with an opti-
mal dataset. Yin and Wolfson [18] propose an algo-
rithm based on a weighted graph representation of the
road network in which the weights of each edge rep-
resent the distance of the edge to the trajectory. The
matched trajectory in the road network is found by us-
ing a Dikstra shortest-path algorithm for the weighted
graph. This algorithm is based on a measure related
to the average Fréchet distance, however no overall
quality guarantee on the matched curve is given. The
authors claim that the algorithm produces high qual-
ity matches, however details on the data set, such as
type and size are missing. Finally, a general introduc-
tion to the map-matching problem as addressed in this
work can be found in [5].

The outline of this paper is as follows. Section 2 dis-
cusses tracking data and introduces the error sources
that affect it to derive requirements for map-matching
algorithms. Sections 3 and 4 detail the incremental
and the global map-matching algorithms, respectively.
Section 5 defines the measures to assess the quality of
the map-matching result. Section 6 shows the outcome
of the experimental evaluation and, finally, Section 7
gives conclusions and directions for future research.

2 Motivation and Background

The objective of this work is to develop map-matching
algorithms for vehicle tracking data that are used as
a sensor data source to assess and predict the traffic
condition in related applications. This section overall
describes the properties of the tracking data with a
focus on its accuracy to define requirements for map-
matching algorithms.

2.1 Imprecise Trajectory Data

The tracking data can be modeled in terms of a tra-
jectory, which is obtained by interpolating the position
samples. Typically, linear interpolation is used as op-
posed to other methods such as polynomial splines.
The sampled positions then become the endpoints of
line segments of polylines, and the movement of an
object is represented by an entire polyline in 3D space
[14]. The positioning technology of choice for vehicle
tracking is typically GPS. Its associated measurement
error in connection with the sampling rate require us
to match position samples to the road network.

2.1.1 Measurement Error

Two assumptions are generally made about the accu-
racy of GPS. First, the error distribution, i.e., the error
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in each of the three dimensions and the error in time, is
assumed to be Gaussian. Second, we can assume that
the horizontal error distribution, i.e., the distribution
in the x-y plane, is circular [17].

The error in a positional GPS measurement can be
described by the probability function following a bi-
variate normal distribution [11]. The probability func-
tion is composed of two normal distributions in the two
respective spatial dimensions. The mean of the distri-
bution is the origin of the coordinate system. Fig. 1
visualizes the error distribution. In addition to the
mean, the standard deviation, σ, is the characteris-
tic parameter stated when referring to GPS accuracy,
e.g., 5m GPS accuracy refers to σ. Within the range
of ±σ of the mean, in a bivariate normal distribution,
39.35% of the probability is concentrated.

Although the GPS error can be substantial in cer-
tain situations (shadowed and reflected signals), with
the use of augmenting the GPS signal (WAAS, EG-
NOS) the typical error is in the range of 8m to 2m.

The following section discusses the sampling error,
which in the case of vehicle tracking data is by two
magnitudes larger than the measurement error and
consequently has a larger impact on the algorithmic
design of a map-matching algorithm.

circular positional error

x

y

probability

Figure 1: Measurement error for GPS.

2.1.2 Sampling Error

The uncertainty of the representation of an object’s
movement is affected by the frequency with which po-
sition samples are taken, the sampling rate. To il-
lustrate the impact of the sampling rate on the im-
precision of the interpolated trajectory data, consider
sampling the position of a vehicle every 30s, which is
a typical sampling rate used in vehicle tracking appli-
cations. At a speed of 50km/h, the traveled distance
between position samples is as much as 417m!

Not measuring the positions in-between two consec-
utive position samples, the best we can do is to limit
the possibilities of where the moving object could have
been. The trajectory can be constrained by what we
know about the object’s actual movement.

The authors in [14] show that the sampling error
between two positions, P1 and P2 in the time interval
[t1, t2] and a given maximum speed, vm, for a time tx
with t1 < tx < t2 is bound by a lens-shaped proba-
bility distribution. Computing the sampling error for

various instances of tx shows that a possible trajec-
tory between P1 and P2 is overall bound by an error
ellipse (cf. Fig. 2). The foci of the ellipse are the sam-
pled positions P1 and P2 and the eccentricity 2c is the
Euclidean distance between P1 and P2. The length
of the semi-major axis, 2a, is the maximum distance
the object can travel. If the sampling rate r is given in
seconds and the velocity is v km/h then 2a = 5/18 ·vr.
The “thickness” of the ellipse, 2b, is determined by the
equation b2 = a2 − c2 = 25/362 · v2r2 − c2. In simple
words, the faster the object travels and the closer its
path to that of a linear trajectory, the “thinner” the
ellipse. In extreme cases, the ellipse degrades to a line,
or even to a point in case the object stopped.

