
DBGlobe: A Service-Oriented P2P System for Global
Computing

Evaggelia Pitoura Serge Abiteboul Dieter Pfoser George Samaras Michalis Vazirgiannis1

Computer Science Department,
University of Ioannina,

Ioannina, Greece

INRIA-Futurs and
Xyleme,
France

CTI,
Athens, Greece

Computer Science Department,
University of Cyprus,

Nicosia, Cyprus

Department of Informatics,
Athens University of

Economics and Business,
Athens, Greece

1 Other DBGlobe contributors: Peter Triantafillou (Univ. of Patras), Ioannis Fudos, Georgia Koloniari (Univ. of Ioannina), O. Benjelloun,

Tova Milo (INRIA), Nektaria Tryfona, Vassilios Verykios (CTI), George Polyzos, Efstratios Valavanis, Christopher Ververidis (Athens
Univ. of Business and Economics) and Chara Skouteli (Univ. of Cyprus).

ABSTRACT
The challenge of peer-to-peer computing goes beyond
simple file sharing. In the DBGlobe project, we view the
multitude of peers carrying data and services as a super-
database. Our goal is to develop a data management system
for modeling, indexing and querying data hosted by such
massively distributed, autonomous and possibly mobile
peers. We employ a service-oriented approach, in that data
are encapsulated in services. Direct querying of data is also
supported by an XML-based query language. In this paper,
we present our research results along the following topics:
(a) infrastructure support, including mobile peers and the
creation of context-dependent communities, (b) metadata
management for services and peers, including location-
dependent data, (c) filters for efficiently routing path
queries on hierarchical data, and (d) querying using the
AXML language that incorporates service calls inside
XML documents.

Keywords
Peer-to-peer computing, peer-to-peer databases, global
computing, services, pervasive computing, ubiquitous
computing, metadata, services

1. INTRODUCTION
Peer-to-peer (p2p) computing refers to a new form of
distributed computing that involves a large number of
autonomous computing nodes (the peers) that cooperate to
share resources and services [2]. The peers normally
correspond to computers located at the fringe of the
network. P2p computing has attracted much current
attention spurred by the popularity of file sharing systems
such as Napster, Gnutella and Kazaa.
However, the p2p challenge goes beyond simple file
sharing. In our research, we view the conglomeration of

interconnected peers carrying data as a virtual super-
database with a dynamic schema. In the context of the
DBGlobe project [1], our goal is to manage this super-
database. In particular, we develop data management
techniques for modeling, indexing and querying data
hosted by open-ended networks of massively distributed
peers.
To resolve heterogeneity and semantic mismatch problems,
we employ a service-oriented approach. In DBGlobe, the
data of each peer are made publicly available through
services, that is, access to data stored locally at each peer is
achieved by invoking an appropriate service. Direct
querying of the structure and content of data is also
supported by defining services that employ an XML-based
query language.
At a second level, metadata, i.e., data describing peers and
their services, are maintained to capture their behavior and
state. A uniform XML-based representation for services
and metadata is used to facilitate information exchange and
sharing. Thus, our focus is on semantic matching of
hierarchical service descriptions and data.
The collection of data on devices that exist around a
specific context (e.g., location or user) forms a data sharing
community that we call an ad-hoc database or simply
community. The configuration of such communities varies
over time. Communities are designed to support context-
specific behaviors such as location-aware queries.
DBGlobe is an ongoing project covering all levels of a data
management system for data and services hosted by
massively distributed autonomous and possibly mobile
peers. In this paper, we present our results along the
following topics:

 infrastructure support including mobile peers and
the management of communities (Section 2),

SIGMOD Record, Vol. 32, No. 3, September 2003 77

 metadata for services and peers, including
location-dependent data (Section 3),

 filters for efficiently routing path queries on XML
data (Section 4), and

 querying that incorporates service calls inside
XML documents (Section 5).

This paper is intended to serve as a general overview of our
research. For technical details and comparison with related
work, please refer to the related publications.

2. ARCHITECTURE
DBGlobe is a global data and service management system.
It connects a number of autonomous, mobile devices and
provides support for describing, indexing and querying
their data and services (Figure 1).

