
Noname manuscript No.
(will be inserted by the editor)

Hub Labels on the database for large-scale graphs
with the COLD framework

Alexandros Efentakis · Christodoulos
Efstathiades · Dieter Pfoser

Received: date / Accepted: date

Abstract Shortest-path computation on graphs is one of the most well-studied
problems in algorithmic theory. An aspect that has only recently attracted
attention is the use of databases in combination with graph algorithms, so-
called distance oracles, to compute shortest-path queries on large graphs. To
this purpose, we propose a novel, efficient, pure-SQL framework for answer-
ing exact distance queries on large-scale graphs, implemented entirely on an
open-source database engine. Our COLD framework (COmpressed Labels on
the Database) may answer multiple distance queries (vertex-to-vertex, one-to-
many, k-Nearest Neighbors, Reverse k-Nearest Neighbors, Reverse k-Farthest
Neighbors and Top-k Range) not handled by previous methods, rendering it a
complete database solution for a variety of practical large-scale graph applica-
tions. Our experimentation shows that COLD outperforms existing approaches
(including popular graph databases) in terms of query time and efficiency,
while requiring significantly less storage space than these methods.

A. Efentakis
Research Center “Athena”
Artemidos 6 & Epidavrou, Marousi 15125, Greece
E-mail: efentakis@imis.athena-innovation.gr

C. Efstathiades
Department of Computer Science and Engineering,
European University Cyprus
E-mail: c.efstathiades@euc.ac.cyr

D. Pfoser
Department of Geography and GeoInformation Science, George Mason University
Exploratory Hall, Rm 2203, 4400 University Drive, MS 6C3 Fairfax, VA, 22032
E-mail: dpfoser@gmu.edu

2 Alexandros Efentakis et al.

1 Introduction

Answering distance queries on graphs is one of the most well-studied problems
on algorithmic theory, mainly due to its wide range of applications. Although
a lot of recent research focused exclusively on transportation networks (cf.
[10] for a recent overview) the emergence of social networks has generated
massive unweighted graphs of interconnected entities. On such networks, the
distance between two vertices is an indication of the closeness of their entities,
i.e., for finding users closely related to each other, or extracting information
about existing communities within the social media users. Although we may
always use a breadth first search (BFS) to calculate the distance between any
two vertices on such graphs, such an approach cannot facilitate fast-enough
queries on main memory or be easily adapted to secondary storage solutions.

Moreover, most of the preprocessing techniques available for road networks
cannot be adapted to large-scale graphs, such as social or collaboration net-
works. So far, the most promising approach for this type of graphs builds
on the 2-hop labeling or hub labeling (HL) algorithm [28,14,29], in which
the preprocessing stage stores a two-part label L(v) for every vertex v: a for-
ward label Lf (v) and a backward label Lb(v). These labels are then used to
very fast answer vertex-to-vertex shortest-path queries. This technique has
been adapted successfully to road networks [2,3,19,5], undirected, unweighted
graphs in [6,17,33] and schedule-based, public-transportation networks in [15,
48,22]. The HL method has also been applied to one-to-many, many-to-many
and k-Nearest Neighbors (kNN) queries on road networks [18,20] and Reverse
k-Nearest Neighbor (RkNN) queries in the context of social networks in [26].

With the emergence of big data analytics, implementing analysis methods
as part of a commercial database is attractive. It would allow developers to
leverage the power of an existing system and the expressiveness of a database
language such as SQL to create new types of data analysis methods. In the
case of route planning respective methods have been implemented as database
distance oracles [43,21]. Data is stored and queried completely in SQL rather
than having a standalone module that runs outside the database. The bene-
fits are that the database system automatically provides an external memory
implementation of the algorithm to support scaling. Hub labeling methods
present an excellent case for a database-based implememention, as the pre-
processing step generates a quantitative representation of possible shortest
paths that can be stored and queried in a database. However, there still has
been only a limited number of works that try to replicate those algorithms for
secondary storage. HLDB [21] stores the calculated hub labels for continen-
tal road networks in a commercial database system and translates the typical
HL distance query between two vertices to plain SQL commands. Moreover,
it showed how to efficiently answer kNN queries and k-best via points, again
by means of SQL queries. Recently, HopDB [33] proposed a customized solu-
tion that utilizes secondary storage also during preprocessing. Unfortunately,
both these methods have their inherent shortcomings. HLDB has only been
tested on road networks and consequently small labels sizes (<100). Its speed

Hub Labels on the database for large-scale graphs with the COLD framework 3

would seriously degrade for large-scale graphs due to the much larger label
size. HopDB answers only vertex-to-vertex queries and is a customized C++
solution that cannot be used with existing database systems and, hence, has
limited practical applicability.

This work extends the results originally presented in [23] and proposes a da-
tabase framework that may service multiple exact distance queries on massive
large-scale graphs. Our pure-SQL COLD framework (COmpressed Labels on
the Database) can answer multiple exact distance queries (vertex-to-vertex,
k-Nearest Neighbors) in addition to Reverse k-Nearest Neighbors and one-
to-many queries not handled by previous methods, rendering it a complete
database solution for a variety of practical massive, large-scale graph prob-
lems. In comparison to our original work of [23], this work extends the HL
technique to solve Reverse k-Farthest Neighbors and Top-k Range queries and
shows how these specific queries may be efficiently answered within the COLD
framework. Our extensive experimentation will show that COLD outperforms
previous solutions, including specialized graph databases, on all aspects (in-
cluding query performance and memory requirements), while servicing a larger
variety of distance queries. In addition, COLD is implemented using a popu-
lar, open-source database engine with no third-party extensions and, thus, our
results are easily reproducible by anyone.

The outline of the remainder of this work is as follows. Section 2 presents
related work. Section 3 describes the novel COLD framework and its implemen-
tation details. Experiments establishing the benefits of COLD are provided in
Section 4. Finally, Section 5 gives conclusions and directions for future work.

2 Related work

Throughout this work we use undirected, unweighted graphs G(V,E) (where V
and E represent vertices and arcs respectively). Since we also deal with addi-
tional types of queries (e.g., k-Nearest Neighbor queries) there is also a static
set of targets P that are assumed to be located on vertices. Throughout this
work, we always refer to snapshot queries, i.e, targets are not moving or chang-
ing. Also, similarly to previous works, the term target density D refers to the
ratio |P |/|V |, where P is the set of targets in the graph and |V | is the total
number of vertices. Although there is extensive literature focusing on cer-
tain queries (e.g., kNN, RkNN) in Euclidean space, since our work focuses on
graphs we will mainly describe related work focusing on the latter. Since the
COLD framework builds on the Hub Labeling technique, we will also describe
related work referring to this specific shortest-path method.

2.1 Hub Labeling

Our work builds upon the 2-hop labeling or Hub Labeling (HL) algorithm of
[28,14,29] in which, the preprocessing stage stores at every vertex v a for-

4 Alexandros Efentakis et al.

ward Lf (v) and a backward label Lb(v). The forward label Lf (v) is a se-
quence of pairs (u, dist(v, u)), with u∈V . Likewise, the backward label Lb(v)
contains pairs (w, dist(w, v)). Vertices u and w are denoted as the hubs of v.
The generated labels conform to the cover property, i.e., for any s and t, the
set Lf (s) ∩ Lb(t) must contain at least one hub that is on the shortest s − t
path. For undirected graphs Lb(v) = Lf (v).

To find the network distance dist(s, t) between two vertices s and t, a HL
query must find the hub v ∈ Lf (s)∩Lb(t) that minimizes the sum dist(s, v) +
dist(v, t). By sorting the pairs in each label by hub, this takes linear time
by employing a coordinated sweep over both labels. The HL technique has
been successfully adapted for road networks in [2,3,19,5]. In the case of large-
scale graphs, the Pruned Landmark Labeling (PLL) algorithm of [6] produces
a minimal labeling for a specified vertex ordering. In this work, vertices are
ordered by degree, whereas the work of [17] improves the suggested ordering
and the storage of the hub labels for maximum compression. The HL method
has also been used for one-to-many, many-to-many and kNN queries on road
networks in [18] and [20] respectively. Recently the HL technique has also been
extended to schedule-based, public-transportation networks in [15,48].

2.2 k-Nearest Neighbor (kNN) queries

A k-Nearest Neighbor (kNN) query seeks the k-nearest neighbors to a query
vertex q, according to the network distance. Considering road networks and
kNN queries, G-tree [51] is a balanced tree structure, constructed by recur-
sively partitioning the road network into sub-networks. Then the best-first
algorithm is applied on this G-tree index structure to answer kNN queries.
Unfortunately, this method cannot scale for continental road networks, since
it requires several hours for its preprocessing. Moreover, it requires a target se-
lection phase to index which tree-nodes contain targets (requiring few seconds)
and thus, cannot be used for moving targets.