��������

2a

2c

2b

s

s
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Figure 2: Error ellipse.
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Figure 3: Error ellipse.

Considering again the initial example, Figure 3
gives its sampling error scenario. On a road net-
work (gray lines), a vehicle travels along the dotted
road network edge from P1 to P2 at a typical speed
of 50km/h. Since it has to stop at the intersection,
its average speed is 25km/h. Between P1 and P2,
the traveled distance along the road network is 208m
(length of dotted path) and assuming P1 is 140m and
P2 68m from the intersection, the Euclidean distance
is 156m. The resulting error ellipse has a major axis
of 2a = 5/18 · 50km/h · 30s = 417m and an eccen-
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tricity of 2c = 156m. The thickness of the ellipse is
2b = 387m. Translated to a map-matching task, one
would have to consider all the network edges contained
in this error ellipse. Additional knowledge such as the
number of intersections on a path reduce the possibil-
ities, but several possible alternatives for mapping the
trajectory onto the road network remain.

Figure 4 gives an example of a vehicle trajectory
composed of GPS measurements (asterixes connected
by line segments). Typically the GPS measurements
do not lie on the road network (measurement error)
and neither can the connecting line segments easily be
matched to edges of the road network (sampling error).

Figure 4: GPS error in vehicle tracking data.

2.2 Trajectories and Travel Times

Besides the accuracy of the trajectory data, the final
use of the map-matching result affects the design of
a respective algorithm. In utilizing vehicle tracking
data as a data source for traffic estimation and predic-
tion, travel times are derived from the map-matched
trajectory data. Modeled as a graph, edges and ver-
tices constitute a road network. Figure 5 presents
the corresponding conceptual schema by using a com-
mon Entity-Relationship representation. Edges are
assigned travel times as derived from tracking data,
i.e., given a specific trajectory, how long did it take
to traverse the edge in question. The travel times are
recorded by means of absolute timestamps, “time1”
and “time2” for entering and leaving the edge, re-
spectively, and the direction in which the edge was
traversed. Consequently, a requirement for a map-
matching algorithm is that achieving the best match
for the entire trajectory is not necessary, but one only
needs to be able to identify portions of “bad” matches
to derive accurate travel times.

3 Incremental Map-Matching Algo-
rithm

An important objective when dealing with massive
amounts of incoming tracking data is to create a fast
map-matching algorithm. Using a greedy strategy

TRAVEL TIME

traversal
direction

time1 time2

EDGE
RELATES

TO

1 N

e_id

VERTEX

FROM
VERTEX

HAS
EDGES

1

N N

M
v_id

2D-point

TO
VERTEX

1

N

Figure 5: Data model excerpt.

based on local spatial characteristics, position samples
comprising the trajectory are matched sequentially by
in each case comparing the geometry of a portion of
the trajectory to selected paths in the road network.

3.1 The Basic Algorithm

Given a series of position samples representing a ve-
hicle trajectory, the map-matching algorithm pursues
a position-by-position sample and edge-by-edge strat-
egy. To match a position p1 to a road network edge,
given that its previous position pi−1 has already been
matched, the algorithm proceeds as follows (c.f. Fig-
ure 6). First, the candidate edges to be matched to the
current position are identified as the set of the incident
edges “exiting” the last matched edge (including also
the matched edge itself). In Figure 6, these edges are
labeled c1, c2 and c3, with c3 being the edge matched
to pi−1.

pi

c1

c2

d1

d2

c3
d3

 1
 3

 2

pi-1
li

Figure 6: Incremental map-matching example.

Two similarity measures are used to evaluate the
candidate edges [9].

The measure sd reflecting the distance from the po-
sition sample to the various edges is computed based
on the weighted line segment distance1, d, of pi from

1The line segment distance of a point to a line is either the
perpendicular line distance if the projection of the point onto
the line segment is between its endpoints, or, otherwise, it is the
distance of the point to the closest endpoint of the line segment.
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each candidate, cj , using the scaling factors µd and nd

as

sd(pi, cj) = µd − a · d(pi, cj)
nd .

