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Abstract. Although recent scientific literature focuses on multiple shortest-path
(SP) problem definitions for road networks, none of the existing solutions can ef-
ficiently answer all the different SP query variations. This work proposes SALT,
a novel framework that not only efficiently answers most SP queries but also k-
nearest neighbor queries not tackled by previous methods. Our solution offers
excellent query performance and very short preprocessing times, thus making it
also a viable option for dynamic, live-traffic road networks and all types of prac-
tical use-cases. The proposed SALT framework is a deployable software solution
capturing a range of graph-related query problems under one “algorithmic hood”.
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1 Introduction

During the last decades, recent scientific literature has produced efficient methods for
shortest-path (SP) queries on road networks (cf. [1] for the latest overview). Unfortu-
nately, most aforementioned algorithms are tuned to solving a specific problem effi-
ciently, but are rather inefficient when used in a different context. Contrarily, enginee-
ring a framework that efficiently solves multiple shortest-path problems, would be the
first step towards the direction of a grand unified SP toolkit. To this end, the GRASP
algorithms [11], solve most variants of the single-source shortest-path problems on road
networks, including one-to-all (finding SP distances from a source vertex s to all other
vertices), one-to-many (computing the SP distances between the source vertex s and a
set of target vertices T ) and range queries (find all vertices reachable from s within a
given timespan). GRASP requires minimal preprocessing and provides excellent query
performance needed in the context of practical and commercial applications.

Another fundamental problem frequently encountered in location-based services is
the kNN query, i.e., given a query location and a set of objects on the road network, the
kNN search finds the k-nearest objects to the query location. Unfortunately, even the la-
test work of [21] is not scalable with the network size, since it requires several hours for
preprocessing continental road networks. In addition, for a large number of randomly
distributed objects, an efficient Dijkstra implementation could answer kNN queries by



settling a few hundreds nodes and requiring < 1ms. Moreover, most previous methods
require a target-selection phase, i.e., they need to mark the objects location within the
underlying index. This phase requires a few seconds, hence having limited appeal for
applications involving moving objects (e.g., vehicles). Therefore, it only makes sense
to use a complex (non-Dijkstra) kNN processing framework in cases of either rather
“small” numbers of objects or objects following skewed distributions (e.g., POIs lo-
cated near the city center), i.e., for cases in which Dijkstra does not perform well.

The contribution of this work is to provide a unified algorithmic solution that may
be used in a dynamic road network context, while covering a wide range of shortest-
path problems, such as (i) single-pair, (ii) one-to-all, (iii) one-to-many, (iv) range and
(v) kNN queries. Specifically, we aim at combining the fragmented approaches related
to the various shortest-path problem definitions and instead propose a unified frame-
work that tackles all of them. Our proposed SALT (graph Separators + ALT) frame-
work requires seconds for preprocessing continental road networks and provides ex-
cellent query performance for a wide range of problems. We will show that SALT is
(i) 3 − 4× faster for point-to-point queries when compared to existing methods of simi-
lar preprocessing times, (ii) it answers one-to-all, one-to-many and range queries with
comparable performance to state-of-the-art approaches, and most importantly, (iii) it
may also answer kNN queries in < 1ms, for both, static or moving objects. As such, our
SALT framework could be a swiss-army-knife for tackling all shortest-path problem
variants, making it a serious contender for use in commercial applications.

The outline of this work is as follows. Section 2 describes previous related work.
Section 3 describes our novel SALT framework and algorithms. Experiments establish-
ing SALT’s benefits are provided in Section 4 and Section 5 concludes the paper.