Several efforts focussed on kNN queries on road networks using well-known
algorithmic shortest-path techniques. The work of [20] expanded the graph-
separators CRP algorithm of [16] to handle kNN queries on road networks.
Likewise, the work of [37], extended Contraction Hierarchies (CH) [31] in the
context of kNN queries in road networks. Unfortunately, both methods have
their inherent disadvantages: (i) Since the work of [37] builds on CH, it re-
quires several minutes for preprocessing continental road networks. Hence, it
cannot be used for dynamic, live-traffic scenarios. (ii) Both approaches also
require a target selection phase and thus, they cannot be applied in the case
of moving targets. (iii) Their performance degrades for sparser targets, which
is the typical case for a specific type of targets or small vehicle-fleets. Hence,
those solutions are also not optimal. To remedy those shortcomings, the SALT
framework [27] requires a few seconds for preprocessing continental road net-
works and is thus suitable for dynamic, live-traffic road networks. Moreover,
it may also be used to answer multiple distance queries on road networks, in-

Hub Labels on the database for large-scale graphs with the COLD framework 5

cluding vertex-to-vertex (v2v), single source (one-to-all, range, one-to-many)
and kNN queries. That work expanded the graph-separators GRASP [25] al-
gorithms and the ALT-SIMD adaptation [24] of the ALT algorithm and offers
excellent query times. For kNN queries, SALT does not require a target se-
lection phase and hence it may be used for either static or moving targets,
offering comparable query times to [20,37].

2.3 Reverse k-Nearest Neighbor (RkNN) queries

The Reverse k-Nearest Neighbor (RkNN) query (also referred as the monochro-
matic RkNN query), given a query point q and a set of targets P , retrieves
all the targets that have q as one of their k-nearest neighbors according to
a given distance function dist(). In graph networks, dist(s, t) corresponds to
the minimum network distance between two vertices. Formally RkNN(q) =
{p ∈ P : dist(p, q) ≤ dist(p, pk)} where pk is the k-Nearest Neighbor of p.

For RkNN queries on road networks, the work of [42] uses Network Voronoi
cells (i.e., the set of vertices and arcs that are closer to the generator object)
to answer RkNN queries. This work has only been tested on a relatively small
network (110K arcs) and all precomputed information is stored in a database.
In addition, he preprocessing stage for computing the Network Voronoi cells is
quite costly. Up until recently, the only work dealing with other graph classes
(besides road networks) is [50], although it has only been tested on sparse
networks, e.g., road networks, grid networks (max degree 10), p2p graphs
(avg degree 4) and a very small, sparse co-authorship graph (4K nodes). In
this work, the conducted experiments for values of k > 1 refer only to road
networks, therefore the scalability of this work for denser graphs and larger
values of k is questionable. Recently, Borutta et al. [11] extended this work
for time-dependent road networks, but the presented results were not very
encouraging.

The latest work of the co-authors [26] proposed ReHub, a novel main-
memory algorithm that extends the Hub Labeling approach to efficiently han-
dle RkNN queries. The main advantage of the ReHub algorithm is the separa-
tion between its costlier offline phase, which runs only once for a specific set
of targets and a very fast online phase which depends on the query vertex q.
Still, even the costlier offline phase hardly needs more than 1s, whereas the
online phase requires usually less than 1ms, making ReHub the only RkNN
algorithm fast enough for real-time applications on big, large-scale graphs.

2.4 Reverse k-Farthest Neighbor (RkFN) queries

Reverse k-nearest neighbor queries have a natural counterpart called Reverse
k-Farthest (RkFN) neighbors, where we are interested in knowing the points
that are least influenced by a query point q. These are those points that get
assigned q as their farthest neighbor. RkFN queries haver numerous applica-
tions in location-based services, marketing, outlier detection, clustering and

6 Alexandros Efentakis et al.

profile-based management. For example, in site planning when given a poten-
tial location for a hazardous waste site, the reverse farthest neighbors of the
site are the ones that are least affected by the site. Other problems mentioned
are Painter’s algorithm, a popular rendering approach, which gives priority to
furthest targets from the view point. An object that has many RFNs (i.e., is
among the furthest targets from many view points) is likely to be accessed
first for rendering (cf. [47]). In relation to social networks RFN queries are
important to identify an audience that has not been “reached” yet, i.e., which
is something that is relevant when monitoring the effect of social media mar-
keting campaigns. Kumar et al. [34] introduce RFN problems and present
an approximate approach to compute RFNs. It requires pre-calculation of so
called FN-ball of points. Liu et al. [38] proposed the PIV algorithm that con-
structs metric indexes and employs triangle inequality to do pruning. All these
techniques require expensive pre-computation and, therefore, are not suitable
for dynamic data sets or for arbitrary value of k. Recently, Wang et al. [47] is
the latest among several papers discussing RkFN queries. Their method works
for arbitrary values of k and relies on several pruning phases, with the main
phase being based on k-depth contours [12].

While all the above methods work on Euclidean space, Tran et. al. [46] ad-
dress RFN queries on road networks based on Network Voronoi Diagrams and
a precomputation of network distances. A Network Voronoi Diagram (NVD)
differs from a Euclidean space Voronoi Diagram in that every point in each
Voronoi cell is closer to the generator point of the cell based on minimum net-
work distances, instead of the Euclidean distances between the points. While
considerable, this specific work does not report the pre-computation cost for
the NVD construction. The query times range from seconds for k = 1, to
thousands of seconds for larger values of k.

2.5 Top-k range queries

The top-k range reporting problem finds the best few targets among only a
subset of the dataset satisfying a range predicate. For example, a user of a hotel
database may be interested in discovering the k-best rated hotels whose prices
are in a designated range. Likewise, for promotion purposes, the manager of a
company may want to find the k-salesmen with the best performance, among
those salesmen whose salaries are in a certain range. Top-k range queries have
also been studied in the context of information retrieval [4], OLAP [39], and
data streams [32]. Recently, there is also significant work [44,45] regarding the
theoretical aspects of the top-k range reporting problem.

When extended to spatial or network databases, the top-k range query
top − k range(q, k, [a, b)) may be naturally extended to find the k-nearest
neighbors of the query location or vertex between the subset of targets ∈ P
with their spatial or network distance from the query location (vertex) lying
in the [a, b) interval. The spatial / network top − k range(q, k, [a, b)) query
has numerous use-cases, such as finding the k-closest hotels to the city cen-

Hub Labels on the database for large-scale graphs with the COLD framework 7

ter or the airport that are however between 2km and 4km away from it, to
avoid the corresponding noise or inflated prices. In the context of collabora-
tion networks, a top− k range(q, k, [a, b)) may be used to identify k-scientific
authors belonging to a particular institution that have collaborated with one
of the co-authors of researcher A (and therefore have a hop-distance > 2 from
the vertex associated with researcher A). To the best of our knowledge, the
network top-k range variation has not been tackled with hub labels before.

2.6 Secondary storage

Regarding secondary-storage solutions, Jiang et al. [33] propose the HopDB al-
gorithm that suggest an efficient HL index construction when the given graphs
and the corresponding index are too big to fit into main memory. The work
of [1] introduced the HLDB system, which answers distance and kNN queries
in road networks entirely within a database by storing the hub labels in data-
base tables and translating the corresponding HL queries to SQL commands.
Throughout this work, we will compare our proposed COLD framework to
HLDB, since to the best of our knowledge, HLDB is the only framework that
may answer exact distance queries entirely within a database. Moreover, within
the COLD framework we also adapt our ReHub main-memory algorithm [26]
into a database context, so that its online phase may be translated to a fast
and optimized SQL query. Based on the results presented in our original work
of [23], the recent work of [22] also extended the Timetable Labelling [48]
method for public-transportation networks, in the context of databases.

3 The COLD framework

This section presents the COLD (COmpressed Labels on the Database) da-
tabase framework. COLD can answer multiple exact distance queries (vertex-
to-vertex, k-Nearest Neighbor, Reverse k-Nearest Neighbor and one-to-many)
for large-scale graphs using SQL commands. Considering that COLD builds
on HLDB [1] and ReHub [26], we will follow the notation and running exam-
ple presented there, for highlighting the necessary concepts and challenges for
adapting those previous works, (i) in the context of large-scale graphs for [1]
and (ii) within the boundaries of a relational database management system
(RDBMS) for [26]. To this end, we chose PostgreSQL [41] for our implementa-
tion, given that it is a popular, open-source RDBMS. Although we use some
PostgreSQL-specific data-types and SQL extensions, we do not use any third-
party extensions but only features included in its standard installation. In
comparison to our original work of [23], this section has the additional Sec-
tions 3.1.5 and 3.1.7 that show how (i) Top-k range and Reverse k-Farthest
Neighbors (RkFN) may be answered by a hub labeling framework on main
memory and (ii) how these specific queries may be handled inside COLD, pro-
viding the exact implementation details, including the required database table
formats and the corresponding SQL query code.

