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Abstract

The availability of GPS-enabled devices has generated massive amounts of GPS track-
ing data produced by vehicles traversing the road-network. While initially used for
improving traffic estimation and routing, only recently has this data been used for
map-construction efforts. This work focuses on the specific aspect of identifying turn-
ing restrictions in the underlying road-network graph. We propose a novel, efficient
and straightforward method to deduce turning restrictions for OpenStreetMap data, by
mining historic map-matched trajectories from an existing fleet-management service.
Our extensive experimental evaluation and verification process utilizing online map-
services, satellite imagery, street view and public map-data APIs proves the efficiency
and reliability of the proposed method.

Keywords: Crowdsourcing, Turning Restrictions, Map-matching, OpenStreetMaps

1. Introduction

Street maps and transportation networks are of fundamental importance in a wealth
of applications. In recent years, Volunteered Geographic Information (VGI) [11] efforts
such as OpenStreetMap (OSM) [19] have complemented commercial map datasets and
provided map coverage for areas of limited commercial interest. On the other hand, the5

commoditization of GPS technology and integration in mobile phones, coupled with
the advent of low-cost fleet management and positioning software has triggered the
generation of vast amounts of tracking data. As a size indicator, one may consider the
contribution of tracking data in OpenStreetMap, which is steadily increasing in size and
currently amounts to 2.6 trillion points [31]. Besides the use of such data in traffic as-10

sessment and forecasting [7], i.e., map-matching vehicle trajectories to road networks
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to obtain travel times [4], there has also been a recent surge of actual map-construction
algorithms that derive not only travel time attributes but actual road-network geome-
tries from tracking data (see [1] for an overview and comparative study).

The present effort tackles a problem situated between map-matching and map-15

construction, since it focuses on improving existing map datasets by crowdsourcing
turning restrictions. To this end, we use the map-matched trajectories produced by the
SimpleFleet system of [7], which proposed an optimal workflow for combining state-
of-the-art research about road networks, Floating Car Data (FCD) and map-matching
algorithms in the context of low-cost fleet management solutions. The specific ser-20

vice was implemented for three European cities, namely Athens (Greece), Berlin (Ger-
many) and Vienna (Austria) and during its implementation, we created road-network
graphs from OpenStreetMaps data, collected huge amounts of Floating Car Data from
fleet vehicles, applied state-of-the-art map-matching algorithms to align the observed
GPS traces to the road-network graph and consequently produced high-quality historic25

speed profiles along with frequently updated live-traffic information. This combina-
tion of live-traffic information and speed profiles was then used to provide up-to-date,
live-traffic, shortest-path and isochrone computation (refreshed every 5 minutes), using
the shortest-path implementation of [10]. Moreover, the follow-up work of [9] clearly
showcased the impact of traffic fluctuations in a geomarketing context, by combining30

the live-traffic isochrone functionality of this system with demographic data.
SimpleFleet used OpenStreetMap (OSM) data for constructing the road-network

graphs. However, operating this service for more than a year and for the three urban re-
gions has revealed an inherent limitation of the OSM dataset. It contains limited infor-
mation for turning restrictions, i.e., a transition from one network edge to another (via35

an intersection vertex) that is prohibited due to local traffic rules. Although OSM sup-
ports turning restrictions by using an additional relation tag (Relation:restriction [30]),
only a small number of users contribute to this information. This is particularly evident,
considering that OSM includes more than 2.1 billion Nodes, Ways and Relations [29]
and less than 230,000 relations actually represent turning restrictions [30]. Our indi-40

vidual test cases confirm this observation. For the Athens area and its 277K vertices
road network, only 214 turning restrictions have been recorded by OSM users. This
observed lack of data is mainly attributed to the fact that there are no public datasets
for traffic signs easily found (if any), satellite imagery cannot testify to the existence
of such restrictions and contributing turning restrictions even for a single road to the45

OSM dataset may be extremely time-consuming.
Despite the fact that turning restrictions are especially important for any public

mapping service, there is only a limited number of scientific literature addressing them,
since “no publicly-available realistic turn data exist” [6]. Turning restrictions severely
impact the quality of computed shortest-paths provided by routing engines consider-50

ably more than traffic: While ignoring traffic returns a suboptimal, yet valid route to
the user, ignoring turning restrictions provides erroneous paths that may lead to acci-
dents. Thus, providing a semi-automatic method for identifying turning restrictions is
extremely important for any public mapping service.

During our research on related work, we found a significant body of work focus-55

ing on Floating Car Data (FCD) (see [44, 43] for a partial overview on GPS related
research). The only previous works relevant to solving (or even acknowledging) our
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actual problem also use FCD for calculating turn delays [3, 24, 37, 41, 42]. How-
ever, no scientific literature exists that utilizes map-matched (MM) trajectories to de-
rive turning restrictions. As such, this work presents and significantly extends our60

previous results [8] by employing a more rigorous and systematic verification process.
Consequently, it is the first approach that automatically identifies and infers turning
restrictions based on historic map-matched trajectory datasets. This approach has sev-
eral benefits in that map-matched trajectories are (i) more condensed, i.e., instead of
random locations in the plane we use edge sequences in the road-network graph and65

(ii) less ambiguous and susceptible to errors, i.e., movement is interpolated using the
actual road-network. Although this work focuses on OpenStreetMaps, it may also be
used for any road network dataset, i.e., for cases in which the road network evolves
faster than commercial map updates. As recent examples such as the Apple Maps in-
cident 1 have shown, even commercial datasets from technology giants are prone to70

failure. Hence, providing a method that improves existing map-datasets by using the
map-matched trajectories created by vehicle drivers traversing the road network may
be extremely useful, even for commercial road-network vendors and providers.

The outline of this work is as follows. Section 2 describes previous research in
relation to our work. Section 3 describes our scientific contribution towards identifying75

turning restrictions in the OSM dataset by utilizing historic map-matched trajectories.
Section 4 summarizes the results of our approach. Finally, Section 5 gives conclusions
and directions for future work.