The measure sα reflects the orientation of the tra-
jectory with respect to the candidate edge. It is com-
puted based on the angle difference αi,j between the
directed candidate edge cj and the directed line seg-
ment li = −−−−→pi−1, pi, using the scaling factors µα and nα

as

sα(pi, cj) = µα · cos(αi,j)
nα .

The scaling factors µ[d|α] and n[d|α] represent the
maximum score and a power parameter, respectively.
Choosing a higher µd compared to µα means that dis-
tance weighs more than orientation. The power pa-
rameter determines the rate of decrease for the re-
spective weight with an increasing line segment dis-
tance or angle difference. The use of the cosine fur-
ther implies that with an increasing angle difference
the score of sα decreases and with angle differences
90 < α < 270 and the choice of an odd number for
the power nα and a positive constant µα, sα even be-
comes negative. For the specific dataset used in this
work (cf. Section 6.2.1), we empirically established the
following parameter settings µd = 10, a = 0.17, nd =
1.4, and µα = 10, nα = 4.

The combined similarity measure is computed as
the sum of the individual scores, i.e.,

s = sα + sd.

The higher the score of this measure, the better is the
match.

Depending on the type of projection/match of pi to
cj , i.e., (i) its projection is between the end points of
cj , or, (ii) it is projected onto the end points of the
line segment, the algorithm does, or does not advance
to the next position sample. Following the example of
Figure 7, after matching p1 to edge e1, the algorithm
advances to p2 (case (i)) and matches it also to e1.
Advancing to p3, it tries to match this point to e2 and
since this projection reflects case (ii) it does not ad-
vance to the next position sample but finally matches
e3 to p3. The edge e2 is recorded as a traversed edge.
In Figure 7, the mapped position samples are drawn
as gray circled crosses.

p2p1

p3

e1
e2

e3

Figure 7: Matching example: advancing position sam-
ples and edges, and matching result.

3.2 Introducing Local Look-Ahead

To improve this simple algorithm, a recursive “look-
ahead” policy has been adopted. Recursively, for each
candidate edge cj , the score of the best candidate
among its “exiting” edges cj,k is calculated. This strat-
egy aims at making a more global matching decision
by exploring alternative branches rather than simple
edges. Finally, only one choice is materialized in the
matching result. The number of edges in the look-
ahead is fixed. We established empirically that a look-
ahead of 4 edges (the candidate edge plus three more
edges) is optimal in terms of matching quality and time
of computation.

Figure 8 shows a simple example with a look-ahead
of 2 edges. With c2 being a candidate edge, c2,1 is the
best candidate for matching pi+1 if we would match
p1 to c2. For c1 as a candidate edge, c1 is also the best
candidate for matching pi+1, if we would match p1 to
c1.

The final scores for matching pi to the edges cj (c1,
c2, and c3 in our example) are computed as the sum
of the scores for each “best” subpath as

s(pi, cj) =

depth
∑

k,l=0

s(pi+l, cj,k).

pi

c2

pi-1

li

c3
c1

pi+1

c1,1

c2,1

c3,1

s3,1

s1,1

s2,1

s3
s1

s2

Figure 8: Incremental map-matching example with
look ahead.

3.2.1 Initialization

To apply the above matching strategy, the algorithm
needs to be initialized by mapping the first position
sample p0. To be able to use the above algorithm, we
have to find for the directed line segment l0 = −−−→p0, p1 an
initial set of candidate edges E0. Using a simple ap-
proach, E0 contains all edges that are within a thresh-
old distance to p0. The threshold distance is related
to the GPS error and was for our specific case set to
100m. All edges in E0 are then evaluated with respect
to l0 to determine a match for p0.

3.3 Performance Considerations

To match a trajectory that consists of n position sam-
ples, the algorithm has to evaluate for each sample a
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finite number of adjacent road network edges a with
a maximum look-ahead of l edges. Consequently, its
running time is O(nal+1). Given that, both, a and l
are essentially constants, the algorithm effectively runs
in O(n) time. The initialization cost is determined by
finding the set of closest edges to a position. Using
an adjacency list (cf. Figure 5), this search can be
achieved in O(log v + w), where v corresponds to the
number of vertices in the network and w to the size of
the result set [12]. What can be assumed is that the
actual map-matching time O(n) dominates the initial-
ization time of O(log v + w).

For a disk-based algorithm, the running time will
depend highly on the representation and the storage
of the road network. The performance of such an algo-
rithm can be improved if the road network is stored by
means of tiles, i.e., the road network is spatially subdi-
vided into rectangular tiles, and edges are not retrieved
individually but rather as collections belonging to the
same tile.