2 Related work

Throughout this work, we use directed weighted graphs G(V, E,w), where V is the set
of vertices, E ⊆ VxV is the set the arcs and w is a positive weight function E → R+. The
reverse graph G = (V, E) is the graph obtained from G by substituting each arc (u, v) ∈ E
by (v, u). A partition of V is a family of sets C = {c0, c1, . . . cM}, such that each node u ∈ V
is contained in exactly one set ci. An element of a partition is called a cell. A multilevel
partition of V is a family of partitions {C0,C1, . . .CL} where ` denotes the level of a
partition C`. Similar to [4], level 0 refers to the original graph, L is the highest partition
level and in this work we use nested multilevel partitions, i.e., for each ` < L and each
cell c`i there exists a unique cell c`+1

j (called the supercell of c`i ) with c`i ⊆ c`+1
j . Accor-

dingly, c`i is a subcell of c`+1
j . In this notation, c`(v) is the cell containing the vertex v

on level `. Likewise, the number of cells of the partition C` is denoted as |C` |. For a
boundary arc on level `, the tail and head vertices are located in different level-` cells;
a boundary vertex on level ` is connected with at least one vertex in another level-`
cell. Note that for nested multilevel partitions, a boundary vertex/arc at level ` is also a
boundary vertex/arc for all levels below.

In kNN queries, given a query location s and a set of objects O, the kNN search
problem finds k-nearest objects to the query location. Throughout this work, similar
to [21], we assume that the query location and the objects are both located at vertices.
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The ALT algorithm. In the ALT algorithm [13], a small set of vertices called
landmarks is chosen. Then, during preprocessing, we precompute distances to and
from every landmark for each vertex. Given a set S⊆V of landmarks and distances
d(Li, v), d(v, Li) for all vertices v∈V and landmarks Li∈S , the following triangle in-
equalities hold: d(u, v)+d(v, Li) ≥ d(u, Li) and d(Li, u)+d(u, v) ≥ d(Li, v) . Hence, the
function π f = maxLi max{d(u, Li)−d(v, Li), d(Li, v)−d(Li, u)} provides a lower-bound for
the graph distance d(u, v). Later works [18], showed that landmarks may also provide
upper-bounds on the graph distance between any two vertices. Overall, landmarks may
be used to approximate graph distances, according to Eq. 1 and 2. ALT then com-
bines the classic A∗ algorithm with the aforementioned lower-bounds. For bidirectional
search, ALT uses the average potential function, defined as p f (v) = (π f (v) − πr(v))/2
for the forward and pr(v) = (πr(v) − π f (v))/2 = −p f (v) for the backward search.

d(u, v) ≥ maxLi max{d(u,Li) − d(v,Li), d(Li,v) − d(Li,u)} (1)

d(u, v) ≤ minLi (d(u, Li) + d(Li, v)) (2)

Graph separators. In Graph Separator (GS) methods, such as CRP [4, 6], a par-
tition C of the graph is computed. Then, the preprocessing phase builds an overlay
graph H containing all boundary vertices and arcs of G. It also contains a clique for
each cell c: for every pair (u, v) of boundary vertices in c, a clique arc (u, v) is created
whose cost is the same as the shortest path (restricted to the inner arcs of c) between u
and v. For a SP query between s and t, the Dijkstra algorithm must be run on the graph
consisting of the union of H, c0(s) and c0(t). To further accelerate queries, we may use
multiple levels of overlay graphs. Currently, CRP is the most efficient SPSP algorithm in
terms of preprocessing time (since the recent Customizable Contraction Hierarchies [9]
is only tested on undirected networks) and is thus suitable for dynamic road networks.

SSSP queries. Recently, Efentakis et al. [11] expanded graph separators and pro-
posed GRASP, a novel set of algorithms for handling all variants of single-source
shortest-path (SSSP) queries, including one-to-all, one-to-many and range queries. All
three algorithms, namely GRASP (one-to-all), isoGRASP (range) and reGRASP (one-
to-many) use the exact same data structures and share all the advantages of graph-
separator methods, such as very short preprocessing times and excellent parallel query
performance. Unfortunately, parallel reGRASP requires a few ms for one-to-many que-
ries on continental road networks and hence is not fast enough for handling kNN queries.