2. Related work

Recently, real-time Floating Car Data (FCD) collected by GPS-enabled vehicles80

has become the mainstream in traffic study because of its cost-effectiveness, flexibility
and being the “the only significant traffic data source with the prospect of global cov-
erage in the future” [21]. Typically a GPS trajectory describing a vehicle movement
consists of a sequence of measurements with latitude, longitude and timestamp infor-
mation. However, this data is inherently imprecise “due to measurement errors caused85

by the limited GPS accuracy and the sampling error caused by the sampling rate” [32].
Therefore the observed GPS traces need to be aligned with the road-network graph
through a process commonly referred to, as map-matching. Map-matching algorithms
accept as input a vehicle trajectory and output the path (i.e., an ordered sequence of
road-network graph edges) that this vehicle has potentially traversed (according to its90

movement pattern), along with travel time information, i.e., how long did it take for
the specific vehicle to traverse the calculated path. For the remainder of this work, the
term map-matched trajectory refers only to the calculated vehicle’s path and not to the
associated travel time information. In the SimpleFleet service of [7] we employed the
Fréchet-based curve-matching algorithm of [4, 39] and an implementation [22] of the95

ST-matching algorithm of [25]. Both implementations were adapted to handle incom-
ing FCD in a streaming fashion.

1http://techcrunch.com/2012/09/28/tim-cook-apologizes-for-apple-maps-points-to-competitive-alternatives/
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Despite their inherent imprecision and the usually low sampling-rates of most avail-
able public datasets, there was an explosion of research focusing on GPS trajectories
in recent years (cf. [44, 43]). Unfortunately, so far, only limited effort focused on road-100

network construction and map-updates, such as in this case turning restrictions and road
intersections. This comes as a surprise, since intersections are important components
of urban road-networks and contribute significantly to the total travel time cost [28, 38].
Previous works [28] conclude that intersection delays, i.e., “the turn cost associated
with the continuation of travel between edges via an intersection node” are responsible105

for as much as the 17− 35% of the total travel time according to a conducted survey in
the Copenhagen urban area [40] .

Existing work mostly focuses on estimating intersection delays based on the avail-
able Floating Car Data. To calculate intersection delays, researchers have utilized the
historical mean method [37, 42], piecewise linear interpolation [3, 41] and the princi-110

pal curves method [20] to overcome data sparseness of Floating Car Data and calculate
turn-delay tables for the Beijing urban region [24].

Although turn-costs and intersection delays are a generalization of turning restric-
tions, i.e., a turning restriction is a turn with delay set to ∞, previous works are funda-
mentally different from our approach at several levels. First, for previous approaches to115

calculate turn-cost for a particular turn, many vehicles need to actually traverse it. Con-
trarily, we identify turning restrictions by focusing on turns with no available tracking
data. Second, typically GPS trajectories are used. We use map-matched trajectories.
Third, most publicly available GPS datasets are either simulated [23], focus on a spe-
cific city [5, 27] or cover only limited time periods (a day, week or month for [23, 27, 5]120

respectively). In the present work, we use real traffic data from three different Euro-
pean cities and fleets of 2, 000 − 5, 000 vehicles per city, covering a full 12-month
period. Since we get almost identical results for all cities (see Section 4), our method
was showed to be both realistic and robust. Lastly, since previous methods are based
on data-mining techniques, they may only verify results by dividing the original GPS125

datasets into a training and a test set. Contrarily, we use a plethora of multiple alter-
native techniques and a rigorous validation method to verify our findings against the
actual ground-truth conditions of the tested road-networks. Such techniques include
(i) a visual inspection of our results with public mapping services, (ii) using satellite
imagery and street view of the particular areas for manual visual inspection, (iii) batch130

retrieving of street view images for human evaluation in public crowdsourced mar-
ketplace platforms and (iv) utilizing two separate public mapping APIs from different
vendors to verify our results. Using all those verification methods, we can ensure
our method’s robustness and obtain significant insights about its specific performance
characteristics, as well as its potential improvements. This work is mainly based on135

the [8] publication but it also introduces a significantly expanded verification process
and experimentation section.

3. Crowdsourcing Turning Restrictions

The core contribution of this work is to propose a solid and straightforward method-
ology for identifying turning restrictions for existing road-network datasets from his-140

toric map-matched trajectories. The main motivation for this effort is twofold. (i) First,

4



(a) Prohibited U-turn (b) Prohibited left turn (c) Prohibited right turn (d) No entry sign

Figure 1: Prohibitory traffic signs for turning restrictions

we want to improve the OpenStreetMaps (OSM) road-network dataset. Despite the
overall high quality of OSM, it has very limited information for turning restrictions,
which inhibits its use for mission-critical applications (ii) To propose a novel way of
taking advantage of available GPS tracking data to improve commercial road-network145

datasets with minimum effort. Although the use of online shortest-path APIs provided
by huge technology vendors is free for casual users and a limited number of queries,
for vehicle fleets with thousands of vehicles the free-usage limits of those APIs sim-
ply cannot suffice. For a typical vehicle fleet of 5,000 taxis (like the one monitored in
Berlin for our SimpleFleet service) the free usage limit of 2,500 requests of the Google150

directions API [15], cannot even service one shortest-path request per vehicle and day.
The maximum billing for such a large-fleet could be as high as 50, 000$ per day and
amounts to an average of 20 shortest-path computations per vehicle.

Another disadvantage of using those public shortest-path APIs is, that huge com-
panies do not want to share their itineraries (as revealed by the corresponding shortest-155

path requests) with their competitors, e.g., Amazon would not like to reveal the lo-
cations of its customer base to Google. Hence, most of those large companies have
to create their own in-house solutions buying the corresponding road-network datasets
from vendors like TomTom (which again is costly) or use OpenStreetMaps instead.
Since, those companies have a lot of tracking data available from their vehicle fleets,160

it makes sense to take advantage of their drivers’ local knowledge to identify restricted
or even “unattractive” turns by mining those tracking data. Again, the methodology
proposed in this work could be easily adapted to such a scenario for commercial road-
network datasets. In the following section we will show how to extract turning restric-
tions from historic map-matched trajectories and in the process, we will also describe165

the OpenStreetMaps road-network dataset and its properties.

3.1. Definitions and Preliminaries
In the discussion that follows, a road-network is represented as a directed weighted

graph G(V, E,w), where V is a finite set of vertices / nodes, E ⊆ VxV are the edges
of the graph and w is a positive weight function E → R+. Typically the weight w170

represents the travel time required to traverse the edge. In other cases, w may refer to
the length of the edge in meters (for travel distances metric).