4 Global Map-Matching Algorithm

A global map-matching strategy tries to find a curve
in the road network (modeled as a graph embedded in
the plane with straight-line edges) that is as close as
possible to the vehicle trajectory. In our approach, we
minimize over all possible curves in the road network.
For the comparison between two curves, we employ
the Fréchet distance or the weak Fréchet distance. Our
aim is to design algorithms which utilize these distance
measures to give a quality guarantee on the computed
result.

Alt et al. [1] have designed an algorithm solving the
global map-matching task using the Fréchet distance
in O(mn log2 mn) time, where m is the total number
of vertices and edges in the road network and n, as
previously, is the number of position samples of the
vehicle trajectory. In the following sections we will
give basic definitions, sketch this algorithm, and we
will give an algorithm for the global map-matching
task based on the weak Fréchet distance which runs in
O(mn log mn) time.

4.1 Fréchet Distance

The Fréchet distance for two curves has been proposed
by Fréchet [8]. A popular illustration of the Fréchet
distance is the following: Suppose a person is walking
his dog, the person is walking on the one curve and
the dog on the other. Both are allowed to control
their speed but they are not allowed to go backwards.
Then the Fréchet distance of the curves is the minimal
length of a leash that is necessary for both to walk the
curves from beginning to end.

Formally, the Fréchet distance between two curves
f, g : [0, 1] → R

2 is defined as

δF(f, g) := inf
α,β : [0,1]→[0,1]

max
t∈[0,1]

‖f(α(t))−g(β(t))‖,

where α and β range over continuous and non-
decreasing reparametrizations with α(0) = β(0) = 0
and α(1) = β(1) = 1 only. If we drop the requirement
on α and β to be non-decreasing, we obtain a distance
measure δ̃F(f, g) that is called the weak Fréchet dis-
tance between f and g.

The Fréchet distance as well as the weak Fréchet
distance are especially well-suited for the compari-
son of trajectories since they take the continuity of
the curves into account, c.f. Section 5.1. Notice
that δ̃F(f, g) ≤ δF(f, g), since the weak Fréchet dis-
tance minimizes over more reparametrizations than
the Fréchet distance.

4.2 Freespace Diagram and Freespace Surface

We first consider the decision variant of the global
map-matching problem: For a fixed ε > 0 decide
whether there exists a curve in the road network with
distance at most ε to the vehicle trajectory. The actual
minimization problem can then be solved by either ap-
plying parametric search (which adds a log-factor to
the runtime), or binary search (which is more feasible
to implement in practice). If not stated otherwise let
ε > 0 be given.

For two curves f, g : [0, 1] → R
2 we call the set

Fε(f, g) := { (s, t) ∈ [0, 1]2 | ‖f(s) − g(t)‖ ≤ ε } the

free space of f and g. Here ‖
(

x
y

)

‖ =
√

x2 + y2 denotes

the L2-norm. The partition of [0, 1]2 into regions be-
longing or not belonging to Fε(f, g) is called the free
space diagram. Figure 9 shows polygonal curves f, g, a
distance ε, and the corresponding free space diagram
with the free space Fε = Fε(f, g) indicated in white.
A monotone curve from the lower left corner to the
upper right corner is drawn in the free space. This
illustration is taken from [2]. The free space of two
line segments is an ellipse [2] and the free space di-
agram of two polygonal curves of m and n segments
is composed of mn segment-segment free space dia-
grams. In [2] it has been shown that δF(f, g) ≤ ε if
and only if there exists a curve within Fε(f, g) from
the lower left corner (0, 0) to the upper right corner
(1, 1), which is monotone in both coordinates. Observe
that the monotone curve in Fε(f, g) from the lower
left corner to the upper right corner as a continuous
mapping from [0, 1] to [0, 1]2 directly gives continuous
non-decreasing reparametrizations α and β. Similarly,
δ̃F(f, g) ≤ ε if and only if there exists a curve within
Fε(f, g) from the lower left corner to the upper right
corner, which is not necessarily monotone.