kNN queries There are many works on kNN queries for static objects on road net-
works. Unfortunately, even the most recent G-tree [21] cannot scale for continental road
networks, requiring 16 hours of preprocessing for the full USA network. Moreover, all
index-based approaches require a target selection phase to index which tree-nodes con-
tain objects (requiring few seconds) and thus, they cannot be used for moving objects.
There is also previous work around kNN queries for moving objects on road networks.
However, they are either disk-based [20], have not been tested on continental road net-
works [14, 17, 20] and cannot address dynamic road networks. Recently, CRP was also
expanded [7] to handle kNN queries. Unfortunately, (i) CRP also requires a target selec-
tion phase and hence, cannot be applied to moving objects and (ii) it may only perform
well for objects near the query location (otherwise the entire upper level of the overlay
graph must be traversed). Hence, this solution is also not optimal.
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(a) A sample graph
G. |V |= 15, L=2,
|CL|=2

(b) Building the
level-1 overlay
graph

(c) Building the
level-2 overlay
graph

(d) Downward arcs
and the GGS ↓ graph

Fig. 1: SALT’s GS customization phase. Building the overlay H and the GGS ↓ graphs

3 The SALT framework

The main contribution of this work is to propose SALT, a unified framework for answe-
ring single-pair, single-source (one-to-all, one-to-many and range) and especially kNN
queries which are not handled efficiently by existing approaches. The main advantage
of SALT is, that the exact same data structures may service all the different type of SP
queries on road networks and thus, SALT may be easily integrated into commercial,
real-world applications. What follows is a detailed discussion of the SALT framework.

3.1 Preprocessing

SALT’s preprocessing consists of two distinct phases, (i) the graph-separator (GS)
phase and (ii) the landmarks preprocessing phase.

The GS phase of SALT mimics the preprocessing of GRASP [11] (see Fig. 1).
During this phase, we use the Kafpaa/Buffoon [19] partitioning tool to create nested
multilevel partitions of the road network graph in a top-down fashion. This initial par-
titioning phase is metric independent and needs to be executed only once, i.e., even in
the case of arc-weights changes or for different metrics. Following partitioning, the cus-
tomization stage builds the overlay graph H containing all boundary vertices and arcs
of G. The graph H also contains a clique for each cell c: for every pair (u, v) of boundary
vertices in c, we create a shortcut arc (u, v) whose cost is the same as the shortest-path
(restricted to inner edges of c) between u and v (see Fig. 1(b), 1(c)). Similar to [11],
we also calculate the SP distances between all border vertices of level ` and all vertices
of level `−1 within each cell c` (see Fig. 1(d)). To differentiate between the two kinds
of arcs computed, we will denote as (i) clique arcs the added overlay arcs that connect
border vertices of the same level ` and (ii) downward arcs of level ` the vertices con-
necting different levels, i.e., ` and `−1. For added efficiency, downward arcs are stored
as a separate graph, referred to, as GGS ↓. Both types of arcs are computed bottom-up
and starting at level one. To process a cell, the GS customization stage for SALT exe-
cutes a Dijkstra algorithm from each boundary vertex of the cell. We also apply the
arc-reduction optimization of [12], which reports only distances of boundary vertices
that are direct descendants of the root of each executed Dijkstra algorithm.
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Although SALT’s GS preprocessing phase is similar to GRASP, there are two ma-
jor differences. (i) In SALT, H and GGS ↓ have the same number of levels (L = 6 in
our experiments) with |CL| = 16 (cf. the original GRASP paper with |CL| = 128 and
L = 16). Using a smaller number of cells at the upper level slightly lowers one-to-all
query parallel performance, but accelerates point-to-point queries and reduces prepro-
cessing time. Hence, it is a very logical compromise, since our focus is on increased
versatility. (ii) Moreover, we have to repeat SALT’s GS customization stage twice, one
for the forward and one for the reverse graph. This is necessary for the landmarks phase
of SALT, but it also allows to answer, both, forward and reverse single-source queries.
Thus, at the end of SALT’s GS preprocessing we have built two versions of the overlay
graphs, H and GGS ↓, one for forward and one for reverse graph queries, respectively.