The degree of a vertex u, denoted as deg(u), is the number of edges incident to the
vertex. Intersection vertices are the road-network vertices with vertex-degree larger
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Table 1: Turning restrictions added in OSM per year for the cities covered by our service
city 2009 2010 2011 2012 2013 Total

Athens - 11 1 75 127 214
Berlin 8 26 101 386 147 668
Vienna 33 36 99 307 324 799

Table 2: OSM road-networks of the three cities covered by our service
# intersection

# intersection vertices for
vertices roads ≤ 10

city # vertices # edges total % total %
Athens 277,719 329,444 100,422 26% 34,921 13%
Berlin 89,598 103,486 51,935 58% 21,119 24%
Vienna 100,579 112,478 44,874 45% 16,104 16%

than two, i.e., I = {vi∈ V, deg(vi)>2}. A turning restriction is an ordered sequence of175

two or more network edges connected via intersection vertices that is prohibited due
to local traffic rules. Drivers are alerted for existing turning restrictions through stan-
dardized traffic signs (see Fig. 1). In this paper, we only cover those edge sequences
that consist of a single ordered pair of two edges connected via a single intersection
vertex. This constellation represents the majority of turning restrictions in typical road-180

networks. Note that turning restrictions do not refer to one-way streets, because (i) even
a single edge may be marked as unidirectional and (ii) turning restrictions may refer
to roads that are bidirectional, but it is only their sequential traversal that is prohibited.
Moreover, unidirectional streets are easily modeled in every directed graph representa-
tion, whereas turning restrictions are a distinguishing characteristic of road-networks,185

which differentiates them from other types of networks.

3.2. OpenStreetMap and Turning Restrictions Coverage

OpenStreetMap (OSM) provides unlimited and free access to the entire map dataset
under an Open Database License 2. This massive amount of data may be downloaded in
full, but is also available through APIs and Web services. Users may participate in the190

OSM community by providing their local knowledge-based feedback and edit the map.
Although OSM contains a relation tag (Relation:restriction [30]) for describing turning
restrictions, only a small number of OSM users are aware of this property. This fact
was easily confirmed for the cases of three European cities (Athens, Berlin, Vienna)
covered by our service. The results for September 2013 presented in Table 1 show that195

the available data for turning restrictions is low when compared to road-network sizes
of Table 2. We obtained similar or worse results for other European cities, especially
for countries with less extensive coverage (e.g., Albania, Montenegro).

2http://opendatacommons.org/licenses/odbl/1.0/
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Using map-matched trajectories, our method for discovering turning restrictions
identifies turns that, although allowed in the original map dataset, are rarely executed200

by drivers. Exhibiting such an unusually low frequency, such turns have a very high
probability to be actually prohibited. Essentially, our approach is based on crowdsourc-
ing driver behavior as evidenced by their tracking data.

Figure 2: Methodology for identifying OSM turning restrictions by using historic map-matched trajectories

3.3. Methodology

Our basic methodology for inferring/identifying OSM turning restrictions can be205

described by the simplified diagram of Figure 2. The following sections will elaborate
on the independent stages of this process.

3.3.1. Input data (Map-matched trajectories)
In the SimpleFleet system of [7], GPS-traces of fleet vehicles for the three Eu-

ropean cities arrive in a streaming fashion. For each geographic area, we monitored210

2, 000−5, 000 vehicles producing a GPS position sample every 60−180s. GPS trajec-
tories for each vehicle are subsequently map-matched. The end-result of this process is
an ordered sequence of road edges that each vehicle has traversed. The traffic datastore
of the service, including the OSM road-network graphs, Floating Car Data and map-
matched trajectories, is implemented using a PostgreSQL/PostGIS database [34, 33]215

(one database instance per city).
As a vehicle traverses the road-network, it traverses roads of varying importance

(cf. Table 3 for the distribution of the OSM road-networks per their respective cate-
gory). Hence, the typical usage of each road is directly linked to its respective category.
To reduce the bulk of data stored in the corresponding datastores, a separate process220

eliminates map-matched edges that belong to edges of less important roads, i.e., those
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Table 3: Road categories for the OSM road-networks
CategoryID Road category Athens Berlin Vienna

1 motorway 4287 1420 2410
2 motorway link 3747 2012 4386
3 trunk 1343 111 171
4 trunk link 567 0 227
5 primary 16210 5203 8913
6 primary link 1257 347 422
7 secondary 42881 21250 12894
8 secondary link 0 45 0
9 tertiary 58722 9678 11576

10 tertiary link 0 6 0
11 unclassified 13484 2792 3060
12 road 395 28 0
13 residential 186459 58338 67482
14 living street 92 2256 937

Table 4: Typical size of compressed MM trajectory archives
Size Athens Berlin Vienna

per day 22.3 MB 224 MB 76.3 MB
per month 0.67 GB 6.74 GB 2.29 GB

that correspond to road-categories greater than 10 (OSM categories for unclassified,
road, residential and living street - see Table 3). Depending on the time-period and the
traffic patterns of each city, about 12−15% of the map-matched records are eliminated
using this “sanitation” process.225

Since map-matched records are mainly used to offer real-time traffic information,
older data is periodically removed from the respective PostgreSQL datastores (every
5 minutes) and archived into comma-delimited (csv) files for offline use. At the end
of each day, a batch process compresses the text files created during the day. The
compressed files are then sent to a backup server for permanent archiving. Table 4230

indicates the typical size of compressed archives produced per day and month for each
city.

After a whole year of data collection (Oct. 2012 - Sept. 2013), several GBs of com-
pressed historic map-matched trajectories are archived for each of the cities covered by
the service. The real challenge is how to utilize this significant wealth of data to infer235

turning restrictions for the respective OSM road-networks.

3.3.2. Parsing map-matched trajectories and optimizations
The scope of our work is to identify specific turns (i.e., ordered pairs of edges

connected via an intersection vertex) that, in an unusual way, are infrequently executed
by vehicles. This frequency will be determined by parsing the compressed archives of240

the historic map-matched trajectories produced for the three cities during the one-year
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Table 5: Total counted instances for all monitored turns between Oct 2012 and September 2013
# intersection # instances per
vertices for #examined # total inters. vertex

city roads ≤ 10 turns instances for roads ≤ 10
Athens 34,921 75,552 144,451,729 4,137
Berlin 22,119 44,636 2,054,969,090 97,304
Vienna 16,104 36,484 610,902,632 37,935

operational period of our service. Since, the respective OSM road-networks comprise
hundreds of thousands of vertices and edges (see Table 2), we need to somehow limit
the number of turns that need to be examined.