The definition of the free space between two curves
generalizes to the free space between an embedded
graph and a curve as follows: The free space of the
road network and the trajectory is the union of all
free spaces of all straight-line edges of the road net-
work with the vehicle trajectory. Notice that the free
space of a vertex v with the vehicle trajectory is a one-
dimensional free space, and the individual free spaces
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g

f

ε

g

f

Figure 9: Free space diagram for two polygonal curves
f and g.

of all edges incident to v with the trajectory share the
one-dimensional free space at v. Thus we can glue to-
gether the two-dimensional free space diagrams along
the one-dimensional free space they have in common,
according to the adjacency information in the road net-
work. We call this topological structure, which is the
union of all edge-trajectory free space diagrams, the
free space surface of the road network and the trajec-
tory. Figure 10 gives an example road network (left)
and its corresponding free space surface and a vehicle
trajectory consisting of five position samples (right).
The vehicle trajectory is not shown explicitly but im-
plicitly by the white free space area. An example path
in the free space from lower left to upper right is drawn
dashed.
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Figure 10: A road network (left) and corresponding
free space surface (right).

4.3 Using the Fréchet Distance

The decision problem for the Fréchet distance between
two curves can be solved by computing a monotone
curve from the lower left corner to the upper right
corner in the free space. This can be done using a
dynamic programming approach in O(mn) time [2].

Alt et al. [1] generalized this approach to finding
a monotone path in the free space surface from a
lower left corner of some individual edge-trajectory
free space diagram to an upper right corner of some
other individual edge-trajectory free space diagram.
The algorithm conceptually sweeps a line from left to
right (in direction of the trajectory) over all free spaces
at the same time while maintaining the points on the

sweepline that are reachable by some monotone path in
the free space from some lower left corner. It then up-
dates this reachability information Dijkstra-style while
advancing the sweepline. Interestingly, the algorithm
runs in O(mn log mn) time, which is only a log-factor
slower than the algorithm of [2], although it accom-
plishes the seemingly more complicated task of com-
paring the trajectory to all possible curves in the road
network.

4.4 Using the Weak Fréchet Distance

The decision problem for the weak Fréchet distance
between two curves can be solved by testing if there
exists any path in the free space of the two curves from
the lower left corner to the upper right corner. This
can be done using any graph traversal algorithm such
as depth-first search in O(mn) time.

We generalize this approach to the global map-
matching problem by applying depth first search to
the free space surface. We initialize the search with all
white lower left corners of individual edge-trajectory
free spaces, and stop the search if we found some up-
per right white corner. Since the free space surface
consists of mn edge-segment cells, this algorithm runs
in O(mn) time, which is a log-factor faster than the
algorithm based on the Fréchet distance. Applying
parametric search for optimization, in the same way as
in [2, 1] adds an additional log-factor to the runtime
for a total of O(mn log mn) to solve the optimization
problem.

5 Quality Measures

To determine the quality of the map-matching results,
we need to introduce a quality measure that evalu-
ates how closely the matched trajectory resembles the
original one. We will utilize distance measures, which
have smaller values for more similar curves, as opposed
to similarity measures (c.f. Section 3.1), which have
larger values for more similar curves.

5.1 A Suitable Distance Measure

There are several distance measures for two curves
available in the literature, such as the Hausdorff dis-
tance, the Fréchet distance, the weak Fréchet distance,
the turn-angle distance, etc. See [3] for an overview
of distance measures for various kinds of shapes. Al-
though the Hausdorff distance is a widely used dis-
tance measure for shapes in general, it is not suitable
for the case of curves since it does not take the continu-
ity of the curves into account; it assigns to every point
on one curve the closest point on the other and maxi-
mizes over all these distances. The Hausdorff distance
is the maximum of the two values obtained by consid-
ering each of the two curves as the first curve. The
Fréchet distance on the other hand takes the continu-
ity into account in that it only allows monotone and
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continuous assignments between points on the curves.
In fact, the Hausdorff distance can be arbitrarily small
for two curves that should intuitively have a large dis-
tance; see Figure 11 for two curves with small Haus-
dorff and large Fréchet distance and for two curves
with a small weak Fréchet distance and a large Fréchet
distance.

Figure 11: Two curves: with a small Hausdorff dis-
tance and a large Fréchet distance (left) and with a
small weak Fréchet distance and a large Fréchet dis-
tance (right).

The choice between weak Fréchet distance and
Fréchet distance depends on the application, whether
the continuous reparametrizations under consideration
need to be monotone or not. In our case, “backing up”
on a road in between two intersections (i.e., on an edge
in the road map) seems unlikely, however backing up
on a vehicle trajectory, although unlikely, is conceiv-
able if the sampling was too coarse and hence skipped
a zig-zag part of the road network (see Figure 11 right,
with the solid curve as the road network). Although
we could define a semi-weak Fréchet distance which
considers monotone reparametrizations in only one co-
ordinate, we will nevertheless model our situation with
the Fréchet distance. Our experiments in Section 6.2
strongly support this model.