8 Alexandros Efentakis et al.

Vertex Hub Labels (h,d)
0 (0,0)
1 (0,1), (1,0)
2 (0,1), (2,0)
3 (0,1), (3,0)
4 (0,1), (4,0)
5 (0,2), (1,1), (5,0)
6 (0,2), (1,1), (6,0)
7 (0,2), (1,1), (7,0)
8 (0,2), (2,1), (8,0)
9 (0,2), (3,1), (9,0)
10 (0,2), (4,1), (10,0)
11 (0,3), (1,2), (5,1), (11,0)
12 (0,3), (1,2), (6,1), (12,0)
13 (0,3), (1,2), (7,1), (13,0)

Fig. 1 & Table 1: A sample Graph G and the created hub-labels

3.1 Implementation

The COLD framework assumes that we have a correct hub labeling (HL)
framework that generates hub-labels for the undirected, unweighted graphs we
wish to query. Although COLD will work with any correct HL algorithm, in
this work we use the [7] implementation of the PLL algorithm of [6] to generate
the necessary labels. To highlight the results of this process, the labels for the
undirected, unweighted graph G of Figure 1 are shown in Table 1. Throughout
this work, we will refer to those labels as the forward labels. The forward label
L(v) for a vertex v is a vector of pairs (u, dist(v, u)) sorted by hub u. Since our
work also focuses on snapshot kNN, RkNN, RkFN and Top-k range queries,
there are also some targets P∈V that do not change over time. For our specific
running example we assume that P = {4, 10, 12} and thus, we highlight the
respective vertices and entries in Figure 1 and Table 1, respectively.

3.1.1 Vertex-to-Vertex (v2v) queries.

To find the network distance dist(s, t) between two vertices s and t, a HL
query must find the hub v ∈ L(s)∩L(t) that minimizes the sum dist(s, v) +
dist(v, t). For our sample graph G, the minimum distance between e.g., vertices
2 and 7 is d(2, 7) = 3, using the hub 0. To translate this HL query into
SQL commands, in HLDB [1] forward labels are stored in a database table
denoted forward where the labels of vertex v are stored as triples of the form
(v, hub, dist(v, hub)) (see Table 2). The table forward has the combination of
(v, hub) as the primary key and is clustered according to those columns, so
that “all rows corresponding to the same label are stored together to minimize
random accesses to the database” [1]. Then we can find the distances between
any two vertices s and t by the SQL query of Code 1.

Although the HLDB vertex-to-vertex (v2v) query is very simple, there is
one major drawback. For such a query, HLDB has to fetch from secondary

Hub Labels on the database for large-scale graphs with the COLD framework 9

Table 2: The forward table used in
HLDB for the sample graph G

v hub dist
.
2 0 1
2 2 0

.
7 0 2
7 1 1
7 7 0

.

Table 3: The forwcold table used for
COLD for the sample graph G

v hubs dists
.
2 {0, 2} {1, 0}

.
7 {0, 1, 7} {2, 1, 0}

.

Code 1: V2v query for HLDB

1 SELECT MIN(n1.dist+n2.dist)

2 FROM

3 FORWARD n1 ,

4 FORWARD n2

5 WHERE n1.v = s

6 AND n2.v = t

7 AND n1.hub = n2.hub;

Code 2: V2v query for COLD

1 SELECT MIN(n1.d+n2.d)

2 FROM

3 /* Expand hubs , dists arrays */

4 (SELECT UNNEST(hubs) AS hub ,

5 UNNEST(dists) AS d

6 FROM forwcold

7 WHERE v = s) n1,

8 (SELECT UNNEST(hubs) AS hub ,

9 UNNEST(dists) AS d

10 FROM forwcold

11 WHERE v = t) n2

12 WHERE n1.hub=n2.hub;

storage the subset of |L(s)| + |L(t)| rows with common hubs. Although this
is practical for road networks where the forward labels have less than 100
hubs per vertex [3], it cannot scale for large-scale graphs where the forward
labels have thousand of hubs per vertex. Moreover, on such graphs the forward
DB table and the corresponding primary key index will become too large,
which is also an important disadvantage. To this end, we take advantage of
the fact that PostgreSQL features an array data type that allows columns
of a DB table to be defined as variable-length arrays. Hence, in COLD we
store hubs and distances for a vertex (both ordered by hub) as arrays in
two separate columns (i.e., hubs and dists) in a single row. The resulting
forwcold compressed DB table is shown in Table 3. This approach not only
emulates exactly how labels are stored on main-memory for fast vertex-to-
vertex queries but also has considerable advantages: (i) The forwcold DB table
has exactly |V | rows (ii) The forwcold DB table has the column v as the
primary key without needing a composite key. This alone facilitates faster
queries. Moreover the size of the corresponding PK index will be significantly
smaller. In fact, our experimentation will show that the primary-key index for
forwcold may be > 4, 400× smaller than the index size of HLDB. (iii) For a
vertex-to-vertex query, COLD needs to access exactly two rows, regardless of
the sizes of |L(s)| and |L(t)|. This way, we efficiently minimized the secondary-
storage utilization, even working inside a database. The resulting SQL query

10 Alexandros Efentakis et al.

Table 4: Necessary data structures for the sample graph G, P = {4, 10, 12}
and one-to-many, k-Nearest Neighbor and Reverse k-Nearest Neighbor queries

Labels-to- kNN Backward RkNN Labels kNN Result (k=1)
Hub many [18] Labels (k=2) [1] (k=1) [26] Obj. (Obj., dist) [26]
0 (4,1), (10,2), (12,3) (4,1), (10,2) (4,1), (12,3)

4 (10,1)
1 (12,2) (12,2) (12,2)
4 (4,0), (10,1) (4,0),(10,1) (4,0), (10,1)

10 (4,1)
6 (12,1) (12,1) (12,1)
10 (10,0) (10,0) (10,0)

12 (4,4)
12 (12,0) (12,0) (12,0)

for COLD is shown in Code 2. There we exploit the fact that PostgreSQL
“guarantees that parallel unnesting” for hubs and distances for each nested
query “will be in sync”, i.e., each pair (hub, dist) is expanded correctly since
for the same v the respective arrays have the same number of elements1.

3.1.2 Additional queries overview

For answering more complex (kNN, RkNN and one-to-many) distance queries
on a HL framework for a set of targets P , we need to build some additional data
structures from the forward labels (for undirected graphs). Then, for answering
the respective query we only need to combine the forward labels L(q) of query
vertex q, with the respective data structure explained in the following. Those
data structures are summarized in Table 4.

For answering one-to-many queries, i.e., calculate distances between the
query vertex q and all targets in P , we need to build the labels-to-many by
basically ordering the forward labels of the targets by hub [18] and then by
distance for the same hub. For k-Nearest Neighbor queries we only need to
keep at most the k-best pairs (of smallest distances) per hub from the labels-to-
many to create the kNN backward labels [1]. In our specific example, the kNN
backward labels for k = 2 and hub 0, do not contain the pair (12, 3). Finally, for
Reverse k-Nearest Neighbor queries, we must first calculate the kNN Results
(i.e., the NN of the target 4 is the target 10 with distance 1) and then we build
the RkNN labels, based on the observation that “we need to access those pairs
from the labels-to-many to a specific target, if and only if those distances are
equal or smaller than the distance of the kNN of this target” [26]. In our specific
example, the RkNN labels for k = 1 and hub 0, do not contain the pair (10,2)
since the NN of target 10 (the target 4) is within distance 1. Although for
our small graph the differences between the individual data structures seem
minimal, for larger graphs those differences become prominent. This was also
showcased by the theoretical analysis provided in [26] which showed that the
labels-to-many will have on average D · |HL| pairs, the kNN backward labels
have at most k · |V | pairs and the RkNN labels have on average ε ·D · |HL|
pairs where ε < 0.01 for specific datasets and experimental settings. Moreover,
Efentakis et al. [26] have shown how these additional data structures may be

1 http://stackoverflow.com/a/23838131

Hub Labels on the database for large-scale graphs with the COLD framework 11

Table 5: The knntab table used in
HLDB for the sample graph G, k = 2
and P = {4, 10, 12}

hub dist obj
0 1 4
0 2 10
1 2 12

.

Table 6: The knntab table used in
COLD for the sample graph G, k = 2
and P = {4, 10, 12}

hub dist objs
0 1 {4}
0 2 {10}
1 2 {12}

.

constructed from the forward labels in main-memory, requiring less than few
seconds, even for the larger tested datasets.

3.1.3 k-Nearest Neighbor (kNN) queries

To translate the HL k-Nearest Neighbor query into SQL, HLDB stores the
kNN backward labels in a separate DB table denoted knntab that stores triples
of the form (hub, dist, obj) (see Table 5). The respective table knntab has the
combination of (hub, dist, obj) as a composite primary key and is clustered ac-
cording to those columns. Note that in HLDB, we cannot use the combination
of (hub, dist) as a primary key, because especially in large scale graphs we will
have a lot of distance ties even for k-entries for the same hub. Then we can
can answer a kNN query from vertex q by the SQL query of Code 3. Again,
the kNN HLDB query has the same drawbacks as before, i.e., it has to retrieve
|L(q)| rows from forward and k · |L(q)| rows from knntab tables, for a total of
(k+ 1) · |L(q)| rows retrieved from secondary storage. Moreover in a database,
it makes sense to create one large knntab table for the maximum value kmax
of k (e.g., for k = 16) that may be serviced by the DB framework and that
same table will be used for all kNN queries up to k = kmax. In that case, the
HLDB framework will have to retrieve (kmax+ 1) · |L(q)| rows for every kNN
query regardless of the value of k.