2.1 Overview
DBGlobe connects a number of peers, which in the
DBGlobe context, are called mobile devices or PMOs
(Primary Mobile Objects) to emphasize the mobility aspect.
We employ a service-oriented approach in that data are
wrapped in services. PMOs are the primary providers of
services. A PMO may be viewed as an object providing a
number of services (methods) that may be activated from
anywhere on the network. Besides functioning as service
providers (servers), PMOs may act as service requestors
(clients) or both.
PMOs connect to the DBGlobe system (and possibly
directly to each other) in order to exchange data and
perform computations. They register by providing
appropriate metadata information. Their number and
location may change over time, as new PMOs join or leave
the system and existing PMOs relocate.

DBGlobe

iM ac

Fig 1: The DBGlobe Layer

DBGlobe components are grouped into infrastructure
components and application-middleware components.
Infrastructure components provide the basic functionality
of the system, such as ubiquitous connectivity to devices,
while middleware components support semantic and
application related system services, such as the creation of
communities. DBGlobe components are described in more
detail later in this section.

Metadata information about PMO devices, users and their
data is used to form communities, locate the appropriate
services and build complex services. Metadata are
described in detail in Section 3.
To discover the PMOs that offer an appropriate service, we
use distributed indexes based on Bloom filters to route
queries to matching PMOs. Indexes are described in
Section 4.
Information exchanged between PMOs is expressed in the
Active XML language [6]. An active XML document is an
XML document that includes calls to services. AXML is
presented in Section 5.

2.2 DBGlobe Infrastructure Components
Besides PMOs, the basic infrastructure components of
DBGlobe are the Cell Administration Servers (CASs). Each
CAS offers ubiquitous connectivity to devices, captures
and stores contextual information and provides basic
service publishing and semantic discovery features.
The overlay network of CASs is an essential layer of
DBGlobe. The topology of CASs reflects the geographic
layout of the system. In particular, we adopt a hybrid
(partially ad-hoc) architecture where geographical 2-D
space is divided into adjacent administrative areas (as in
cellular communication systems) each managed by a Cell
Administration Server. The overlay network of CASs
constitutes the backbone that makes it possible for the
PMOs to communicate and share data and services with
each other. In our current design [3], each cell represents
the coverage area of one WLAN access point. We assume
that every PMO (including stationary devices) is associated
with at most one cell at any given time (e.g., by keeping a
live connection to the cell’s defining network access point).
Each CAS can independently manage the PMOs which
enter its area of authority. It keeps track of the PMOs that
enter or leave the cell’s boundaries. It stores metadata
describing each PMO, the context and the resources offered
and assists the user to locate services by semantically
matching requests with existing service descriptions. It also
provides basic services to visiting PMOs such as network
addressing, session management and positioning. Each cell
can support large numbers of PMOs moving inside its area
and acting as sources or requestors of information.

2.2.1 PMO Components
A PMO is any autonomous, electronic device capable of
communicating independently with the CAS via some
communication channel. We assume that every PMO has
built-in a globally unique identity (like Ethernet adapter
addresses or IMEIs in GSM phones) and possibly
incorporates components that can capture context (e.g.,
GPS receiver, digital compass, temperature sensor, etc.). In
addition, it may host an application server (e.g, web server)
for executing services. When a PMO is a device with

PMO
PMO

PMO

78 SIGMOD Record, Vol. 32, No. 3, September 2003

C A S

S e r v i c e
M a n a g e r

T e m p o r a l
P r o f i l e

M a n a g e r

S e r v i c e
T a x o n o m y

S e r v i c e
D e s c r i p t i o n
R e p o s i t o r y

T a x o n o m y
D i c t i o n a r y

S e r v i c e
D i r e c t o r y

P a t t e r n
A n a l y s e r

S e r v i c e
H i s t o r y

R e p o s i t o r y

R e q u e s t
H a n d l e r

D e v i c e
C o n t r o l l e r

S e r v i c e
L o g

M a n a g e r

S e r v i c e
P u b l i s h e r

D e v i c e
R e p o s i t o r y

C A S
D i r e c t o r y

C A S

D i s t r i b u t i o n N e t w o r k
C A S

C A S

S e r v e r - 2 - S e r v e r C o m m .
C o n t r o l l e r

limited resources that cannot host a service but still
contains resources to be shared, CASs may act as proxies.
The corresponding CAS may host the service execution by
retrieving the necessary data from the PMO and offering
the service to requestors in lieu of the PMO that actually
hosts the resources.