5.2 Average Fréchet Distance

The Fréchet distance takes the maximum over a set of
distances and thus it is strongly affected by outliers.
As discussed before, the vehicle trajectory is prone to
errors and outliers and it would therefore be desirable
to consider a distance measure which averages over
certain distances instead of taking the maximum. Let
us therefore define the integral Fréchet distance as

δint
F (f, g) = inf

α,β : [0,1]→[0,1]

∫

(α,β)
‖f(α) − g(β)‖ dt,

where the integral denotes the path integral over the
curve t 7→ (α(t), β(t))T , dt denotes the path ele-
ment along this curve, and α and β range over differ-
entiable and non-decreasing reparametrizations with
α(0) = β(0) = 0 and α(1) = β(1) = 1 only. The path
integral can be rewritten as

∫ 1

0

‖f(α(t)) − g(β(t))‖

∥

∥

∥

∥

(

α′(t)

β′(t)

)∥

∥

∥

∥

dt.

Note that the path integral correctly integrates over
all possible values of ‖f(α(t)) − g(β(t))‖ for fixed
reparametrizations α and β, as desired by our appli-
cation. However, it adds the differentiability restric-
tion to α and β. Furthermore, in order to compare
the integral Fréchet distance between several pairs of
curves one needs to normalize the distance by divid-
ing δint

F (f, g) by the arclength of the optimizing curve
(α, β) which is

∫ 1

0

∥

∥

∥

∥

(

α′(t)

β′(t)

)∥

∥

∥

∥

dt.

Unfortunately there is no algorithm known that
computes the integral Fréchet distance. However, we
can approximate the integral Fréchet distance by sam-
pling the curves and approximating the integral by a
sum. Let 0 = i1 < i2 < . . . < iM = 1 be the sample
positions for f and let 0 = j1 < j2 < . . . < jN = 1 be
the sample positions for g. Then the summed Fréchet
distance δsum

F (f, g) is defined as

min
P=(α

β)

|P |
∑

k=2

∥

∥f(iα(k)) − g(jβ(k))
∥

∥

∥

∥

∥

∥

(

iα(k) − iα(k−1)

jβ(k) − jβ(k−1)

)∥

∥

∥

∥

,

where P ranges over all non-decreasing paths on
{i1, i2, . . . , iM}×{j1, j2 . . . , jN} that start in (i1, j1) =
(0, 0) and end in (iM , jN ) = (1, 1). This definition is
similar to the edit distance for strings and the dynamic
time warping (DTW) in speech recognition, see [16] for
an overview. Similar to the computation of the edit
distance and the dynamic time warping, the summed
Fréchet distance can be expressed as a recurrence in a
straight-forward manner which allows a dynamic pro-
gramming solution that runs in O(MN) time. Notice
that, different from the standard edit distance, the dis-
tance ‖f(iα(k)) − g(jβ(k))‖ is weighed with the length
of the segment of the reparametrization path.

The sampling we use in our implementation is al-
most uniform; we keep all original curve vertices. For
a given arclength parameter λ we split every edge of
the original curve with (arc-)length greater than λ into
segments of equal length which lies between λ(1− 1

2k
)

and λ(1 + 1
2k

), where k is the length of the original
curve edge divided by λ and rounded to the nearest
integer. In our implementation we use λ = 2 meters.

Afterwards we normalize δsum
F (f, g) by dividing by

the arclength of the optimizing path

|P |
∑

k=2

∥

∥

∥

∥

(

iα(k) − iα(k−1)

jβ(k) − jβ(k−1)

)∥

∥

∥

∥

.

We call the resulting distance measure the average
Fréchet distance.

Notice that ideally it would be better to introduce
this kind of normalization within the minimization,
instead of normalizing after an optimal path has been
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found. For the edit distance there have been discus-
sions on this topic as well as algorithms for certain
cases, see [13, 4]. In our case however, the cubic algo-
rithm of [13] cannot be applied due to the nonuniform
length of the sampled segments; it would require sam-
pling at a strictly uniform rate, which in turn would
not allow to keep all original trajectory vertices.

6 Performance Study

The objective of the performance study is to evaluate
the three map-matching algorithms in terms of (i) their
running times and (ii) the quality of their respective
matching results.

6.1 Running Time

Table 1 gives an overview of the running times for
the various algorithms as derived in Sections 3.3, 4.3
and 4.4, where n is the number of position samples
of a trajectory, k is the number of edges, and m is
the total number of edges and vertices in the road
network. Note that the additional log-factor in the
running times of the global map-matching algorithms,
compared to the decision variants of Sections 4.3, 4.4,
is introduced by the optimization using parametric
search.