To remedy the HLDB drawbacks, COLD creates the knncold DB table
(Table 6) that has the columns (hub, dist, objs), whereas targets are grouped
and ordered per hub and distance (the column objs is an array). Although
for our sample graph G, the DB tables knntab and knncold seem identical,
COLD’s method offers several advantages: (i) We can now use the combination
of (hub, dist) as a primary key, which makes the respective index significantly
smaller and faster and (ii) In case of many distance ties (common to large-
scale graphs) and one large knncold DB table that services all kNN queries
for values of k up to the maximum value kmax , we only need to fetch the
first k-objs entries (i.e., objs[1:k]) per hub and dist, which makes the later
sorting faster (see Code 4).

12 Alexandros Efentakis et al.

Code 3: kNN query for HLDB

1 SELECT MIN(n1.dist+n2.dist),

2 n2.obj

3 FROM

4 FORWARD n1 ,

5 knntab n2

6 WHERE n1.v = q

7 AND n1.hub = n2.hub

8 GROUP BY n2.obj

9 ORDER BY MIN(n1.dist+n2.dist)

10 LIMIT k;

Code 4: kNN query for COLD

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj

3 FROM

4 (SELECT UNNEST(hubs) AS hub ,

5 UNNEST(dists) AS d

6 FROM forwcold

7 WHERE v = q) n1,

8 /* k-entries per hub ,dist */

9 (SELECT hub ,

10 dist ,

11 objs [1:k]

12 FROM knncold) n2

13 WHERE n1.hub=n2.hub

14 GROUP BY obj

15 ORDER BY MIN(n1.d+n2.dist)

16 LIMIT k;

Fig. 2: An example one-to-many query from query vertex 6

3.1.4 One-to-many queries

Similar to how COLD handles k-Nearest Neighbor queries, for one-to-many
queries (see Figure 2 for an example), COLD stores the labels-to-many in a
new objcold DB table that has an identical format to knncold, i.e., it has three
columns (hub, dist, objs) whereas targets are grouped and ordered per hub
and distance. The Objcold DB table (see Table 7) also uses the combination of
(hub, dist) as a primary key. The resulting one-to-many SQL query (Code 5)
is quite similar to COLD’s kNN query, but (i) it operates on the larger ob-
jcold DB table (ii) It does not have the ORDER BY ... LIMIT k clause and
(iii) We use the entire objs array per hub and distance instead of objs[1:k].
Note that HLDB cannot possibly support such queries because it will need
to retrieve on average |L(q)| rows from the forward table and a total of
|L(q)| · D · (|HL|/|V |) [26] rows from the corresponding objlab table, which
will be prohibitively slow for datasets with large |HL|/|V | ratios.

Hub Labels on the database for large-scale graphs with the COLD framework 13

Table 7: The objcold table used in COLD for One-To-Many queries, the sample
graph G, k = 1 and P = {4, 10, 12}

hub dist objs
0 1 {4}
0 2 {10}
0 3 {12}
1 2 {12}
4 0 {4}
4 1 {10}

.

Code 5: One-to-many COLD query

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj

3 FROM

4 (SELECT UNNEST(hubs) AS hub ,

5 UNNEST(dists) AS d

6 FROM forwcold

7 WHERE v = q) n1,

8 objcold n2

9 WHERE n1.hub=n2.hub

10 GROUP BY obj;

3.1.5 Top-k range queries

Since, to the best of our knowledge, there is no previous work that answers
top-k range queries for graphs with hub labels, we will: (i) demonstrate how
this specific query may be solved in main memory and then (ii) how we can
answer this query efficiently within our COLD database framework.

Regarding a main memory solution, once we build the labels-to-many data
structure (see Column 2 of Table 4) the top − k range(q, k, [a, b)) query may
be solved with the pseudocode provided in procedure Top-k Range. In this
solution, we basically run a modified one-to-many query from the query ver-
tex q where we store the distances from the query vertex to the target vertices
in a hash map (denoted hmap in the pseudocode) if and only if those distances
are smaller than the upper bound b of the top-k range query (see Line 8 in
the pseudocode). If not, since the labels-to-many are ordered by hub and dis-
tance, we can move on to the next hub (Line 9). Note, than we cannot use
the lower bound a to prune this calculation, since we need to calculate correct
shortest-path distances to the target vertices.

14 Alexandros Efentakis et al.

Fig. 3: Example top-k range queries from query vertex 6

Top-k Range (q, k , a, b, forwLabels, LabelsToMany, PQueue)

1 hmap = empty HashMap(id, distance)
2 for i = 0 to forwLabels[q].size
3 hub = forwLabels[q][i].hub
4 d = forwLabels[q][i].dist
5 for j = 0 to LabelsToMany[hub].size
6 id = LabelsToMany[hub][j].id
7 d2 = d + LabelsToMany[hub][j].dist
8 if d2 ≥ b
9 Break

10 if hmap[id] == nil || d2 < hmap[id]
11 hmap[id] = d2
12 PQueue = empty Bounded Priority Queue(distance, id) of size k
13 for each (id, distance) pair ∈ hmap
14 if distance ≥ a
15 PQueue.push(distance, id)
16 return PQueue

Once we calculate those correct shortest-path distances to all target vertices
that are smaller than b (Lines 1-11 in the pseudocode) we use a vector-based
bounded priority queue (denoted PQueue in the pseudocode) of size k to
store the top-k range results. Then, we have to loop through all the entries
of the hmap and push each (id, distance) pair for which distance ≥ a. This
customized push operation checks if the priority queue has already k items
and keeps only the best k-entries (smallest distances) from the query vertex.
This process is highlighted in Figure 3 that shows the results of two top-k
range queries from vertex 6 for different ranges.

Code 6: Top-k range query for COLD

1 SELECT UNNEST(ids) AS id2 ,

2 MIN(n1.distance+n2.distance)

3 FROM

4 (SELECT id,

5 UNNEST(hubs) AS hub ,

Hub Labels on the database for large-scale graphs with the COLD framework 15

6 UNNEST(distances) AS distance

7 FROM forwcold

8 WHERE id=q) n1,

9 (SELECT hub ,

10 distance ,

11 ids [1:k]

12 FROM objcold) n2

13 WHERE n1.hub=n2.hub

14 AND n1.distance+n2.distance <b

15 GROUP BY id2

16 HAVING MIN(n1.distance+n2.distance)>=a

17 ORDER BY MIN(n1.distance+n2.distance),id2

18 LIMIT k;

Theorem 1 The proposed top-k range algorithm is correct.

Proof The labels-to-many and the forward labels of query vertex q suffice
to calculate correct shortest-path distances to all target vertices, as shown
by [18]. Since we only allow shortest-path distances that are smaller than b
to enter the hmap, Lines 1-11 store correct shortest-path distances to target
vertices only when they are smaller than b. Then, by using a bounded priority
queue of size k and by not allowing distances smaller than a (Line 14) to enter
this priority queue, we can guarantee that at the end of this procedure, the
bounded priority queue has the k-smallest (distance, id) pairs with shortest-
path distances between bounds a and b.

To answer top-k range queries within COLD, we can directly use the for-
wcold (see Table 3) and objcold DB tables (see Table 7) without needing any
additional DB tables. The corresponding SQL query is shown in Code 6. It
is obvious that the corresponding query is highly optimized, since it only re-
trieves k-entries per (hub, distance) combination of the objcold DB table (see
Line 12) and prunes the search space according to upper bound b (Line 5).

3.1.6 Reverse k-Nearest Neighbor (RkNN) queries

For RkNN queries, COLD stores the RkNN labels in a separate revcold DB
table that has an identical format to previous knncold and objcold DB tables,
i.e., three columns (hub, dist, objs) where targets are grouped and ordered
per hub and distance and the combination of (hub, dist) used as a primary
key. COLD also stores the kNN Results, i.e., the kNN of all targets in another
knnres DB table that has the format (obj, dists, objs,) where obj is the primary
key and objs and dists are arrays (both ordered by distance). Therefore the
kNN of target p is the objs[k] within distance dists[k] of the respective
row for p. Again it makes sense to build a knnres DB table for a max value
of kmax that may service RkNN queries for varying values of k. As a result,
during the RkNN COLD query, we will have to use an additional JOIN between
the revcold and knnres DB tables. The resulting query is shown in Code 7.

We see that even the more complex Reverse k-Nearest Neighbor query in
COLD requires just a few lines of SQL code that will work in any recent Post-
greSQL version without any need of third-party extensions or specialized index

16 Alexandros Efentakis et al.

Table 8: The knnres table used in COLD for RkNN queries, the sample graph
G, k = 1 and P = {4, 10, 12}

obj dists objs
4 {1} {10}
10 {1} {4}
12 {4} {4}

Code 7: RkNN query for COLD

1 SELECT n3.id2 ,

2 n3.dist

3 FROM

4 /* n3 subquery is a modified

5 one -many -query to revcold */

6 (SELECT MIN(n1.d+n2.dist) AS d3,

7 UNNEST(objs) AS obj

8 FROM

9 (SELECT UNNEST(hubs) AS hub ,

10 UNNEST(dists) AS d

11 FROM forwcold

12 WHERE v = q) n1,

13 revcold n2

14 WHERE n1.hub=n2.hub

15 GROUP BY obj

16 ORDER BY obj ,

17 MIN(n1.d+n2.dist)) n3,

18 /* Join with knnres table */

19 (SELECT obj ,

20 dists[k] AS dist

21 FROM knnres) n4

22 WHERE n3.obj=n4.obj

23 AND n3.d3 <=n4.dist

24 ORDER BY n3.obj;

structures. This also holds true for the similar Reverse k-Farthest Neighbor
query, detailed in the following section.