The first optimization is to identify those pairs of consecutive edges that connect245

at intersection vertices. There is no need to study vertices of degree 2 (with just one
incoming and one outgoing edge) or lower, since in those cases the driver has no choice
but to travel in one direction (no actual intersection). In this way, we can effectively
limit the number of candidate turns since the number of intersection vertices is much
smaller (less than 60% or even less) than the number of total vertices (see Table 2).250

The second optimization relates to the archived data. Since we only store map-
matched trajectories that include major roads, i.e., OSM categories ≤ 10, we are also
only interested in those intersection vertices connected to such roads. In making this
assumption, we might miss some intersection vertices (strictly connected to unimpor-
tant roads). However, turn restrictions on minor roads have not only little to no impact255

on the overall traffic, but are also not always clear to express and enforce. On the other
hand, intersections involving major roads are more likely to be used by vehicle drivers
and, thus, have an overall dominant impact on traffic. The process of minimizing the
number of turns we need to monitor is described in the pseudocode of Algorithm cal-
culateMonitoredTurns. Table 2 shows that major roads’ intersection vertices are less260

than 25% of total vertices of all cities covered by our service.

calculateMonitoredTurns(G(V, E,w))
1 monitoredTurns = {}

2 totalTurns(V) = calculateAllTurnsO f (G)
3 for each turn(v) ∈ totalTurns(V)
4 if v.degree > 2 & v.connectedToMa jorRoad == TRUE
5 monitoredTurns = monitoredTurns ∪ turn(v)
6 return monitoredTurns

These two optimizations considerably reduce the number of unique turns/pairs
of consecutive edges we need to monitor, which is a considerable improvement (see265

Columns 2,3 of Table 5). Since the OSM road-networks of each city are stored in
the respective PostgreSQL datastores, Algorithm calculateMonitoredTurns for de-
termining intersection vertices of interest and their corresponding turns may be easily
implemented using plain SQL commands.
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calculateMonitoredTurnsUsage(monitoredTurns,MmResults, examTimePeriod)270

1 for each monitoredTurn ∈ monitoredTurns
2 freqCounter[monitoredTurn] = 0
3 for each day ∈ examTimePeriod
4 for each vehicleId ∈ MMResults(day)
5 for each turn ∈ MMResults(day, vehicleId)
6 if turn ∈ monitoredTurns
7 freqCounter[turn] = freqCounter[turn] + 1
8 return freqCounter[monitoredTurns]

As a companion to the monitored-turns detection algorithm, we implemented a cus-
tom Java application that (i) parses the compressed archives of historic map-matched
trajectories (see Section 3.3.1), (ii) counts the instances encountered for each moni-
tored turn and (iii) stores the results in the respective PostgreSQL datastores. Algo-275

rithm calculateMonitoredTurnsUsage describes this process and the results, i.e., the
total counted instances for all monitored turns during our one-year testing period, are
given in Table 5. Results show that on average for every intersection vertex connected
to major roads (i.e., their respective road category ≤ 10), we have counted turn in-
stances, ranging from 4,137 (Athens) up to 97,304 (Berlin). These results represent a280

sufficiently large number of measurements per intersection vertex.

3.3.3. Identifying candidate turning restrictions
At this point in our approach, we have identified the turns we need to monitor and

counted the number of times each monitored turn has been traversed by a vehicle. We
now need to examine, which of those turns are rarely used. Since, both, turns and285

results of the enumeration process are stored in the respective datastores, it is easy
to group results/turns by entrance edge and direction (for bidirectional edges). Each
such group contains all possible turns a vehicle may execute after following a specific
entrance edge (and direction). Likewise, each turn belongs to a single, specific group
of turns. Since we know the number of instances encountered for each one of the turns290

belonging to the same group, it is easy to calculate the usage percentage or each one
(cf. Algorithm calculateTurnPercentPerGroup). An example group for a specific
entrance edge is shown in Figure 3.

calculateTurnPercentPerGroup(monitoredTurns, f reqCounter(monitoredTurns))
1 groupsOfTurns = group(monitoredTurns, entranceEdge, direction)
2 for each group ∈ groupsOfTurns
3 freqCounter[group] = 0
4 for each monitoredTurn ∈ group
5 freqCounter[group] = freqCounter[group] + freqCounter[monitoredTurn]
6 for each group ∈ groupsOfTurns
7 for each monitoredTurn ∈ group
8 percent[monitoredTurn] = freqCounter[monitoredTurn] / freqCounter[group]
9 return percent[monitoredTurns]

295
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Figure 3: A simple example of grouping turns per entrance edge (A, B) at an intersection vertex (B) for
calculating usage percentage per turn

Table 6: Number of candidate turning restrictions discovered for 5% and 2.5% thresholds
# turning turning

restrictions restrictions (%)
city # turns 5% 2.5% 5% 2.5%

Athens 75,552 5,287 3,596 7.00% 4.76%
Berlin 44,636 2,653 1,582 5.94% 3.54%
Vienna 36,484 1,739 1,261 4.77% 3.46%

As we notice in the example group of Figure 3, most drivers (66%) continue straight
when they traverse the entrance edge (A, B) leading to the intersection vertex B. Some
others (32%) prefer to turn right. But a very small percentage of them (2%) turn left.
This is a very strong indication that this low frequency-usage of the left-turn actually
represents erroneous map-matched trajectories (even the most efficient MM algorithms300

have a small error rate). Next, we made the assumption that turns with frequency usage
percentage lower than a 5% threshold are most likely prohibited. The choice of this
threshold was established after an initial set of experiments resulting in encouraging
turning restriction results. Table 6 shows the respective number of the candidate turning
restrictions discovered for each city for, both, 5% and 2.5% thresholds.305

However, estimating candidate turning restrictions is not enough. For each such
turn, we need to additionally calculate its direction in comparison to its entrance edge.
Figure 4 shows the angles assigned to each possible turn direction and U-left and U-
right turns will be collectively referred to as U-turns in the remainder of this paper.
Note that in our case, U-turns do not correspond to the typical case (A, B) → (B, A),310

which are implicitly prohibited in most road networks but in the case of a turn from
edge (A,B) to edge (B,C) when the angle between edges (A,B) and (B,C) are at the
center, bottom part of the angle circle of Figure 4. Note, that the direction calculation
is comparatively easy, since we have already stored the angular direction of each edge
in the respective datastore as needed for the isochrone functionality of our service [7].315

Table 7 shows the categorization of the discovered candidate turning restrictions with
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Figure 4: Categorization of turns according to directions.

respect to their direction. As expected, most of them (particularly in Berlin and Vienna)
represent left-turns. As our verification results will show, the direction of the candidate
turning restrictions has a very strong impact on the turning restrictions’ validity.

To additionally improve the validity assessment of identified turning restrictions,320

we devised the verification methods described in the following section.