The landmarks preprocessing phase for SALT extends the preprocessing proposed
by [10], which optimized and tailored the ALT algorithm for dynamic road networks.
Landmarks are selected by the partition - corners landmarks selection strategy, in which
we use the cells created by Kafpaa and from each cell we select the four corner-most
vertices as landmarks. For SALT, we accelerate the computation of distances of all
graph vertices from and to landmarks by executing two sequential GRASP algorithms
(forward and reverse) instead of using plain Dijkstra (as in all previous approaches).
Moreover, we may perform those 2×|S | GRASP algorithms in parallel. By using these
optimizations, the landmarks preprocessing phase of SALT never takes more than 4s
for 24 landmarks and is therefore at least 6× faster than any existing work.

Thus, at the end of the preprocessing stage of SALT, we have built the overlay
graphs H and GGS ↓ for both forward and reverse searches and calculated distances
for all vertices from and to the selected landmarks. For dynamic road networks, we
only need to repeat the GS customization stage and the computation of distances of all
vertices from and to the landmarks. Both phases require less than 19s for the benchmark
road networks we used. This makes SALT suitable for dynamic scenarios, as well.

3.2 Single-pair shortest-path queries
Using SALT’s preprocessing data, we can accelerate single-pair SP queries by our
SALT-p2p algorithm, that combines CRP (with arc-reduction) with the ALT’s adapta-
tion with SIMD instructions of [10]. In CRP, to perform a SP query between s and t, Di-
jkstra’s algorithm must be run on the graph consisting of the union of H, c0(s) and c0(t).
The difference in SALT-p2p is that, instead of Dijkstra, we use the ALT-SIMD algo-
rithm on the aforementioned graph. Note that both ALT and CRP may also be used
in a unidirectional or a bidirectional setting. A similar combination of CALT [2] and
CRP was unofficially introduced in [4], which uses the landmark lower-bounds strictly
on the upper-level of the GS overlay graph. Thus, local searches could not be accele-
rated. Local search is crucial for kNN queries, since the kNN results for small values
of k are usually located close to the query location. In contrast, our SALT-p2p algo-
rithm, combining the ALT-SIMD algorithm of [10] and CRP (with arc-reduction), will
be much more efficient than stand-alone ALT or CRP. Moreover, since both methods
are extremely robust to the metric used [2, 4], their combination will provide excellent
performance for both travel times and travel distances.

Theorem 1. The SALT-p2p algorithm is correct. (Proof omitted for space restrictions)
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3.3 kNN queries

SALT’s preprocessing data may also be used to answer kNN queries. Instead of ini-
tiating a kNN search from a query location s to objects O, we start a search from all
the objects at the same time to the query location in the reverse graph. Hence, we take
advantage of, both, GS and ALT acceleration for guiding the search towards the query
location. The SALT-kNN algorithm’s query phase is divided in two independent stages.
The Pruning phase excludes objects that cannot possibly belong to the kNN set by using
the upper and lower-bounds provided by the landmarks preprocessing data. The Main
phase executes a unidirectional SALT-p2p algorithm in the reverse graph from all re-
maining objects at the same time to the query location until the query location is settled.
Now we have found the first nearest-neighbor. This process has to be repeated another
k − 1 times until all kNN are discovered. The algorithm is detailed in the following.

Pruning phase. To prune objects that cannot belong to the k-nearest neighbors set,
we must (i) calculate the k-th lowest upper-bound of graph distances between the query
location and the objects (cf. Equation 2) and (ii) exclude objects whose distance lower-
bounds between them and the query location (cf. Equation 1) exceed the k-th lowest
upper-bound. To the best of our knowledge, this is the first work to utilize upper and
lower landmark bounds in the context of kNN queries.