3.1.7 Reverse k-Farthest Neighbor (RkFN) queries

Again, to the best of our knowledge, there is no previous work that solves
Reverse k-Farthest Neighbor (RkFN) queries for graphs, using the calculated
hub labels. Thus, we will: (i) show how this query type may be solved in main
memory and then (ii) how we can answer this specific type of queries efficiently
within our COLD database framework.

Regarding main memory, our solution expands the methodology originally
proposed for RkNN queries in our previous work of [26]. Analogously to the
ReHub algorithm proposed for RkNN queries, for answering RkFN queries we
need to calculate the Reverse k-Farthest Neighbors of all target vertices during
the offline phase. The corresponding offline phase hence, depends only on the

Hub Labels on the database for large-scale graphs with the COLD framework 17

target vertices and the value of k. During the following online phase, we need
to perform an one-to-many query from the query vertex q to the target vertices
and then check if the query vertex belongs to each target’s Reverse k-Farthest
Neighbors set. The corresponding pseudocode for the online and offline phase
of the proposed ReFar algorithm in shown in procedures OfflinePhaseRe-
Far and OfflinePhaseReFar respectively.

OfflinePhaseReFar (k , P, |P |, forwLabels, LabelsToMany)

1 Initialize PQueue(|P |)
2 for i = 0 to |P |
3 hmap = empty HashMap(id, distance)
4 OneToMany(Pi, forwLabels[Pi], LabelsToMany, hmap)
5 PQueue[i] = empty Bounded Max− PQueue(distance, id) of size k
6 for each (id, distance) pair ∈ hmap
7 PQueue[i].push(distance, id)
8 return PQueue

OnlinePhaseReFar (q , k , P, |P |, forwLabels, LabelsToMany, PQueue)

1 results = empty vector(id, distance)
2 hmap = empty HashMap(id, distance)
3 OneToMany(q, forwLabels[q], LabelsToMany, hmap)
4 for i = 0 to |P |
5 if hmap[id] ≤ PQueue[id][k].distance
6 results.pushBack(id, hmap[id])
7 return results

Considering the offline phase, after building the labels-to-many data struc-
ture, we need to perform a total of |P | one-to-many queries (one from each
target), using a hash map (denoted hmap in the pseudocode) for temporar-
ily storing the results of each individual query. Then, by using a |P |-sized
vector of bounded max-priority queues of size k, we store the k-largest short-
est path (distance, id) combinations per target. Note, that it is necessary to
perform each individual one-to-many query to first calculate correct shortest-
path distances from each target before keeping the k-largest shortest path
(distance, id) combinations per target. In the online phase, we use again the
labels-to-many data structure (see Column 2 of Table 4) and we perform an
one-to-many query from the query vertex q and similarly store the correspond-
ing results on a hash map. Then we loop at this hash map and we store the
(id, distance) pair combinations where the calculated distance is greater or
equal to the k-farthest neighbor of target id (see Line 5).

Theorem 2 The proposed ReFar algorithm for RkFN queries is correct.

Proof The forward labels of each target and the labels-to-many suffice to cal-
culate correct shortest-path distances from each target to all other target ver-
tices, as shown by [18]. Then we can calculate the Reverse k-Farthest Neighbors
of each target by keeping the k-largest of those (distance, id) combinations.

18 Alexandros Efentakis et al.

Table 9: The farres table used in COLD for RkFN queries, the example graph
G, k = 1 and P = {4, 10, 12}

obj dists objs
4 {4} {12}
10 {5} {12}
12 {5} {10}

Thus, the offline phase of ReFar is correct. Then, during the online phase by
using the forward labels of the query vertex and the labels-to-many we can
calculate correct shortest-path distances from the query vertex to each target.
Keeping those (id, distance) combinations with distances ≥ the distance of the
k-Farthest neighbor of target with ID = id gives us the Reverse k-Farthest
Neighbors of query vertex q. Thus, the online phase of ReFar is also correct.

For our specific graph G, P = {4, 10, 12} and k = 1, ReFar ’s offline phase
correctly outputs that RFN(4) = (12, 4), RFN(10) = (12, 5) and RFN(12) =
(10, 5). Similarly to how COLD handles RkNN queries and the corresponding
knnres DB table used there, COLD stores the RkFN results in a farres DB
table that has the format (obj, dists, objs,) where obj is the primary key and
objs and dists are arrays (both ordered by distance) (see Table 9). Therefore
the RkFN of target p is the objs[k] within distance dists[k] of the respective
row for p. Again, we build a farres DB table for a max value of kmax that
may service RkFN queries for varying values of k. The corresponding SQL
query for the online phase of ReFar and our COLD framework is shown in
Code 8. There we see that even for the Reverse k-Farthest Neighbors queries,
the corresponding SQL code is very simple within our COLD framework.

Code 8: RkFN query for COLD

1 SELECT id2 ,

2 mindist

3 FROM

4 (SELECT UNNEST(ids) AS id2 ,

5 MIN(n1.distance+n2.distance) AS mindist

6 FROM

7 (SELECT id,

8 UNNEST(hubs) AS hub ,

9 UNNEST(distances) AS distance

10 FROM forwcold

11 WHERE id=q) n1,

12 objcold n2

13 WHERE n1.hub=n2.hub

14 GROUP BY id2

15 ORDER BY MIN(n1.distance+n2.distance)) s2a ,

16 (SELECT id,

17 distances[k] AS distfar

18 FROM farres) s2b

19 WHERE id2=id

20 AND s2a.mindist >= distfar

21 ORDER BY mindist , id2;

Hub Labels on the database for large-scale graphs with the COLD framework 19

On an additional note, all DB tables in COLD, use only standard B-tree
primary key indexes, without any modifications. To satisfy this strict require-
ment, we effectively compressed the index sizes by grouping rows per vertex
(forcold table) or target (knnres, farres tables), or by hub and distance for
knncold, objcold and rknncold. Likewise, although we used PostgreSQL spe-
cific SQL extensions for expanding the stored arrays, latest versions of other
databases (e.g., Oracle) support similar array data-types. Hence, it would be
quite easy to port COLD to other database vendors as well.

This section detailed the COLD framework in terms of design and im-
plementation. COLD can answer multiple distance queries (vertex-to-vertex,
kNN, RkNN RkFN, top-k range and one-to-many) based on data stored in
an off-the-shelf relational database. We also presented the actual queries used
and the way the necessary data structures are stored within the database, so
that our results are easily reproducible. Although we focused on query effi-
ciency, it is important to note that once we create the forcold table, all the
adjoining DB tables within COLD may also be created using SQL commands
(resulting queries were omitted for clarity). This fact also shows that COLD
is truly a pure-SQL framework for servicing multiple exact distance queries
on large-scale graphs. We also provided the necessary theoretical details as
to why the COLD framework will outperform existing solutions. This will be
further quantified in the following section.

4 Experimental Evaluation

To assess the performance of COLD on various large-scale graphs, we con-
ducted experiments on a workstation with a 4-core Intel i7-4771 processor
clocked at 3.5GHz and 32Gb of RAM, running Ubuntu 14.04. We compare
our COLD framework with a custom implementation of HLDB in PostgreSQL
and with Neo4j, a well-known, popular graph database.

We use the same network graphs as our previous works of [26,23] that
are taken from the Stanford Large Network Dataset Collection [35] and the
10th Dimacs Implementation Challenge website [9]. All graphs are undirected,
unweighted and connected. We used collaboration graphs (DBLP, Citeseer1,
Citeseer2) [30], social networks (Facebook [40], Slashdot1 and Slashdot2 [36]),
networks with ground-truth communities (Amazon, Youtube) [49], web graphs
(Notre Dame) [8] and location-based social networks (Gowalla) [13]. The graphs’
average degree is between 3 and 37 and the PLL algorithm creates 26− 4, 457
labels per vertex, requiring 0.03 − 5, 946s for the hub labels’ construction
(see Table 10). To approximate each graph’s diameter we also used the largest
distance encountered in the corresponding hub labels that provides a lower
bound on the suggested diameter.

COLD and HLDB were implemented in PostgeSQL 9.3.6, 64bit with rea-
sonable settings (8192Mb shared buffers, 64Mb temp buffers). We also used
Neo4j Server v2.1.5. The Neo4j queries were formulated using Cypher, Neo4j’s
declarative query language and we report query times as they were returned by

20 Alexandros Efentakis et al.

Table 10: Networks graphs statistics

PLL
Avg Preproc.