3.4. Verification process
Although identifying candidate turning restriction based on the frequency usage of

their respective turns is an important criterion, we still need to verify our results in
comparison to the actual road-network conditions. To this effect, we will use many325

alternative methods that may be used independently or in different combinations ac-
cording to the budgetary and time constraints imposed for a particular test case. Those
verification methods include: (i) Using a mapping application for visualizing turn-
ing restrictions in comparison to a web mapping service, (ii) Using manual inspection
of candidate turning restrictions by utilizing publicly available satellite imagery and330

Google Street View (wherever available), (iii) Batch retrieving multiple street view im-
ages per candidate turning restriction for human evaluation in a public crowdsourced
marketplace platform and (iv) Cross-checking our results with two separate map ven-
dors’ public APIs. Those alternative verification processes offer multiple advantages
over typical data-mining techniques, since we are able to cross-reference our results in335

comparison to the actual road-network conditions. Moreover, the new verification pro-
cesses proposed in this work (i.e., manual inspection of candidate turning restrictions
using publicly available satellite imagery and the batch retrieving of street view im-
ages for human evaluation), two extensions of the original work in [8], turned out to be
the most intuitive methods for providing the most accurate feedback for the qualitative340

evaluation of our approach and how to further calibrate its accuracy.

3.4.1. Visualizing results with a mapping application
Our first verification method entails the visualization of the candidate restricted

turns in a mapping application. An intuitive way to do this is to (i) cross reference
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Table 7: Categorization of candidate turning restrictions per direction for 5% threshold
# turning

city restrictions straight left right U-turn
Athens 5,287 6.5% 45.4% 41.6% 6.5%
Berlin 2,653 1.6% 64.6% 18.6% 15.2%
Vienna 1,739 10.5% 44.8% 30.0% 14.7%

(a) Turning restrictions visualiza-
tion in Athens

(b) Turning restrictions visualiza-
tion in Berlin

(c) Turning restrictions visualiza-
tion in Vienna

Figure 5: Visualizing turning restriction with QGIS

each such turn with the appropriate traffic sign (depending on the direction of the turn345

according to Table 7) located at the corresponding intersection vertex coordinates and
(ii) rotate each such traffic sign according to the entrance edge direction and to “sim-
ulate” what the driver witnesses before entering the corresponding intersection vertex.
Since the second of these criteria cannot be achieved through either Google Maps or
Google Earth [12], we used QGIS [35], which is a popular, free and open source GIS350

application that runs in all major operation systems. In addition, QGIS may visualize
geometry features directly retrieved from PostGIS enabled databases (such as our data-
stores) and, thus, we can avoid an unnecessary export process of our data. Moreover,
we used a Google Maps Layer in QGIS as the background map layer to compare results
with an external mapping service. Figure 5 shows some typical examples of the results355

of this visualization process for some of the candidate turning restrictions.

• Figure 5(a) depicts an intersection familiar to most local drivers in the center
of Athens. This type of restrictions were easily verified by our personal experi-
ence and they effectively demonstrate how easily, critical turning restrictions are
discovered through our method.360

• Figure 5(b) shows a case of a prohibited U-turn in the Berlin area. There, many
disallowed U-turns are missing from the OpenStreetMap dataset.

• Figure 5(c) shows that the Google Maps layer visually confirms the discovered
turning restriction.
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Figure 6: The KML file created for Berlin

Although our first verification method is an elegant, straightforward and efficient365

way for visualizing and cross-referencing our results, it has one major drawback. It still
requires local knowledge of the examined area to confirm the turning restrictions. As
such, it may be very useful for experienced end-users with extensive local knowledge,
such as fleet managers or taxi drivers, but it does not benefit the typical (Web) user
dealing with areas unknown to him. To this effect, the following sections will provide370

alternative means of verification hat do not require local knowledge of a specific area.

3.4.2. Manual inspection of satellite imagery and Street View
Our second verification method is to export the candidate turning restrictions in a

format that may be used by Google Earth to cross-reference results with data collected
by Google, such as the actual satellite imagery and Street View. We used the export375

functionality of PostGIS to create KML [13] representations, the data format used in
Google Earth, of the line geometries of each candidate turning restriction and create
one large KML file per city. In addition, during our KML export, we add the name of
the edges/roads participating in each restriction in alphabetical order for easy lookup, as
shown in Figure 6. We can get an even clearer impression of the respective intersections380

should the selected areas be available in Google Street View [14]. Some of the results
of this visualization process are shown in Figure 7.

Cross-referencing results with satellite imagery has revealed several interesting de-
tails about our method. First of all, it showed that most U-turn restrictions may be
easily verified (see Figures 7(c), 7(d)). However, the most important aspect is that385

those verified U-turn restrictions do not even have a traffic-sign assigned in the ac-
tual road network, since no actual driver would effectively use them, i.e., they are too
dangerous. Nevertheless, these turning restrictions should still be added on the dig-
ital representation of the road-network graph for accurate shortest-path computation
by routing engines. Therefore, our method not only discovers true turning restrictions390
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(a) A turning restriction in Athens verified by
satellite imagery

(b) A turning restriction in Berlin verified by satellite
imagery

(c) Another turning restriction in Berlin verified
by satellite imagery

(d) A turning restriction in Wienna verified by satellite
imagery

Figure 7: Verifying turning restrictions on Google Earth

(as represented by traffic-signs), but also discovers those restrictions not explicitly pro-
hibited by a traffic-sign due to their extremely low probability of actually being used.
This is an interesting discovery, since even if we were given full access to a world-
wide traffic-sign database (if such a database existed), our method could still pinpoint
additional existing turning restrictions.395

Our method also produces some false-positives as revealed by satellite imagery.
Examples are shown in Figure 8. Sometimes, even satellite imagery is not enough for
revealing useful details and we need to resort to Google Street View for a more accurate
depiction of the local intersection. Using Street View revealed several details for the
examined intersections ranging from existing traffic-signs (as shown in Figure 9) to400
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(a) A false-positive turning restriction in Vi-
enna as revealed by satellite imagery

(b) Another false-positive turning restriction in Vienna as
revealed by satellite imagery

Figure 8: False positives produced by our method for “straight” turns

Figure 9: A false-positive turning restriction in Athens, as revealed by Google Street View

errors on the OSM mapping process (as shown in Figure 10)
When we closely inspected false-positives to identify a common pattern, we real-

ized that many of them represent “straight” turns, i.e., turns with small angles between
entrance and exit edge (see Figure 8). Such turns are mostly encountered on highways
for exiting the main road or performing U-turns. The fact that the vehicles we moni-405

tored (during the one-year period) rarely used such turns is mainly attributed to the fact
that we dealt with fleets using professional drivers (trucks in Athens, taxis in Vienna
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Figure 10: An error in OSM maps that confirms the existence of the discovered turning restriction, as revealed
by Google Street View

https://maps.googleapis.com/maps/api/streetview?size=

600x300&location=46.414382,10.013988&heading=1518&

pitch=0&key=Google_API_key

Figure 11: A sample Google Street View Image API request

and Berlin), who (i) know precisely how to reach their destination and never have to
backtrack when on a highway and (ii) usually use highways only for distant trips and
not nearby destinations. In this sense, we should probably treat these “straight” turns410

as less promising to represent actual turning restrictions, a fact that will also be verified
during the final phase of our verification process.