Theorem 2. SALT-kNN’s pruning phase is correct. (Proof omitted for space restrictions)

For computing the k-th lowest upper-bound between the query location and the
objects we use a bounded max-heap Q of size k and procedure getKthLowUpBound:
getKthLowUpBound(s,O, landDist)

1 Q = emptyMaxHeap
2 m = 0
3 for each o in O
4 if m < k
5 Q.push(upperBound(s, o))
6 m = m + 1
7 elseif (upperBound(s, o) < Q.top())
8 Extract − max(Q)
9 Q.push(upperBound(s, o))

10 return Extract − max(Q)

PrunePhase(s,O, landDist)

1 Osmall = {}

2 kBound = getKthLowBound(s,O, landDist)
3 for each o in O
4 if lowerBound(s, o) ≤ kBound
5 Osmall.add(o)
6 return Osmall

Since the bounded max-heap Q only stores k-upper-bound distances, we only need
to compare the next objects’s upper-bound with the top of the heap. If we have found a
lower upper-bound, we remove the top of the heap and add the new upper-bound to Q.
At the end of the procedure, the top of the max-heap is the k-th lowest upper bound of
distances between the query location and the objects.

At the end of the pruning phase (see procedure PruningPhase), instead of using the
objects in O, we only need to check for the k-nearest neighbors within the objects in
Osmall. Our experimentation has shown that the pruning phase is very effective, since it
efficiently prunes more than 60% of the total number of objects in O.

Main phase. Following the pruning phase, to find the first nearest-neighbor we start
by performing a search simultaneously from all objects in Osmall to the query location s
in the reverse graph. To do so, we use the idea of [16]. We add a new vertex T ′ connected
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to all objects in Osmall using zero-weight edges and then perform a unidirectional SALT-
p2p algorithm from T ′ to s in the reverse graph. At the end of this process, we have
found the first NN of query location s. Then we eliminate this vertex from Osmall and
repeat for another k−1 iterations to retrieve the full kNN set (see procedure MainPhase).

Theorem 3. SALT-kNN’s main phase is correct. (Proof omitted for space restrictions)

MainPhase(s,Osmall, k,G)

1 for i = 0 to k−1
2 T ′ = newVertex
3 for each o ∈ Osmall

4 Conn. T ′ to o with 0-weight edges
5 (iNN, iNNdist) = S ALT−p2p(T ′,s,G)
6 Osmall = Osmall − iNN

To retrieve not only the SP distance
between the query location s and the ob-
jects in Osmall but also the actual kNN ver-
tices, we need to maintain for each labeled
vertex a reference that points to the orig-
inating vertex in the objects’ set Osmall.
Thus, when we extract s from the prio-
rity queue and terminate the SALT-p2p al-
gorithm at the i-th iteration, we know not
only the i-th SP distance but the i-th NN

as well. Moreover, for each object o in Osmall, we need to store the cell ID c1(o) of the
cell this object belongs at the lowest level of the GS hierarchy, to traverse the overlay
graph H during each iteration of the SALT-p2p algorithm. Note it is sufficient to store
only the c1(o), since cell IDs for higher levels may be calculated from that.

Although SALT-kNN will be very fast for retrieving the first NN object, it will be-
come progressively slower when retrieving the additional k − 1 NN, since at each iter-
ation, the SALT-p2p algorithm will start from scratch. To remedy this, at the beginning
of the i-th iteration, we reload the corresponding priority queue with all vertices labeled
during the i−1 iteration except those originating from the previous NN vertex found,
since most of those labeled vertices were already assigned correct SP distances. Since
we use a min-heap priority queue (as all Dijkstra variants), this optimization signifi-
cantly improves query times and still ensures correctness of the SALT-kNN algorithm.