Graph |V| |E| degree |HL| / |V| Time (s) Diameter
Facebook 4,039 88,234 22 26 0.03 5
NotreDame 325,729 1,090,108 3 55 6 27
Gowalla 196,591 950,327 5 100 13 10
Youtube 1,134,890 2,987,624 3 167 123 14
Slashdot 77,360 469,180 6 204 11 7
Slashdot2 82,168 504,230 6 216 13 8
Citeseer 268,495 1,156,647 4 408 110 28
Amazon 334,863 925,872 3 689 230 39
DBLP 540,486 15,245,729 28 3,628 5,720 14
Citeseer2 434,102 16,036,720 37 4,457 5,946 25

the server. Although Cypher may theoretically facilitate one-to-many queries
(besides vertex-to-vertex), testing Neo4j with our datasets and the same num-
ber of target vertices we tested COLD with, resulted in a “java.lang.Stack
OverflowError”. Providing the server with additional resources2 had no pos-
itive effect and thus there are no results for one-to-many queries and Neo4j.

We conducted experiments belonging to the following query types: (i) vertex-
to-vertex, (ii) k-Nearest Neighbors (kNN), (iii) Reverse k-Nearest Neighbors
(RkNN) and (iv) one-to-many. In comparison to our original work of [23] this
section also presents detailed results about the additional top-k range and re-
verse k-farthest queries, presented in the newly introduced Sections 4.1.4, 4.1.6,
4.2.4 and 4.2.6. For each experiment, we used 1,000 random start vertices,
reporting the average running time. Before each experiment, we restart the
PostgreSQL and Neo4j servers for clearing their internal cache and we also
clear the operating system’s cache for accurate benchmarking. All charts are
plotted in logarithmic scale.

4.1 Performance on HDD

In our first round of experiments, we ran experiments on an HDD, specifically
a SATA3 Seagate Barracuda ST3000DM001 7200rpm with 64Mb cache.

4.1.1 Vertex-to-vertex queries

Figure 4(a) shows results for vertex-to-vertex (v2v) queries for COLD, HLDB
and Neo4j. Results show that COLD is consistently 2 - 20.7× faster than
HLDB, with this difference amplified for the Citeseer1, Amazon and Youtube
datasets (16.8, 19.1 and 20.7 respectively). Moreover, COLD is also 9 - 143×
(for the Gowalla dataset) faster than Neo4j, which exhibits stable performance

2 http://neo4j.com/developer/guide-performance-tuning/

Hub Labels on the database for large-scale graphs with the COLD framework 21

(a) Vertex-to-vertex query times (b) Memory size’s difference between COLD
and HLDB

Fig. 4: Vertex-to-vertex queries for COLD, HLDB and Neo4j on the HDD

1 2 4 8 16
0.5

1

2

4

8

16

32

k

S
p

ee
d

u
p

Amazon
Citeseer
Citeseer2
DBLP
Facebook
Gowalla
Notredame
Slashdot1
Slashdot2
Youtube

(a) kNN Speedup of COLD vs HLDB for
D = 0.01 and varying values of k

0.001 0.0050.01 0.05 0.1
0.5

1

2

4

8

16

32

D

S
p

e
e

d
u

p

Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot1

Slashdot2

Youtube

(b) Speedup of COLD vs HLDB for k = 4
and varying values of D

Fig. 5: kNN Experiments for COLD and HLDB on the HDD

for all datasets, but is slower from both COLD and HLDB. For all datasets,
COLD requires less than 9ms for answering vertex-to-vertex queries.

Figure 4(b) shows the difference in memory size for the DB tables for-
cold (COLD) and forward (HLDB) and their respective primary-key (PK)
indexes. Results show that the size of the PK index in COLD is 3, 600 -
4, 444× smaller than for HLDB (for DBLP and Citeseer2 respectively). As
expected, the difference in index sizes is almost identical to the |HL|/|V | ra-
tio, since forcold table has |V | rows and forward has |HL| rows. Likewise, the
corresponding tables are 131 - 188× smaller for COLD. Thus, the techniques
used for compressing the forward labels in COLD clearly achieve a consider-
able reduction in memory size, rendering our proposed framework suitable for
real-world scenarios on large-scale graphs.

22 Alexandros Efentakis et al.

(a) One-to-Many experiments for COLD
varying values of D

(b) COLD One-to-Many HDD vs SSD

Fig. 6: One-to-many experiments for COLD on the HDD

4.1.2 k-Nearest Neighbor (kNN) queries

Figure 5(a) shows the speedup of COLD compared to HLDB in the case of
k-Nearest Neighbor queries for D = 0.01 and k = {1, 2, 4, 8, 16}. As described
in Section 3.1.3, we have created two DB tables for each framework (COLD,
HLDB), one for kmax = 4 and one for kmax = 16. Then the DB table
for kmax = 4 is used for answering kNN queries for k = 1, k = 2 and k = 4
and the kNN table for kmax = 16 is used for answering kNN queries for k = 8
and k = 16. Results show that for k = 1, COLD is 5 - 19× faster for the five
largest datasets (Amazon, Citeseer, Citeseer2, DBLP. Youtube) and although
this speedup degrades for larger values of k, COLD remains consistently 2 -
10× faster even for k = 16. For the smallest datasets, performance between
COLD and HLDB is quite similar, with COLD performing better on Face-
book and Gowalla, while HLDB performs only marginally better for Slash-
dot1, Slashdot2 and Notredame. In all cases, COLD answers kNN queries for
all datasets in less than 26ms even for k = 16.

In our second set of kNN experiments, we assess the performance of COLD
and HLDB for varying values of D. For each value for D, we have build separate
versions of knntab (HLDB) and knncold (COLD) DB tables for D · |V | objects
selected at random from each dataset and kmax = 4. Figure 5(b) shows results
for k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Again, for the five largest
datasets COLD is consistently 3.4 - 23.4× faster than HLDB, whereas even
for the smaller datasets, COLD is consistently 8.6 - 11.5× faster than HLDB
for the largest value of D (for D = 0.1). Moreover, COLD may answer kNN
queries for k = 4 on all datasets and all values of D in less than 14ms.

4.1.3 One-to-Many queries

COLD is the only SQL framework that supports one-to-many queries. Fig-
ure 6(a) presents the corresponding results for varying values of D (D =
{0.001, 0.005, 0.01, 0.05, 0.1}). COLD answers such queries in less than a sec-
ond for all datasets and values of D, except the Citeseer2 and DBLP datasets

Hub Labels on the database for large-scale graphs with the COLD framework 23

(a) Top-k Range experiments for k = 4, sec-
ond tertile and varying values of D

(b) Top-k Range experiments for D = 0.01,
second tertile and varying values of k

(c) Top-k Range experiments for D = 0.01,
k = 4 and varying ranges

Fig. 7: Top-k Range experiments for COLD on the HDD

(those with the highest |HL|/|V | ratio) that require 5601ms and 4170ms re-
spectively, for D = 0.1. For such high values of D, the one-to-many query
reaches the complexity of an one-to-all query and as expected, it cannot be
any faster on a secondary storage device. Note that even specialized graph
databases like Neo4j cannot support this type of queries for more than a 1,000
target objects, whereas COLD answers one-to-many queries to 110,000 target
objects in the Youtube dataset in 401ms with a simple SQL query.

4.1.4 Top-k Range queries

Again, COLD is the only SQL framework that supports top-k range queries.
Since we have approximated the diameter of tested graphs (see Column 7 or
Table 10) we have split the graph distances in 3 equal tertiles, hence creating 3
same-sized ranges per graph. The first range is [0, 1st tertile), the second range
is [1s tertile, 2nd tertile) and the third range is [2nd tertile, diameter + 1),
whereas 1st tertile = 1/3 graph diameter and 2nd tertile = 2/3 graph diameter.

Figure 7(a) presents the corresponding results for k = 4, the second ter-
tile and varying values of D (D = {0.001, 0.005, 0.01, 0.05, 0.1}). Although
larger values of D correspond to slower queries, COLD still answers top-k
range queries in less than 170ms for all datasets and values of D. Figure 7(b)
presents results for D = 0.01, the second tertile and varying values of k

24 Alexandros Efentakis et al.

(a) COLD RkNN query times for D = 0.01
and varying values of k

(b) COLD RkNN query times for k = 1 and
varying values of D

Fig. 8: RkNN Experiments on the HDD for COLD

(k = {1, 2, 4, 8, 16}). Again, larger values of k translate to slower queries but
COLD can still answer top-k range queries in less than 60ms for all datasets
and values of k (except Citeseer2 and k=16 that requires 120ms). Finally, Fig-
ure 7(c) presents results for D = 0.01, k = 4 and different ranges that corre-
spond to the aforementioned tertiles of possible graph distances. As expected,
moving to a larger tertile slows down queries but COLD can still answer top-k
range queries in less than 70ms for all datasets and tertiles. Regarding the
first tertile, top-k range queries may be answered in less than 39ms.

4.1.5 Reverse k-Nearest Neighbor (RkNN) queries

For Reverse k-Nearest Neighbor experiments, we only report COLD’s perfor-
mance, since there is no other SQL framework that supports this specific type
of queries. In out first experiment, we report the performance of COLD for
D = 0.01 and k = {1, 2, 4, 8, 16}. For all those queries we have built one ver-
sion of the knnres DB table for kmax = 16 (see Section 3.1.6) and 3 separate
revcold tables for kmax = {1, 4, 16}. As expected, for RkNN queries and k = 1
we use the revcold table built for kmax = 1, for k = 2, k = 4 we use the revcold
table built for kmax = 4 and for k = 8, k = 16 we use the revcold table built
for kmax = 16. Figure 8(a) presents the results. In all cases, COLD provides
excellent query times that are below 20ms for k = 1 in all datasets and never
exceed 82ms even for k = 16.