Incremental Global algorithms
algorithm Fréchet dist. Weak Fréchet dist.

O(n) O(mn log2 mn) O(mn log mn)

Table 1: Performance comparison in terms of the
asymptotic running time.

What can be readily observed is that the incremen-
tal algorithm is expected to run much faster than the
global algorithms. The incremental map-matching al-
gorithm was implemented in Java, and the global algo-
rithms were implemented in C++. Subject to future
work is to provide a common implementation platform
to verify and to refine the asymptotic running times
as presented in Table 1 by means of an empirical eval-
uation and to establish practical performance charac-
teristics.

6.2 Empirical Evaluation

To compare the three algorithms, map-matching re-
sults for real tracking data were evaluated using the
quality measures defined in Section 5.

6.2.1 The Data

Real tracking data was used in the experiment. It
was obtained through GPS tracking with a sampling
rate of 30 seconds. The dataset consists of 45 vehicle

trajectories consisting of a total of 4177 edges2. The
smallest and the largest trajectory consist of 57 and
148 edges, respectively. The road network consists of
14356 edges and represents a portion of the road net-
work of the city of Athens, Greece. The road network
is visualized in Figure 12.
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Figure 12: Athens, Greece road network portion.

6.2.2 Map-Matching Quality

Interestingly, for each of the 45 trajectories both global
matching algorithms (based either on the Fréchet dis-
tance or the weak Fréchet distance) computed the
same results and the exact same distance (using binary
search up to a precision of 0.5m). This means that for
each of our 45 trajectories, if there exists any path in
the free space surface then it is already monotone, so
the weak Fréchet distance actually equals the Fréchet
distance. This suggests that situations like the one in
Figure 11 right do not seem to occur in our data set
since the GPS sampling rate was chosen high enough
to prevent these situations. In generalizing this obser-
vation and pending further experiments, it seems to
suffice for a global map-matching strategy to run the
faster weak Fréchet distance-based algorithm. Since
the matching results were identical, we, in the follow-
ing, only refer to one global map-matching algorithm.

Map-matching results for all 45 trajectories were
computed using the incremental and the global map-
matching algorithm. All 90 matching results were
evaluated by means of (i) the Fréchet distance (Fig-
ure 13) and (ii) the average Fréchet distance (Fig-
ure 14). The results in both charts are sorted accord-
ing to the Fréchet distances of the global matching
results, e.g., the first data point in Figures 13 and 14,
respectively refers to the same matching results.

The evaluation in terms of the Fréchet distance
clearly shows the global matching algorithm to pro-

2The vehicle tracking data was supplied by Emphasis Telem-
atics, a co-operating telematics company and fleet management
service provider.
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duce far better results than the incremental algorithm.
However, using the average Fréchet distance as a qual-
ity measure, the advantage of the global matching al-
gorithm over the incremental one is reduced.

This difference is due to the fact that the Fréchet
distance measure only considers the largest distance
between the two curves. In some cases, the incremen-
tal algorithm does not find a good match for the first
positions of a trajectory (initialization phase) due to
a lack of knowledge about the initial trajectory geom-
etry. The Fréchet distance considers only the worst
case, which is very often this initial match. Consider-
ing the average Fréchet distance, such outliers have a
smaller effect on the quality measure.
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Figure 13: Fréchet distances between result curves and
trajectory.
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Figure 14: Average Fréchet distances between result
curves and trajectory.

Figures 15 and 16 summarize the evaluation results
by showing the average distance, its standard devia-
tion, as well as the maximum and minimum distances
for the Fréchet distance and the average Fréchet dis-
tance measure, respectively. Again, what can be ob-
served is that by using the stricter quality measure of
the Fréchet distance, the quality of the matching re-
sults produced by the global algorithm is even in terms

of summarized measures by far superior over that of
the incremental algorithm. However, when evaluated
with the average Fréchet distance, the quality of the
map-matching results is comparable.
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Figure 15: Summary of quality measure: Fréchet dis-
tances.
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Figure 16: Summary of quality measure: Average
Fréchet distances.

6.2.3 Examples

As a complement to the quality measures, Figures 17
and 18 present a visualization of two map-matching
examples. A vehicle trajectory composed of GPS mea-
surements (asterixes connected by line segments) is
matched to a road network (gray grid) by means of
the incremental algorithm (thick gray line) and the
global algorithm (thinner black curve).