3.4 Summary and Expectations

Although SALT is very efficient for most SP queries, the main phase of SALT-kNN
could be performed with any valid unidirectional SP algorithm. However, using SALT-
p2p has multiple benefits: (i) Its constituent algorithms, ALT and CRP have very fast
preprocessing times suitable for dynamic road networks. (ii) Unidirectional SALT-p2p
provides better performance than bidirectional SALT-p2p, contrary to existing hierar-
chical methods that may only be used in a bidirectional setting. (iii) SALT-p2p and
hence SALT-kNN are very robust to the metric used. This is an important property for
kNN queries identifying Points-Of-Interest (POIs) based on walking distance. (iv) SALT-
kNN’s pruning phase is very crucial for a fast implementation. Only the landmarks pre-
processing data could provide this type of functionality. (v) Lastly, the main phase of the
SALT-kNN algorithm initially expands vertices closer to the query location s. As such,
“unattractive” objects furthest from s (as estimated by the lower-bounds) that cannot be
excluded during the pruning phase, do not slow down SALT-kNN queries. In fact, ex-
periments showed that finding the first NN is as fast as a plain SALT-p2p query. Hence,
it is hard to provide a much better theoretical solution, using standard SP techniques,
with fast enough preprocessing times suitable for dynamic road networks.
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4 Experiments

The experimentation that follows, assesses the performance of the SALT-p2p and SALT-
kNN algorithms. For completeness, we also report the performance of sequential and
parallel GRASP [11] algorithm within the SALT framework for single-source (one-
to-all) queries. Experiments were performed on a workstation with a 4-core i7-4771
processor clocked at 3.5GHz with 32Gb of RAM, running Ubuntu 14.04 64bit. Our
code was written in C++ and GCC 4.8 (with OpenMP). Query times are executed on
one core and augmented with SSE instructions. We used the European road network
(18M vertices / 42M arcs) and the full USA road network (24M vertices / 58M arcs) [8]
and experimented with both travel times and travel distances.

For partitioning the graph into nested-multilevel partitions, similarly to [11], we
used Buffoon / KaFFPa [19] in a top-down approach. We use a partitioning setup similar
to the best recorded CRP results of [3] with total number of overlay levels set to L=6
and |C1|=1048576, |C2|=65536, |C3|=8192, |C4|=1024, |C5|=128 and |C6|=16. We also
used 24 landmarks, since adding more landmarks did not offer significant performance
benefits for either SALT-p2p or SALT-kNN algorithms.

4.1 Preprocessing

Table 1: SALT, GRASP and G-tree preprocessing
Preprocessing time (s)

Travel Times (TT) Travel Distances (TD)
EUR USA EUR USA

SALT (GS customiz.) 11.1 (5.5) 14.82 (7.4) 11.3 (5.7) 15.4 (7.7)
SALT (Landmarks) 2.6 (1.3) 3.6 (1.8) 2.7 (1.4) 3.6 (1.8)

SALT (Total) 13.7 (6.9) 18.4 (9.2) 14.0 (7.0) 18.9 (9.5)
GRASP (Orig) 8 (8) 12 (12) 10 (10) 13 (13)

G-tree (198,479) (5,736) (25,918) (5,001)

In this section we report the pre-
processing times for SALT, in
comparison to the original GRASP
version [11]) and G-tree [21] (G-
tree source code was provided by
its authors). Note, that contrary
to the SALT framework that may
simultaneously answer single-pair,
single-source (one-to-all, one-to-
many, range) and kNN queries,
GRASP only focuses on single-

source queries and G-tree may only be used for undirected networks and kNN queries.
SALT and GRASP preprocessing times refer to parallel execution and G-tree prepro-
cessing time is sequential. For GRASP and SALT and its graph-separator subphase we
only report preprocessing times for the customization stage, similar to [4] and [11],
since this is the preprocessing that must be repeated when arc-weights change, for live-
traffic road networks. For a fair comparison, for G-tree we do not report the partitioning
time required for the building of the G-tree index (which uses METIS [15]) and we
only report the preprocessing time for calculating the SP distances inside the respective
index structure. Results are presented on Table 1. Numbers inside parentheses represent
preprocessing times for undirected versions of the benchmark road networks.