In our second set of Reverse k-Nearest Neighbor experiments, we assess
the performance of COLD for varying values of D. Figure 8(b) presents re-
sults for k = 1 (as this is the typical case for RkNN queries) and D =
{0.001, 0.005, 0.01, 0.05, 0.1}. Results show that although COLD’s performance
degrades for larger values of D, RkNN query times are below 49ms for all
datasets and values of D, with the exception of Youtube and D = 0.1 (109.3ms).
Thus, COLD offers excellent and stable performance regarding RkNN queries
for all datasets and tested values of k and D.

Hub Labels on the database for large-scale graphs with the COLD framework 25

(a) RkFN experiments for k = 1 and vary-
ing values of D

(b) RkFN experiments for D = 0.01 and
varying values of k

Fig. 9: Reverse k-Farthest Neighbors experiments for COLD on the HDD

4.1.6 Reverse k-Farthest Neighbor (RkFN) queries

Again, COLD is the only SQL framework that supports Reverse k-Farthest
Neighbor queries. Figure 9(a) presents the corresponding results for k = 4 and
varying values of D (D = {0.001, 0.005, 0.01, 0.05, 0.1}). As expected, the per-
formance of RkFN queries is quite similar to the performance of one-to-many
queries despite the additional JOIN operation with the farres DB table (see
Section 3.1.7) and thus the corresponding performance decreases with increas-
ing values of D. For all datasets and values of D, RkFN queries take less than
600ms, except the Citeseer2 and DBLP datasets and D ≥ 0.05. Figure 9(b)
presents results for D = 0.01 and varying values of k (k = {1, 2, 4, 8, 16}).
Results show that the value of k has minimal impact on query times, since
the main bottleneck of the Reverse k-Farthest Neighbor queries is performing
the initial one-to-many query before the JOIN operation. On all datasets and
values of k, COLD RkFN queries take less than 584ms.

4.2 Performance on SSD

Having established the performance characteristics of COLD in the HDD, in
our second round of experiments, we repeat the previous experiments, using
a SSD to measure the impact of the secondary-storage device type to results.
The SSD used is a SATA3 Crucial CT512MX100SSD1 MX100 512GB 2.5”.

4.2.1 Vertex-to-vertex queries

Although the usage of SSD favors HLDB more than COLD (see Figure 10),
COLD is consistently 1.6 - 3.2× faster than HLDB (except Facebook, the
smallest of datasets). The SSD has almost no impact on Neo4j and thus,
COLD is now 11-171× faster than Neo4j on all datasets. Note, than on the
SSD, COLD requires less than 0.9ms for all datasets and v2v queries, except

26 Alexandros Efentakis et al.

Fig. 10: Vertex-to-vertex queries for COLD, HLDB and Neo4j on the SSD

1 2 4 8 16
0.5

1

2

4

8

k

S
p

ee
d

u
p

Amazon
Citeseer
Citeseer2
DBLP
Facebook
Gowalla
Notredame
Slashdot1
Slashdot2
Youtube

(a) kNN Speedup of COLD vs
HLDB for D = 0.01 and varying
values of k

(b) COLD RkNN query times for D = 0.01
and varying values of k

Fig. 11: kNN and RkNN query performance on the SSD

the Citeseer2 and DBLP datasets (those with the highest |HL|/|V | ratio). But
even then, vertex-to-vertex queries still require less than 2.6ms for COLD.

4.2.2 k-Nearest Neighbor (kNN) queries

Figure 11(a) shows the performance speedup of COLD compared to HLDB in
the case of kNN queries running on the SSD, for D = 0.01 and varying value
of k. Again, although the SSD lowers the performance gap between COLD
and HLDB, COLD is still faster on all datasets (except Facebook). In fact,
COLD is 2.6 - 6.75× faster than HLDB for the high |HL|/|V | ratio datasets
(Citeseer2, HLDB) requiring less than 24.6ms even for k = 16.

4.2.3 One-to-Many queries

Figure 6(b) compares one-to-many queries on HDD and SSD for COLD.
Again, the SSD usage accelerates COLD by only 2- 30%, which further con-
firms the optimal secondary storage utilization of COLD.

Hub Labels on the database for large-scale graphs with the COLD framework 27

(a) Top-k Range experiments for k = 4, sec-
ond tertile and varying values of D

(b) Top-k Range experiments for D = 0.01,
second tertile and varying values of k

(c) Top-k Range experiments for D = 0.01,
k = 4 and varying ranges

Fig. 12: Top-k Range experiments for COLD on the SSD

4.2.4 Top-k Range queries

Figure 12(a) presents the corresponding results for top-k range queries on
the SSD for k = 4, the second tertile and varying values of D. The usage of
SSD accelerates top-k range queries by 45 - 56% and thus, COLD answers
such queries in less than 121ms for all datasets and values of D on the SSD.
Figure 12(b) presents results for the SSD and D = 0.01, the second tertile and
varying values of k (k = {1, 2, 4, 8, 16}). Likewise, the usage of SSD accelerates
top-k range queries by 37 - 52% and hence, COLD can answer those queries on
the SSD in less than 106ms for all datasets. Finally, Figure 7(c) presents results
on the SSD, for D = 0.01, k = 4 and different ranges that correspond to the
three tertiles of possible graph distances. Here, the usage of SSD accelerates
top-k range queries by 43 - 61% and hence, this specific type of queries takes
less than 56ms for all datasets and ranges.

4.2.5 Reverse k-Nearest Neighbor (RkNN) queries

Figure 11(b) presents the results of the RkNN query time performance on
COLD for D = 0.01 and varying value of k. Results show that SSD usage ac-
celerates COLD by only 20% at most, which clearly demonstrates that COLD

28 Alexandros Efentakis et al.

(a) RkFN experiments for k = 1 and vary-
ing values of D

(b) RkFN experiments for D = 0.01 and
varying values of k

Fig. 13: Reverse k-Farthest Neighbors experiments for COLD on the SSD

effectively minimized secondary storage utilization and thus adding a better
secondary-storage medium provides only moderate benefits for RkNN queries.

4.2.6 Reverse k-Farthest Neighbor (RkFN) queries

We repeat the previous Reverse k-Farthest Neighbor experiments on the SSD.
Figure 13(a) presents the corresponding results for k = 4 and varying values
of D on the SSD. Similar to one-to-many queries, the impact of SSD is not very
significant, since it only accelerates RkFN queries by 8 - 31%. Figure 13(b)
presents results for D = 0.01 and varying values of k (k = {1, 2, 4, 8, 16}).
Results show that again, the impact of SSD is not very significant, since it
only accelerates Reverse k-Farthest Neighbor queries by only 17 - 21%.

4.3 Summary

Our experimentation has shown that our proposed COLD framework outper-
forms previous state-of-the-art HLDB in all performance benchmarks, includ-
ing query performance, memory size and scalability. Using HDDs, COLD is
2 - 21× faster for vertex-to-vertex queries and 5 - 19× faster for kNN queries
and the largest datasets. Using SSDs, COLD is 1.6 - 3.2× faster than HLDB for
vertex-to-vertex and up to 6.75× faster for kNN queries. COLD also requires
up to 4, 444× less storage space (indexes) and up to 188× less storage space
(DB tables) used for storing forward labels. Even specialized graph databases
like Neo4j are outperformed by COLD, which is up to 143× faster. Most im-
portantly COLD may service additional (RkNN, one-to-many) queries, not
handled by any other previous secondary-storage solutions, while providing
excellent query times and optimal secondary-storage utilization even on stan-
dard hard drives. Regarding the additional queries introduced in this paper in
comparison to our original work of [23], top-k range queries may be answered
in 170ms for all tested values of D, k and ranges. The usage of SSD fur-
ther drops down this time to 121ms. In the case of reverse k-farthest queries,

Hub Labels on the database for large-scale graphs with the COLD framework 29

COLD may answer RkFN queries for all tested datasets and values of D and k
in less than 600ms on the HDD (except the Citeseer2 and DBLP datasets and
D ≥ 0.05), whereas the usage of SSD lowers this time to 563ms. Therefore,
COLD is the only framework that may simultaneously answer all those dif-
ferent variations of queries with a few lines of SQL code, while providing
performance which is fast enough for real-world applications.

5 Conclusions

This work presented COLD, a novel SQL framework for answering multi-
ple exact distance queries for large-scale graphs on a database. Our results
showed that COLD outperforms existing solutions (including specialized graph
databases) on all levels, including query performance, secondary storage uti-
lization and scalability. Moreover, COLD also answers Reverse k-Nearest Neigh-
bors, Reverse k-Farthest Neighbors, one-to-many and top-k range queries, not
handled by any other secondary storage solution. This establishes COLD as a
competitive database-driven framework for querying large-scale graphs.

This paper gives the complete design and implementation details of COLD
using a popular, open-source database system along with the actual SQL
queries used in our implementation. This should allow for a simple replication
of our results and encourage other researchers to expand the COLD framework
towards handling additional queries and use-cases.