2.2.2 Cell Administration Server Components
CASs are interconnected through a network, e.g. the
Internet. Although they can function autonomously, they
are also aware of their neighbors that manage
geographically adjacent cells). The CAS module consists of
(Figure 2):
• A service ontology that has a hierarchical structure

(starting from a universal concept).
• A service directory that lists all the services offered by

PMOs in the cell.
• A service description repository of the local services.
• A CAS directory, containing addresses of other CASs.
• A device type and a PMO repository containing the list

of device types and PMOs available in the cell and
their profiles, and

• A temporal profile manager for storing the connection
times of devices, discovering patterns and estimating
probabilities of next appearance. A server can also
keep historical data and computes statistics about their
mobility habits to assist proactive behavior.

Fig 2: Cell Administration Server (CAS) components

2.3 Application Middleware
The basic responsibilities of the middleware are the
management of communities and application support for
disconnected operation. The major components of the
middleware are the: (i) Communities Administrator Servers
(CoAS) (ii) UserAgents, and (iii) dynamic query results
database.

A community evolves around a semantic concept and may
include any combination of spatial, temporal, or thematic
characteristics that relate to that concept. The collection of
PMOs with data or services related to the specific concept
form the community. For example, all PMOs that provide
weather services/data may form a “Weather” community. If
a PMO needs to know whether it is raining in Athens, it
will use the “Weather” community to find PMOs with
appropriate services.
Each community is managed by a Community
Administration Server (CoAS). A CoAS is the analogue of
the CAS for communities. Similar to a CAS, a CoAS keeps
track of the PMOs in its community and their related to the
community services. It extracts relevant metadata
information from the CAS servers and assists the user to
locate services by semantically matching requests with
existing service descriptions inside the community. Each
CoAS keeps also track of other communities in the system.
Communities can be created proactively by users and
administrators or in a dynamic manner by gathering (and
grouping) metadata information on PMOs, services and
users that have matching profiles and goals. CoASs are
informed for changes on available services and metadata
from the CASs. When a new service is available or a new
PMO registers, the CASs propagates, for example, the
appropriate metadata to all CoASs.
The dynamic query result database provides caching at the
application layer. Intermediate results are stored in the form
of views in this database. The goal of UserAgents module
is to support network disconnections by cooperating with
the dynamic query result database [7]. When a PMO gets
disconnected, the UserAgent acts as its intermediary.
During disconnection, the UserAgent remains active on the
fixed infrastructure and works on the user’s behalf (e.g.
executing user requested queries). It stores query results at
the dynamic query result database to be retrieved by the
user upon reconnection. Currently, the dynamic query
result database is used only for storing intermediate results
during disconnections.

3. METADATA MANAGEMENT
Metadata stands for extracted structure and meaning of
data. In the DBGlobe context, we encounter content
metadata and profile data. The former describes the data
contained in the PMOs, whereas the latter describes the
user and the device itself [4].

3.1 Content Metadata
Content data are the actual data registered by the user on
the PMO, which can be spatially-referenced and/or
temporally-referenced information, indicating where and
when the actual information was seen, or recorded. Content
metadata describes these data. As these data are not

SIGMOD Record, Vol. 32, No. 3, September 2003 79

directly exposed but accessed through services, content
metadata are in the form of ontologies relating to services.
Service discovery and service creation are essential tasks in
a system such as DBGlobe. We introduce service ontology
to support the structuring of the services and to aid service
discovery. Further, the composition of services is a
complex task and has to be supported by the system as
well. Thus, parameter ontology is introduced to cover the
parameters used in the various services.

3.1.1 Parameter Ontology
Services have signatures (e.g., described in WSDL) that
provide the type of the arguments and results. Matching
requests with service descriptions is a quite common
problem in the literature. The most common approach is
matching user requests expressed in keywords with service
parameters (i.e., name, location, business, binding or
tModel [12]). However, this kind of discovery mechanism
does not include semantics. The parameter ontology aims at
describing these types of all services in terms of a set of
ontologies.
The example of a weather service illustrates our approach.
Given a service that returns the weather for a given place
and time,
(A) Weather: (location, time weather)
we want to extend this service to provide weather
information along a route,
(A*) Weather_en_route: (route {location, time,
weather}).
Assuming that a service Route(start, end route) exists
that computes a route given a start and an end point, one
can combine Weather to obtain Weather_en_route, if the
parameters of the respective services match, e.g., Route
returns a type route, which can be used as an input
parameter for Weather if we know how to decompose a
route into locations at times. These relationships can be
exposed in parameter ontology.