Results show that: (i) G-tree preprocessing times are very disappointing, especially
for Europe and travel times, when more than 24h are required for preprocessing, con-
trary to SALT’s preprocessing time that never exceeds 19s for all networks and met-
rics. (ii) In comparison to GRASP, SALT may calculate both forward and reverse
graph SSSP queries. If GRASP was to be extended for reverse graph SSSP queries,
its preprocessing time would double and hence it would be 16−43% slower than SALT.
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(iii) SALT’s preprocessing time is very robust to the metric used and preprocessing
time is similar for both metrics. (iv) For undirected versions of the road networks (for
comparing results to G-tree), SALT’s preprocessing time drops in half, both for the
GS customization and landmarks phase. Note that although SALT’s total preprocess-
ing time is better than any other previous ALT based approach including [10], the GS
customization phase could be potentially further accelerated by using the optimizations
of [6], namely SIMD instructions or contraction. Furthermore, SALT’s memory require-
ments still remain quite modest, since it requires less than 8.5Gb (including the original
graph G) for both benchmark road networks and metrics.

4.2 Single-pair / single-source shortest-path queries

Table 2 compares unidirectional and bidirectional SALT-p2p query performance for
single-pair shortest-path (SPSP) queries, compared to its algorithmic components, name-
ly the ALT-SIMD algorithm of [10] and CRP [4] with the arc-reduction of [12], within
the SALT framework, for a total of 10,000 queries with the pair of vertices selected
uniformly at random. Regarding SSSP queries, we report sequential and parallel per-
formance of GRASP for one-to-all queries within the SALT framework and compare
it with the original version of GRASP [11]. For both GRASP versions, the number in
parentheses represent sequential times. Results are presented in Table 2.

Results show that: (i) Unidirectional SALT-p2p is always faster than bidirectional
SALT-p2p. Thus, to the best of our knowledge, uniSALT-p2p is the faster unidirectional
algorithm for road networks, with preprocessing times of few seconds. (ii) uniSALT-
p2p is 100 − 266× faster than ALT and 3 − 4× faster than CRP. Note that our CRP’s
query performance is almost identical to the best CRP implementation of [3]. UniSALT-
p2p path unpacking (i.e., providing full paths) would also be faster than CRP, since it
uses bidirectional ALT instead of bidirectional Dijkstra used by CRP [3]. Moreover,
uniSALT-p2p provides comparable performance to recent Customizable Contraction
Hierarchies [9] which was only tested on undirected networks. (iii) SALT-p2p is very
robust to the metric used. In fact, uniSALT-p2p is slightly faster for travel distances.

Table 2: SALT-p2p and GRASP query perfor-
mance

SPSP Query times (ms)
Travel Times (TT) Travel Distances (TD)

EUR USA EUR USA
biALT 103 60 133 89

CRP (+AR) 1.6 1.8 2 2
uniSALT-p2p 0.6 0.6 0.5 0.5
biSALT-p2p 0.9 0.9 0.9 0.9

SSSP Query times (ms)
GRASP (Orig) 43 (150) 58 (207) 46 (156) 66 (218)

GRASP (SALT) 50 (169) 65 (224) 53 (175) 68 (228)

For SSSP queries, the GRASP im-
plementation within the SALT frame-
work is 5−12% slower for sequential
and 3−16% slower for parallel exe-
cution than the original GRASP im-
plementation. Still, it is fast enough
for most practical cases and the SALT
framework may also execute forward
and reverse SSSP queries, which is a
considerable advantage. Note, that the
slightly less efficient implementation of
GRASP within SALT is attributed to
the fact that now |CL| = 16 (in compar-
ison to |CL| = 128 in [11]). However,

setting |CL| = 16 is the optimal setting for SPSP and kNN queries and thus, we kept the
setting that benefits the most frequent type of queries.
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(a) Europe (k=1) (b) USA (k=1)

(c) Europe (k=4) (d) USA (k=4)

Fig. 2: SALT-kNN Dijkstra and G-tree comparison for varying values of |O|.