Figure 17 gives an example of a trajectory for which
the two map-matching algorithms produced identical
results. The Fréchet distance and the average Fréchet
distance were 67.4 and 10.22 for the global algorithm
and 67.8 and 10.08 for the incremental algorithm, re-
spectively.

Figure 18 gives the map-matching results of the tra-
jectory presented in Figure 4 as computed by the in-
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Figure 17: Identical map-matching results.

cremental algorithm (thin black curve) and the global
algorithm (thicker gray line). The quality measures,
the Fréchet distance and the average Fréchet distance,
were 83.8 and 17.26 for the global algorithm and 221.7
and 19.87 for the incremental algorithm, respectively.
Marked by two circular areas in this example are two
typical map-matching problems. Area 1 illustrates the
case in which the look ahead of the incremental algo-
rithm is not large enough to detect the missing edge
in the road network. Since the algorithm does not
support backtracking, it produces a bad match until
“closing in” again on the trajectory. The global algo-
rithm produces a better match since it has a “global
knowledge” of the road network and “detects” the gap.

Area 2 illustrates a case in which the two algorithms
produce different matching results for an ambiguous
trajectory. Both matching results seem acceptable by
visual inspection, and certainly fulfill the constraints
posed by the error ellipse of Section 2.1.

Figure 18: Typical map-matching issues.

Overall, tracking data exhibits two major partic-
ularities that complicate the map-matching process.

One, the sequences of position samples representing
vehicle trajectories have gaps, i.e., large temporal and
spatial differences between consecutive position sam-
ples (e.g., the GPS device was switched off). Two, the
road network might have changed, i.e., the tracking
data corresponds to edges in the road network that
do not exist anymore. In both cases, the incremental
algorithm stops and is re-initialized with the position
sample that caused it to terminate. The global algo-
rithm does not detect these conditions and tries to find
a match for the entire trajectory.

6.3 Summary

The evaluation of the map-matching algorithms can
be summarized as follows. While the global map-
matching algorithm produces better matching results,
the incremental algorithm produces results of lower
quality faster. The quality measure that is better
suited to compare the matching result also by consid-
ering the underlying motivation for this work, travel
time computation, is the average Fréchet distance.
It gives an estimate of the overall matching quality.
The Fréchet distance is a stricter measure determin-
ing whether a good overall match was found.

7 Conclusions and Future Research

Vehicle tracking data constitutes an important re-
source for the application complex dealing with traf-
fic assessment and prediction. Its utilization depends
heavily on increasing the accuracy of the data and con-
sequently relating it to the underlying road network by
means of map matching algorithms.

We present three novel algorithms that exploit the
trajectory nature of the tracking data, i.e., considering
the entire path of a vehicle as opposed to its current
position. The incremental map-matching algorithm
employs a greedy strategy of sequentially matching
portions of the trajectory to the road network. A local
look ahead evaluates several alternate paths of fixed
extents to introduce “globality” to the greedy strat-
egy. The global map-matching algorithms find a curve
in the road network that is as close as possible to the
given trajectory. The underlying distance measure, in
our case the Fréchet distance and the weak Fréchet
distance, also serves as a quality guarantee for the
computed result. As for the choice between Fréchet
and weak Fréchet distance, the experiments showed
that the two distance measures are equal in terms of
the map-matching result they produced. The map-
matching results were evaluated in terms of (i) their
running time and (ii) the quality of their results. Com-
paring the asymptotic running times revealed that the
incremental algorithm has a significant performance
advantage over the global algorithms. However, the
global algorithms were found to produce better match-
ing results.
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The directions for future work are as follows. The
requirements for the map-matching algorithms are to
produce travel times rather than perfect matching re-
sults. Thus, although the global algorithm produces
good results, due to limitations in the tracking data
and the road network, the matching results need to be
evaluated to discard portions of “bad” matches (out-
liers). A common implementation of the three algo-
rithms is needed to provide an empirical evaluation
of the running times. The running time of the global
map-matching algorithm can be improved by reduc-
ing the memory usage when only considering the free
space within the error ellipse to store only the ac-
tual free space (instead of storing the total Θ(mn) size
free space surface). Since the average Fréchet distance
proved to be a good distance measure for trajectories,
a global map-matching strategy based on this measure
will be implemented. Further theoretical investiga-
tions will concentrate on how to compute the integral
Fréchet distance and an average Fréchet distance with
the normalization included within the optimization.
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