Acknowledgements

This work was partially supported by the project “Research Programs for Ex-
cellence 2014-2016 / CitySense-ATHENA R.I.C.” and the EU/Greece funded
KRIPIS Action: MEDA Project. D. Pfoser’s work was partially supported by
the NGA NURI grant HM02101410004.

References

1. I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck. Hldb: Location-
based services in databases. In Proceedings of the 20th International Conference on
Advances in Geographic Information Systems, pages 339–348, 2012.

2. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. A hub-based labeling
algorithm for shortest paths in road networks. In Proc. 10th International Symposium
on Experimental Algorithms (SEA), pages 230–241. 2011.

3. I. Abraham, D. Delling, A. V. Goldberg, and R. F. Werneck. Hierarchical hub labelings
for shortest paths. In Proc. 20th Annual European Symposium on Algorithms (ESA),
pages 24–35. 2012.

4. P. Afshani, G. S. Brodal, and N. Zeh. Ordered and unordered top-k range reporting in
large data sets. In Proc. Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 390–400, 2011.

5. T. Akiba, Y. Iwata, K. Kawarabayashi, and Y. Kawata. Fast shortest-path distance
queries on road networks by pruned highway labeling. In Proc. 16th Workshop on
Algorithm Engineering and Experiments (ALENEX), pages 147–154, 2014.

30 Alexandros Efentakis et al.

6. T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 349–360, 2013.

7. T. Akiba, Y. Iwata, and Y. Yoshida. Pruned landmark labeling [online]. https://

github.com/iwiwi/pruned-landmark-labeling, 2015.
8. R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the world wide web. CoRR,

cond-mat/9907038, 1999.
9. D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Proc. 10th DIMACS

Implementation Challenge Workshop Graph Partitioning and Graph Clustering, 2013.
10. H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders,

D. Wagner, and R. F. Werneck. Route planning in transportation networks. CoRR,
abs/1504.05140, 2015.

11. F. Borutta, M. A. Nascimento, J. Niedermayer, and P. Kröger. Monochromatic rknn
queries in time-dependent road networks. In Proc. Third ACM SIGSPATIAL Interna-
tional Workshop on Mobile Geographic Information Systems, pages 26–33, 2014.

12. M. A. Cheema, Z. Shen, X. Lin, and W. Zhang. A unified framework for efficiently
processing ranking related queries. In Proc. 17th International Conference on Extending
Database Technology (EDBT), pages 427–438, 2014.

13. E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in
location-based social networks. In Proc. of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pages 1082–1090, 2011.

14. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries
via 2-hop labels. In Proc. Thirteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 937–946, 2002.

15. D. Delling, J. Dibbelt, T. Pajor, and R. Werneck. Public transit labeling. In Proc. 14th
International Symposium on Experimental Algorithms(SEA), pages 273–285. 2015.

16. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route planning.
In Proc. 10th International Conference on Experimental Algorithms (SEA), pages 376–
387, 2011.

17. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Robust distance queries on
massive networks. In Proc. 22th Annual European Symposium on Algorithms (ESA),
pages 321–333, 2014.

18. D. Delling, A. V. Goldberg, and R. F. Werneck. Faster batched shortest paths in
road networks. In Proc. 11th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS), 2011.

19. D. Delling, A. V. Goldberg, and R. F. Werneck. Hub label compression. In Proc. 12th
International Symposium on Experimental Algorithms (SEA), pages 18–29, 2013.

20. D. Delling and R. F. Werneck. Customizable point-of-interest queries in road networks.
IEEE Trans. Knowl. Data Eng., 27(3):686–698, 2015.

21. D. Delling and R. F. F. Werneck. Better bounds for graph bisection. In Proc. 20th
Annual European Symposium on Algorithms (ESA), pages 407–418, 2012.

22. A. Efentakis. Scalable public transportation queries on the database. In Proc. 19th
International Conference on Extending Database Technology (EDBT), pages 527–538,
2016.

23. A. Efentakis, C. Efstathiades, and D. Pfoser. COLD. revisiting hub labels on the da-
tabase for large-scale graphs. In Proc. 14th International Symposium on Advances in
Spatial and Temporal Databases (SSTD), pages 22–39. 2015.

24. A. Efentakis and D. Pfoser. Optimizing landmark-based routing and preprocessing. In
Proc. 6th ACM SIGSPATIAL International Workshop on Computational Transporta-
tion Science (CTS), 2013.

25. A. Efentakis and D. Pfoser. GRASP. extending graph separators for the single-source
shortest-path problem. In Proc. 22th Annual European Symposium on Algorithms
(ESA), pages 358–370. 2014.

26. A. Efentakis and D. Pfoser. Rehub: Extending hub labels for reverse k-nearest neighbor
queries on large-scale networks. J. Exp. Algorithmics, 21:1.13:1–1.13:35, 2016.

27. A. Efentakis, D. Pfoser, and Y. Vassiliou. Salt. a unified framework for all shortest-
path query variants on road networks. In Proc. 14th International Symposium on
Experimental Algorithms (SEA)), pages 298–311. 2015.

Hub Labels on the database for large-scale graphs with the COLD framework 31

28. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. In Proc.
Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), SODA ’01,
pages 210–219, 2001.

29. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. J. Algo-
rithms, 53(1):85–112, 2004.

30. R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness
centrality. In Proc. 10th Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 90–100, 2008.

31. R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies: Faster
and simpler hierarchical routing in road networks. In Proc. 7th International Workshop
on Experimental Algorithms (WEA), pages 319–333, 2008.

32. H.-P. Hung, K.-T. Chuang, and M.-S. Chen. Efficient process of top-k range-sum queries
over multiple streams with minimized global error. IEEE Transactions on Knowledge
& Data Engineering, (10):1404–1419, 2007.

33. M. Jiang, A. W. Fu, R. C. Wong, and Y. Xu. Hop doubling label indexing for point-
to-point distance querying on scale-free networks. PVLDB, 7(12):1203–1214, 2014.

34. Y. Kumar, R. Janardan, and P. Gupta. Efficient algorithms for reverse proximity query
problems. In Proc. 16th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, pages 39:1–39:10, 2008.

35. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

36. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure
in large networks: Natural cluster sizes and the absence of large well-defined clusters.
Internet Mathematics, 6(1):29–123, 2009.

37. B. Liao, L. H. U, M. L. Yiu, and Z. Gong. Beyond millisecond latency knn search on
commodity machine. IEEE Trans. Knowl. Data Eng., 27(10):2618–2631, 2015.

38. J. Liu, H. Chen, K. Furuse, and H. Kitagawa. An efficient algorithm for reverse furthest
neighbors query with metric index. In Proc. 21st International Conference on Database
and Expert Systems Applications (DEXA): Part II, pages 437–451, 2010.

39. Z. Luo, T. W. Ling, C.-H. Ang, S. Y. Lee, and B. Cui. Range top/bottom k queries in
olap sparse data cubes. In Proc. 12th International Conference on Database and Expert
Systems Applications (DEXA), pages 678–687, 2001.

40. J. J. McAuley and J. Leskovec. Learning to discover social circles in ego networks.
In Proc. 26th Annual Conference on Neural Information Processing Systems, pages
548–556, 2012.

41. PostgreSQL. The world’s most advanced open source database. http://www.

postgresql.org/, 2016.
42. M. Safar, D. Ibrahimi, and D. Taniar. Voronoi-based reverse nearest neighbor query

processing on spatial networks. Multimedia Systems, 15(5):295–308, 2009.
43. J. Sankaranarayanan and H. Samet. Query processing using distance oracles for spatial

networks. IEEE Trans. on Knowl. and Data Eng., 22(8):1158–1175, 2010.
44. C. Sheng and Y. Tao. Dynamic top-k range reporting in external memory. In Proc.

31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
(PODS), pages 121–130, 2012.

45. Y. Tao. A dynamic i/o-efficient structure for one-dimensional top-k range reporting. In
Proc. 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS), pages 256–265, 2014.

46. Q. T. Tran, D. Taniar, and M. Safar. Transactions on large-scale data- and knowledge-
centered systems i. chapter Reverse K Nearest Neighbor and Reverse Farthest Neighbor
Search on Spatial Networks, pages 353–372. Springer-Verlag, 2009.

47. S. Wang, M. A. Cheema, X. Lin, Y. Zhang, and D. Liu. Efficiently computing reverse k
furthest neighbors. In Proc. 32nd IEEE International Conference on Data Engineering
(ICDE), pages 1110–1121, 2016.

48. S. Wang, W. Lin, Y. Yang, X. Xiao, and S. Zhou. Efficient route planning on public
transportation networks: A labelling approach. In Proc. 2015 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 967–982, 2015.

49. J. Yang and J. Leskovec. Defining and evaluating network communities based on ground-
truth. In Proc. 12th IEEE International Conference on Data Mining (ICDM), pages
745–754, 2012.

32 Alexandros Efentakis et al.

50. M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse nearest neighbors in large
graphs. IEEE Transactions on Knowledge and Data Engineering, 18(4):540–553, 2006.

51. R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient index for knn search
on road networks. In Proc. 22nd ACM International Conference on Conference on
Information Knowledge Management (CIKM), pages 39–48. ACM, 2013.