4.3 kNN queries
Next, we compare SALT-kNN, Dijkstra and G-tree [21] performance for kNN queries.
For each experiment, we generate 100 sets of random objects of varying size |O| and
for each such set we generate 100 random query locations, for a total of 10, 000 kNN
queries per |O|. Figure 2 reports average query times for k = 1 and k = 4. Note, that
G-tree requires a target selection phase, for each set of objects |O| (requiring 1.9−2.4s).
Thus, contrary to Dijkstra and SALT-kNN, G-tree cannot be used for moving objects.

Results show that SALT-kNN provides stable performance and query times signifi-
cantly below 1ms for k=1. Contrarily, G-tree is almost two - three orders of magnitude
slower and cannot compete with either SALT-kNN or Dijkstra. Dijkstra starts very slow
for small values of |O| but manages to surpass SALT-kNN performance for |O| > 8192.
These results are similar to [7], where Dijkstra also outperforms online CRP for k = 10
and |O| = 0.01 × |V |. Still, since for static points of interest we are usually interested in
a specific type of objects (e.g., gas stations) and in the case of moving objects we rarely
have such large vehicle fleets (i.e., taxis, trucks) to monitor and we usually aim for kNN
queries among the available vehicles (a much smaller subset of total vehicles), then the
SALT-kNN algorithm is surely to perform better for most practical applications.

After establishing the superiority of SALT-kNN over G-tree, we next evaluate the
impact of objects distribution to SALT-kNN and Dijkstra’s performance. To this end,
similar to [5], we pick a vertex at random and run Dijkstra’s algorithm from it until
reaching a predetermined number of vertices |B|. If B is the set of vertices visited dur-
ing this search, we pick our objects O as a random subset of B. We keep the number
of objects |O| steady at 214 and we experiment with different values of |B| ranging from
214 . . . 224, to simulate cases of either: (i) POIs mainly located near the city-center or
(ii) vehicle fleets which may service an entire continent but operate mainly on a parti-
cular country. Results are presented in Figure 3.
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(a) Europe (k=1) (b) USA (k=1)

(c) Europe (k=4) (d) USA (k=4)

Fig. 3: SALT-kNN and Dijkstra comparison for |O| = 214 and varying values of |B|.

Results show, that SALT-kNN is one - two orders of magnitude faster than Dijkstra
when objects are not uniformly located in the road network (as is the typical case,
either for static or moving objects). Thus, SALT-kNN guarantees excellent and stable
performance, regardless of: (i) the number of objects and (ii) the objects distribution.
Moreover, it does not need a target selection phase, such as G-tree or CRP and therefore,
it may be used for either static or moving objects. Note, than even without building an
index, CRP would still require 10ms for the target selection phase and 16,384 objects
for the Europe road network [7] and therefore, CRP would be at least 10 times slower
than SALT-kNN for moving objects.

5 Summary and Conclusions
This work presented SALT, a novel framework for answering shortest-path queries on
road networks, including point-to-point, single-source (one-to-all, one-to-many, range)
and kNN queries. By combining ideas from the ALT, CRP and GRASP algorithms,
the SALT framework efficiently answers point-to-point queries 3−4 times faster than
previous algorithms of similar preprocessing times and answers kNN queries orders of
magnitude faster than previous index-based approaches. Moreover, the proposed SALT-
kNN algorithm was shown to be especially robust, regardless of the metric used, the
number of objects or the distribution of objects in the road network. Hence, the SALT
framework presents itself as an excellent solution for most practical use-cases and the
best overall solution for real-world applications.
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