3.4.3. Batch retrieving of Street View images and crowdsourcing
In the previous section, we have identified the main qualitative characteristics of

the candidate turning restrictions, using manual inspection of the discovered turns on415

Google Earth and Google Street View. Unfortunately, inspecting all candidate turn-
ing restrictions for a set of cities one-by-one is infeasible by a small number of map-
specialists. One popular method to overcome this issue, is to offload the inspection of
those candidate restrictions to the “crowd”, by using popular crowdsourcing market-
place platforms like Amazon Mechanical Turk[2]. To facilitate such a process, we take420

advantage of the fact that Google offers the Street View Image API [18] that allows the
bulk retrieval of Street View images for a set of predefined locations. In the remainder
of this section, we will show how we will use this specific API in the context of crowd-
sourcing the inspection of the previously discovered candidate turning restrictions.

The Google Street View Image API allows developers to embed a static (non-425

interactive) Street View image into their web page. The respective viewport is defined
with URL parameters sent through a standard HTTP request and is returned as a static
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image. A sample request is shown on Figure 11. The most important parameters in
such a request are [16]:

• Location. Where exactly is the location of the Street View Image. It can be either430

a text string (e.g., an address) or a lat/lng value.

• Size. Specifies the output size of the image in pixels. For free usage, the width
and height of the image cannot exceed 640 pixels.

• Heading. Indicates the compass heading of the camera. It accepts values are
from 0 − 360 (both values indicating North, 90 indicating East and 180 South).435

• Pitch. Specifies the up or down angle of the camera relative to the Street View
vehicle. It defaults to 0.

To take advantage of the Google Street View Image availability for the discovered
turning restrictions, we follow the methodology of Figure 12, where red arrows illus-
trate the location and heading of the corresponding image requested for each location.440

For each turning restriction (such as the left turning restriction A to C through B of
Figure 12), we use the Google Street View Image API to retrieve exactly 5 images.
The first image is at location A (tail vertex of entrance edge (A, B)), the second image
is located in the middle of entrance edge (A, B) (location AB) and the last three images
are at location B (the intersection vertex). The difficult part is computing the heading445

parameter of the Google Street View Image API to simulate what a random vehicle
driver would see when entering the entrance vertex and is driving towards this specific
turn. The heading parameter in pictures 1,2 and 3 is calculated strictly by locations A
and B and is the angle that a driver must have on location A in order to face location B.
The fifth street view image at location B uses a heading calculated by locations B450

and C and is the angle that a driver must have on location B in order to face location C
(i.e., to view the exit edge) and the forth image uses a heading between the headings of
photos 3 and 5, to simulate a panoramic view of the turn.

To batch-retrieve the necessary five photos per each candidate turning restriction
for our cities of interest, we wrote a Java command line application that takes the loca-455

tions A, B and C from our datastore, computes the location AB (the middle point of en-
trance edge (A, B)) and calculates the necessary headings as described in the previous
paragraph, by adapting the computeHeading() [17] method offered by the Google
Maps Javascript API, that allows the computation of the heading parameter of the
Google Street View Image API between two locations. We also used the Sprockets for460

Java [36] library for accessing the Google Street View Image API from Java. Unfortu-
nately, this specific process was only possible for the cities of Athens and Berlin, since
Vienna is not yet covered by Google Street View 3.

Sample results of this process are shown in Figures 13 and 14. The retrieved im-
ages indeed confirm the existence of these specific turn restrictions, either because the465

former right turn is blocked for maintenance, or the latter left turn leads to a private

3https://en.wikipedia.org/wiki/Google_Street_View_in_Europe
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Figure 12: A candidate turning restriction and the locations & headings of the retrieved Google Street View
images

property (dead end). These images also show, that the described methodology for re-
trieving five images for each candidate turning restriction is very efficient in simulating
what a vehicle driver sees when entering each of those turns. Then, the corresponding
images could easily be evaluated by humans that may confirm (or not) the existence of470

those restrictions and hence, they could easily be used in a crowdourced marketplace
platform for human evaluation such as the Amazon Mechanical Turk. Again, the fact
that we narrowed down a limited number of candidate turning restrictions by mining
the map-matched trajectories, effectively limited the number of requests to the Google
Street View Image API and thus, the whole process for Athens and Berlin requires less475

than a few hours to complete. Moreover, the limited number of candidate turning re-
strictions for human evaluation limits the corresponding costs (and the time required)
when the corresponding images per turn would be uploaded to a crowdourced mar-
ketplace platform for human evaluation. Note that although we have not performed
this human evaluation due to budgetary and time constraints, a random sampling of480

the candidate turning restrictions for Athens and Berlin has shown that in most cases
it is very easy to confirm (or not) the existence of a turning restriction by the retrieved
Street View images and hence, we believe that the proposed methodology for combin-
ing batch-retrieved Street View images with turning restrictions could be very accurate
when used in a public crowdsourced platform.485

3.4.4. Sourcing external mapping services
Although the evaluation methods presented in the previous sections provide a con-

vincing, qualitative way of validating results and provided significant insight into po-
tential drawbacks of our method, they still require human intervention to confirm re-
sults. Hence, it would be best if we could further verify and quantify our findings490

through an purely automated process. In this section, we propose a method that com-
pares our results with those provided by external Web-based routing APIs, the Google
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(a) Photo 1 at location A (tail vertex of entrance edge
(A, B))

(b) Photo 2 at location AB (middle of entrance edge)

(c) Photo 4 at location B (intersection) (d) Photo 5 at location B (intersection)

Figure 13: Batch street view images for a specific right-turn at Berlin. The images reveal that the right-turn
is blocked for maintenance

Directions [15] and the Bing Maps Routes [26] APIs. Using two in instead of just one
(the Google Directions API as in [8]), we will not only provide a more credible verifi-
cation of our results, but also assess the difference of the results provided by separate495

map vendors.
The Google Directions API and the Bing Maps Routes API are two public REST

APIs that allow the calculation of directions between locations using HTTP requests.
For both services, users may search for directions using different transportation modes,
include driving, transit, walking, and cycling. Directions may specify origins, destina-500

tions, and via-waypoints either as text strings or as latitude/longitude coordinates.
The Google Directions API allows only 2,500 directions requests per 24h period

from a single IP address (free service). Contrarily, the Bing Maps Routes API offers
a free 90-day Trial Key that allows one to evaluate Bing Maps for development and
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(a) Photo 1 at location A (tail vertex of entrance edge
(A, B))

(b) Photo 2 at location AB (middle of entrance edge)

(c) Photo 3 at location B (intersection) (d) Photo 4 at location B (intersection)

Figure 14: Batch street view images for a specific left-turn at Berlin. The images reveal that the left-turn
leads to a dead-end

may be used for up to 10,000 transactions/routes calculations within a 30-day span505

during the evaluation period. In both cases, due to the aforementioned limits, by first
identifying (a rather limited number) of candidate turning restrictions as our method
does, we can verify our results within the limits allowed for free users (Bing Maps)
and within a few days (Google Directions). In any such HTTP request to the APIs,
certain parameters are required, while others are optional. The most important required510

parameters (relative to our problem) are:

• Origin (Google Directions) or waypoint.n (Bing Maps) - The origin location
FROM which we want to calculate directions.