3.1.2 Service Ontology
Once a service is defined, semantically it is more than the
sum of its parts. Knowing the semantics of the parameters
of the service is not sufficient to locate a service that fits
user queries and reason about the semantics of the service
(service discovery). Thus, what is needed besides an
ontology relating the parameters is a means to locate or
discover and relate services, a service tree (including cross
links). The construct to realize such a structure can be in
the form of ontology.
We propose a hierarchical structure in which semantically
similar services are related to the same node in the tree,
e.g., to the topic research. The tree forms a specialization
relationship in that a child node contains more specialized
services, e.g., a child of a “Research” node could be

“Medical Research”. Each node in the service tree has a set
of attributes (keywords) that describes the domain of the
referenced services. As these attributes are more abstract,
they do not correspond directly to the types of the service
interfaces (cf. parameter ontology). Searching is facilitated
by a dictionary that contains lexicographically ordered
keywords linked to the respective nodes in the service
ontology.

3.2 Profile Data
Besides content data we have profile data characterizing
the user and the PMO itself. Users have preferences with
respect to what information they usually request, and
considering mobility, as to when and to where they do this.
Recording these data leads to the creation of a user profile.
All data that characterizes the PMO will be stored in the
device profile. We aim at capturing (i) the characteristics of
the device itself, e.g., screen size and (ii) the characteristics
of the device with respect to the DBGlobe system.
In connection with mobility and related applications, an
important property of the device and the user (and thus part
of the respective profiles) is their movement. It allows us to
analyze spatial migration patterns, which leads to a better
understanding of the PMO distribution in time and to the
provision of better location-based services.
We provide a mobile ontology that is based on trajectories
[8], interpolated samples of the position of the moving
object. Given this representation, the ontology captures
properties of the trajectory, e.g., speed, relationships to
other trajectories, e.g., meet, and to its (spatial)
environment, e.g., cross, can be derived the structural
elements introduced by XML and ontologies to denote
hierarchies and relationships.

4. FILTERS FOR HIERARCHICAL DATA
For a service request originating from a PMO, there may
exist many sites (PMOs, CASs or CoASs) with matching
services or documents. Thus, we need a mechanism to
locate which sites contain relevant information efficiently.
We adopt a decentralized approach. Each site maintains a
data structure, called a filter, that summarizes all
documents and services that exist locally. This is called a
local filter. Besides its local filter, each site also maintains
one or more merged filters that summarize the services and
documents that exist in a set of its neighboring sites. These
filters facilitate the routing of a query. When a query
reaches a site, the site first checks its local filter and then
uses the merged filters to direct the query only to those
neighboring sites that may contain relevant documents. As
our filters, we use Multi-level Bloom filters.

4.1 Multi-level Bloom Filters
Bloom filters are compact data structures for probabilistic
representation of a set that supports membership queries.