• Destination (Google Directions) or waypoint.n (Bing Maps)- The destination lo-
cation TO which we want to calculate directions.515

Two additional, optional parameters useful to our purpose are:

• Mode (Google Directions) or travelMode (Bing Maps). Both use driving as the
default value - Specifies the mode of transport to use when calculating directions.
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http://maps.googleapis.com/maps/api/directions/json?

origin={A_coordinates}&destination={C_coordinates}&

waypoints=via:{B_coordinates}&sensor=false

Figure 15: A sample Google Directions API request

http://dev.virtualearth.net/REST/v1/Routes?wayPoint.0=

{A_coordinates}&viaWaypoint.1={B_coordinates}&waypoint.

2={C_coordinates}&key=BingMapsKey

Figure 16: A sample Bing Maps Routes API request

• Waypoints (Google Directions) or viaWaypoint.n (Bing Maps) - For defining
additional intermediate locations that the route must travel through.520

Given the above and with reference to Figure 3 in which the Turn(A → C via B)
has a low frequency usage, an HTTP request to verify this candidate turning restric-
tion would be similar to Figure 15 for Google Directions API and Figure 16 for Bing
Maps Routes API. Both requests return a JSON object with the proposed route by the
respective APIs. The process for verifying the turning restriction is described in Algo-525

rithm VerifyRestriction, which compares the distance / length (in meters) calculated
by the APIs with the sum of lengths of edges (A, B) and (B,C). If the API provided
distance is significantly greater than the sum of lengths of edges (A, B) and (B,C), then
we may safely assume that indeed there is a turning restriction and the respective API
has to follow a much longer route than simply (A, B)→ (B,C).530

VerifyRestriction(Turn(A→ C via B))
1 apiPath = DirectionsAPICall(A→ C via B)
2 if length(apiPath) >> length(A→ B) + length(B→ C)
3 TurningRestriction(A→ C via B).verified = TRUE

In order to access both APIs, we implemented a Java command-line application that
retrieves turns below a threshold frequency usage (5% in our case) from the datastores,
constructs an appropriate request string similar to Figure 15 and 16 for each turn, and535

retrieves the distance of the route returned by each API. To avoid overloading the API
servers and rejected requests, we enforced a 500ms gap between requests. The distance
results returned from both APIs are also stored in the respective PostgreSQL datastore
for easy access and querying.

An obvious problem to this approach for verifying results, is the usage limits of540

both APIs (especially the rather limited number of requests allowed by the Bing Maps
Routes API for free users). Although we are dealing with road networks with hun-
dreds of thousands of vertices, edges and possible turns, through our optimizations
(see Section 3.3.2) and by restricting the usage of the APIs to strictly confirm the can-
didate prohibited turns found by our proposed method, we only need to evaluate a few545

thousands turns. The obtained results are presented in the following section.
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Table 8: Differences on the results between Google Directions and Bing Maps Routes API
city Total Google < Bing Google > Bing Google = Bing

Athens 5,287 1,457 (27.6%) 3,705 (70.1%) 125 (2.4%)
Berlin 2,653 762 (28.7%) 1,794 (67.6%) 97 (3.7%)
Vienna 1,739 526 (30.2%) 1,186 (68.2%) 27 (1.6%)

4. Evaluation Results

Having developed the automatic verification method described in Section 3.4.4, for
our crowdsourced candidate turning restrictions, the following section summarizes the
assessment results produced by the respective method.550

4.1. Verified turning restrictions
Our verification method, based on using the Google Directions API and Bing Maps

Routes APIs, were described in Section 3.4.4. Before presenting the actual assessment
results, we want to highlight the differences with respect to the data returned by the
two APIs, shown in Table 8. Several interesting results emerge. Surprisingly, on only555

very rare occasions (less than 4%) the two APIs return the same route and route length.
Besides algorithmic differences, this also shows the considerable differences between
the map datasets used in each case. For most instances (> 67%), the Google Directions
API returns a longer path than Bing Maps. This needs to be taken into account when
trying to verify our candidate turning restrictions against the two APIs.560

Tables 9 and 10 show the number of restrictions verified for both 5% and 2.5%
implicit usage thresholds for each API, for both APIs and for either of the two APIs,
as well as their respective percentages in comparison to the total candidate restrictions.
We notice that the majority of the candidate restrictions are successfully verified by
one of the mapping services’ APIs. In fact, for the case of Athens and Vienna, more565

than 74% of the extracted turning restrictions are verified by at least one of the APIs.
For Berlin, the verified restrictions are 66% using the 5% threshold and 72% in case
of the 2.5% threshold. Another observation is that by moving from the 5% to the
2.5% threshold, the verified restrictions’ percentage increases slightly, but, we are also
missing a significant number of restrictions (compare columns “Either” for 5% and570

2.5%). This means, that there is a sizable number of existing (and verified) restrictions
“contained” in the turn usage interval between 2.5% and 5%, which testifies to our
choice of the threshold value of 5%. Hence, all following results are based on this 5%
threshold. Note, that usually the paths returned by both APIs are significantly larger
(85-90% of the verified restrictions give at least two-times larger paths) than the sum575

of lengths (A, B) and (B, C) for the verified restrictions, which is also a very strong
indication of the validity of our verification method.

In Section 3.4.2 we observed a correlation between the entrance - exit direction
angle of each candidate turning restriction with the validity of the restriction. Table 11
shows now the results of an explicit comparison of the number of verified restrictions580

(either API) using 5% threshold to this direction difference.
The results clearly confirm our empirical observations of Section 3.4.2. Almost

all (99%) of U-turn turning restrictions discovered by our method are verified by the
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Table 9: Number of verified restrictions for 5% implicit threshold
candidate turning

restrictions # verified
city Total Google Bing Both Either

Athens 5,287 3,521 (67%) 2,624 (50%) 2,222 (42%) 3,923 (74%)
Berlin 2,653 1,546 (58%) 1,081 (41%) 886 (33%) 1,741 (66%)
Vienna 1,739 1,167 (67%) 683 (39%) 811 (47%) 1295 (74%)

Table 10: Number of verified restrictions for 2.5% implicit threshold
candidate turning

restrictions # verified
city Total Google Bing Both Either

Athens 3,596 2,470 (69%) 1,921 (53%) 1,643 (46%) 2,748 (76%)
Berlin 1,582 1,040 (66%) 736 (47%) 632 (40%) 1,144 (72%)
Vienna 1,261 879 (70%) 629 (50%) 550 (44%) 958 (76%)

Table 11: Number of verified restrictions per angle for the 5% threshold
Left Right Straight U-turns

City Total Verified Total Verified Total Verified Total Verified
Athens 2,402 1,829 (76%) 2,199 1,589 (72%) 342 163 (48%) 344 342 (99%)
Berlin 1,714 1,058 (62%) 494 264 (53%) 43 20 (47%) 402 399 (99%)
Vienna 779 584 (75%) 521 348 (67%) 183 108 (59%) 256 255 (100%)

APIs. In contrast, “straight” turning restrictions (with small direction changes between
entrance and exit edges) show a rather small verification rate of only about 50%. This585

is a strong indication that this particular type of turning restriction is more susceptible
to errors and therefore additional means of verification are required. Moreover, the fact
that many of these restrictions are highway exits is clearly confirmed by the rather lim-
ited number of those restrictions encountered in Berlin. In this case, the road network
considered did not include the inner-city highways, which we did consider for Athens590

and Vienna. On the other hand, left turns show slightly better results than right turns.
However both cases exhibit a similar mean verification percentage as shown in Table 9.

Finally, Table 12 compares the total turns, examined turns, candidate and verified
turning restrictions to the turning restrictions of the OSM datasets for the three re-
spective cities. The results are very encouraging. Instead of examining hundreds of595

thousands of turns (Column 2) and focusing only on intersection vertices connecting
major roads and utilizing historic map-matched trajectories, we discovered only a few
thousand candidate turning restrictions (Column 4) that needed verification. By using
the Google Directions and the Bing Maps Routes API, we could verify most of the
identified candidate turning restrictions (Column 5). Also, the number of verified turn-600

ing restrictions (Column 5) is significantly larger than the restrictions existing in the
original datasets (Column 6). Especially for Athens, the number of verified turning re-
strictions is 18× larger than those existing in the current OSM dataset. Even for Vienna
and Berlin the number of the verified prohibited turns is still 1.5 − 2.6× larger than
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Table 12: Total turning restrictions results for 5% implicit threshold in comparison to existing OSM’s re-
strictions

candidate verified OSM
total examined turning turning turning

city turns turns restrictions restrictions restrictions
Athens 900,397 75,552 5,287 3,923 214
Berlin 252,271 44,636 2,653 1,741 668
Vienna 256,185 36,484 1,739 1,295 799

those existing in the OSM dataset. Our results lead us to assume that for countries and605

respective cities with worse map coverage, e.g., Albania, Montenegro, the proposed
approach could significantly improve map datasets.

4.2. False positives?

Another important question is what we really can infer for those turning restric-
tions that were not verified by either API. Here, we refer to the unverified left and610

right turns for which the distances returned by the Google Directions and Bing Maps
Routes API are quite similar to the sum of lengths of their constituent edges (A, B) and
(B, C). We examined several of these cases and found that for a small number of routes
(almost 1% for all three cities of those unverified left and right restrictions) that the
distances returned by the API is less than 90% of the sum of lengths of the constituent615

edges (A, B) and (B, C), i.e., there is a shorter route than making a simple turn. When
examining these anomalies, we found that most of the times there was an inconsistency
between OSM and the commercial map dataset. For these cases, as to whether the turn
is actually allowed or not is very debatable.

Still, even if we assume that all unverified left and right turning restrictions are620

indeed permitted, i.e., our method produces false-positives, we cannot ignore the fact
that only a very small percentage of the professional drivers we monitored actually use
them. Hence, a good-quality shortest-path solution would still have to penalize (by in-
creasing the respective turn cost) such “unappealing” turns. As such, even unverified
turning restrictions are still useful in revealing typical drivers’ patterns and behaviors.625

5. Conclusion and Future Work

This work proposed a new and efficient, semi-automatic way to infer and identify
turning restrictions for OpenStreetMap data by utilizing historic map-matched trajec-
tories from an existing fleet management service. Our experimentation covered three
major European cities and a period of twelve months. Overall, 66 − 74% of the turn-630

ing restrictions we identified, was successfully verified through a rigorous verifica-
tion method, including visual inspection with a mapping application, satellite imagery,
batch retrieving of street view images and the use of public mapping APIs. However,
the most important outcome of our work is, that we have identified and verified 2−18×
more turning restrictions than those existing in the current OSM dataset. This impres-635

sive feat testifies to the credibility of our method.
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To the best of our knowledge, this is the first work to utilize historic map-matched
trajectories for such a task. This is after all, the main contribution of our work, since
the few existing works addressing the related subject of intersection delays base their
research on raw GPS trajectories. In addition, most previous works use either simulated640

data or data covering smaller time periods (up to a month) and were focused on a par-
ticular geographic area. Our results are based on three European cities, originate from
three medium to large vehicle fleets of 2,000-5,000 vehicles each, and cover an entire
year of operation. The results (in terms of discovered data) for the three areas were
almost identical, which further testifies to the robustness and validity of our method.645

In addition, by comparing our results with two external mapping APIs (the Google
Directions and the Bing Maps Routes APIs) we show the validity of our approach.

We can propose several interesting directions for future work. Since the proposed
method is able to identify and confirm turning restrictions in the OSM data, we can ex-
pand it to automatically contribute those verified restrictions back to the OSM project.650

In this way, the outcome of our work could be shared by the mapping community and,
thus, increase its impact. Our results could further improve the quality of existing map-
matching algorithms. Many of these algorithms use partial shortest-path calculations
to align the raw GPS traces to the road network graph. Up until now, those shortest-
path computations do not take turning restrictions into account. Since our approach655

identifies such restrictions, those newly found constraints could be integrated back into
the map-matching algorithms to further improve their results. In this way, for the first
time, a self-improving, evolutionary map-matching algorithm might become a reality.
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