80 SIGMOD Record, Vol. 32, No. 3, September 2003

Consider a set A = {a1, a2, …, an} of n elements. The idea
is to allocate a vector v of m bits, initially all set to 0, and
then choose k independent hash functions, h1, h2, …, hk,
each with range 1 to m. For each element a ∈ A, the bits at
positions h1(a), h2(a), ..., hk(a) in v are set to 1. A particular
bit may be set to 1 many times. Given a query for b, we
check the bits at positions h1(b), h2(b), ..., hk(b). If any of
them is 0, then certainly b is not in the set A. Otherwise we
conjecture that b is in the set although there is a certain
probability that we are wrong. This is called a “false
positive” and it is the payoff for Bloom filters’
compactness. The parameter k and m should be chosen
such that the probability of a false positive is acceptable.
Traditional Bloom filters cannot efficiently summarize
hierarchically structured data (such as XML documents and
XML-based service descriptions). We have proposed an
extension of traditional Bloom filter, called multi-level
Blooms appropriate for hierarchical documents [5]. We
consider two types of multi-level Blooms based on the way
XML documents are hashed: Breadth and Depth Bloom
Filters.
Let an XML tree T with j levels, and let the level of the
root be level 1. The Breadth Bloom Filter (BBF) for an
XML tree T with j levels is a set of Bloom filters {BBF0,
BBF1, BBF2, …, BBFi}, i ≤ j. There is one Bloom filter,
denoted BBFi, for each level i of the tree. In each BBFi, we
insert the elements of all nodes at level i. Depth Bloom
filters provide an alternative way to summarize XML trees.
We use different Bloom filters to hash paths of different
lengths. The Depth Bloom Filter (DBF) for an XML tree T
with j levels is a set of Bloom filters {DBF0, DBF1, DBF2,
…, DBFi-1}, i ≤ j. There is one Bloom filter, denoted DBFi,
for each path of the tree with length i (i.e., of i + 1 nodes),
where we insert all paths of length i.
Our experimental results show that our multi-level Blooms
outperform a same size traditional Bloom filter for
processing path queries over hierarchical data

4.2 Semantic and Topological Distribution
Multi-level Bloom Filters are used for routing queries at
the appropriate sites. Each site (PMO, CAS or CoAS)
maintains a local Bloom filter summarizing the local
services or documents. In addition, each site maintains a
merged filter summarizing the documents for a set of its
neighbors.
We consider two ways for determining the set of
neighboring sites for which we maintain summaries. One
approach is based on locality, and the other on filters
similarity [11]. The locality based approach organizes the
sites based on their proximity in the physical network (i.e.,
at the infrastructure level). The motivation behind this
organization is to satisfy queries locally and minimize
response time. The second approach organizes the sites
based on their filter similarity, so as to group relevant sites

together, thus supporting communities. The motivation for
this organization is to minimize the number of irrelevant
sites that process a query, by grouping together sites with
relevant content. To achieve this we have defined a metric
for deciding how “similar” two multi-level bloom filters
are.

5. QUERYING
The information exchanged between PMOs is expressed in
the Active XML (AXML in short) language. An AXML
document is an XML document with embedded calls to
services. The service calls are represented as
particular XML elements. When calls included in an
AXML document are fired, the document is enriched by
the corresponding results. An AXML PMO contains
AXML documents and offers (AXML) services, which can
be used to enrich the AXML documents of the same or of
other components. While documents with embedded calls
have been used before, there is a fundamental difference
between AXML and dynamic (XML) Web pages, since
services may be invoked from anywhere on the network,
calls embedded in an AXML page do not have to be
evaluated before sending it.
In some sense, an AXML document can be seen as a
(partially) materialized view integrating plain XML data
and dynamic data obtained from service calls. As a simple
example, consider an AXML document for the home-page
of a local newspaper. It may contain some plain XML data,
such as general information about the newspaper, and some
dynamic fragments, e.g. one for the current temperature in
the city, obtained from a weather forecast Web service, and
a listing of current art exhibits, obtained from the local
TimeOut guide service.

5.1 Controlling Service Call Activation
The service calls inside AXML documents are represented
by special XML elements carrying the tag <sc> (for service
call) which are interpreted as calls to services. An <sc>
element encodes enough information to invoke the service
on a fixed site. In case of a PMO that does not have a fixed
URL, the <sc> element encodes an identification of the
PMO that is needed to locate it on the network. Particular
attributes of the <sc> element allow to specify when a
service call should be activated (e.g. when needed, every
hour, etc.), and for how long its result should be considered
valid.
Continuous services. Simple services are similar to remote
procedure calls. The service is called with some arguments,
and eventually returns an answer. For the interesting class
of continuous services, the interaction is more complex.
Once a service call has been registered, a stream of answers
is returned for this single service call. Streams of answers
are encountered in many real-life applications: the stream
of source updates for the maintenance of a data warehouse,

SIGMOD Record, Vol. 32, No. 3, September 2003 81

the readings of a temperature sensor or surveillance system,
answers returned by continuous queries or publish-
subscribe systems. In the case of such continuous services,
the activation of the service call encapsulates a service
subscription, and all the results received subsequently from
the service are integrated in the caller document.

5.2 Intensional Parameters and Results
The parameters and result of a service call may themselves
be AXML documents. A system component receiving a
call with parameter containing service calls may have to
activate the calls it includes before actually performing the
service. Similarly, a service result may contain further
service calls, which have to be activated by the site
receiving the result. Thus, service call activations entail
exchanging intensional data, and lead to a form of
distributed computation.
The use of intensional parameters/results involves security
issues. For instance, a malicious user may force a site to
perform a dangerous action by calling one of the site's
services with an intensional parameter that contains a call
to a dangerous service. Besides security, the peer
capabilities need also to be taken into consideration. We
formalized the problem and developed algorithms to solve
it [9].

5.3 Defining Services
The AXML framework allows to use arbitrary existing
services as well as to define new services on top of the
enriched AXML documents. The definition of AXML
services relies on parameterized XML queries expressed in
XQuery, the standard language for querying XML data,
extended with updates. AXML services may query and
update AXML or regular XML documents. The AXML
service specification allows, in particular, the definition of
continuous services, and of services with intensional
input/output. One should note that an AXML service, when
called by a non-AXML client, will detect the limitations of
its caller and in such case will return only extensional
answers.

5.4 Distribution and Replication
By the sole presence of PMO- and DBGlobe- services,
AXML documents already include inherently some form of
distributed computation. A higher level of distribution that
also allows (fragments of) AXML documents and services
to be distributed and/or replicated over several sites is
highly desirable in a dynamic mobile architecture: a single
XML document may need to be distributed on more than
one PMO if the PMO does not have enough storage.
Furthermore, replication of services, as well as the data
they utilize, is needed, since a PMO will tend to use
services "nearby". To address this, we extended the AXML
data model with distribution and replication, and provided

a location-aware extension to XQuery to handle
distributed/replicated data and services [10].

6. CONCLUSIONS
DBGlobe is an ongoing project. Our future plans include
among others appropriate notions of data consistency as
well as providing a more systematic treatment of updates.

7. ACKNOWLEDGMENTS
This work was funded by the Information Society
Technologies programme of the European Commission,
Future and Emerging Technologies under the IST-2001-
32645 DBGlobe project.

8. REFERENCES
[1] The DBGlobe Project, http://softsys.cs.uoi.gr/dbglobe/
[2] D. S. Milojicic, V. Kalogeraki, R. Lukose, K.

Nagaraja, J. Pruyne, B. Richard, S. Rollins, and Z. Xu.
“Peer-to-Peer Computing”, HP Technical Report,
HPL-2002-57

[3] E. Valavanis, C. Ververidis, M. Vazirgiannis, G.C.
Polyzos and K. Norvag. “MobiShare: Sharing Context-
Dependent Data and Services from Mobile Sources”,
2003 IEEE/WIC International Conference on Web
Intelligence (WI), 2003.

[4] D. Pfoser, E. Pitoura, N. Tryfona. “Metadata Modeling
in a Global Computing Environment”, 19th ACM
International Symposium on Advances in
Geographical Information Systems (ACM-GIS), 2002

[5] G. Koloniari and E. Pitoura, “Bloom-Filters for
Hierarchical Data”, Proceeding of the 5th Workshop on
Distributed Data and Structures (WDAS), 2003

[6] The Active XML webpage,
http://www-rocq.inria.fr/verso/Gemo/Projects/axml/

[7] C. Panayiotou and G. Samaras. “Personalized Portals
for the Wireless User Based on Mobile Agents:
Demonstration”. IEEE 19th International Conference
on Data Engineering, March 2003, Bangalore, India.

[8] D. Pfoser, C. S. Jensen. “Capturing the Uncertainty of
Moving-Object Representations”. SSD 1999

[9] T. Milo, S. Abiteboul, B. Amann, O. Benjelloun, F. D.
Ngoc. “Exchanging Intensional XML Data”. SIGMOD
2003.

[10] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, T.
Milo. “Dynamic XML Documents with Distribution
and Replication”, SIGMOD 2003

[11] G. Koloniari and E. Pitoura. “Filters for XML-based
Service Discovery in Pervasive Computing”,
submitted.

[12] Universal Description, Discovery, and Integration of
Business for the Web,, http://www.uddi.org

82 SIGMOD Record, Vol. 32, No. 3, September 2003

