
COLD. Revisiting Hub Labels on the database
for large-scale graphs

Alexandros Efentakis1, Christodoulos Efstathiades1,2 and Dieter Pfoser3

1 Research Center “Athena”
efentakis@imis.athena-innovation.gr

2 Knowledge and Database Systems Laboratory
National Technical University of Athens, Greece

cefstathiades@dblab.ece.ntua.gr
3 Department of Geography and GeoInformation Science, George Mason University

dpfoser@gmu.edu

Abstract. Shortest-path computation is a well-studied problem in al-
gorithmic theory. An aspect that has only recently attracted attention is
the use of databases in combination with graph algorithms to compute
distance queries on large graphs. To this end, we propose a novel, efficient,
pure-SQL framework for answering exact distance queries on large-scale
graphs, implemented entirely on an open-source database system. Our
COLD framework (COmpressed Labels on the Database) may answer
multiple distance queries (vertex-to-vertex, one-to-many, kNN, RkNN)
not handled by previous methods, rendering it a complete solution for a
variety of practical applications in large-scale graphs. Experimental re-
sults will show that COLD outperforms previous approaches (including
popular graph databases) in terms of query time and efficiency, while
requiring significantly less storage space than previous methods.

1 Introduction

Answering distance queries on graphs is one of the most well-studied problems
on algorithmic theory, mainly due to its wide range of applications. Although
a lot of recent research focused exclusively on transportation networks (cf. [9]
for the most recent overview) the emergence of social networks has generated
massive unweighted graphs of interconnected entities. On such networks, the
distance between two vertices is an indication of the closeness of their entities,
i.e., for finding users closely related to each other or extracting information about
existing communities within the social media users. Although we may always use
a breadth first search (BFS) to calculate the distance between any two vertices
on such graphs, that approach cannot facilitate fast-enough queries on main
memory or be easily adapted to secondary storage solutions.

Moreover, most of the excellent preprocessing techniques available for road
networks cannot be adapted to large-scale graphs, such as social or collaboration
networks. So far, the most promising approach for this type of graphs builds on
the 2-hop labeling or hub labeling (HL) algorithm [23],[12], in which we store a

two-part label L(v) for every vertex v: a forward label Lf (v) and a backward label
Lb(v). These labels are then used to very fast answer vertex-to-vertex shortest-
path queries. This technique has been adapted successfully to road networks [2,
3, 15, 4] and quite recently has also been extended to undirected, unweighted
graphs [5, 14, 25]. The HL method has also been applied for one-to-many, many-
to-many and kNN queries in road networks [16, 17] and kNN and RkNN queries
in the context of social networks in [21].

Although hub labeling is an extremely efficient shortest-path computation
method using main memory, there are very few works that try to replicate those
algorithms for secondary storage. HLDB [18] stores the calculated hub labels for
continental road networks in a commercial database system and translates the
typical HL distance query between two vertices to plain SQL commands. More-
over, it showed how to efficiently answer kNN queries and k-best via points, again
by means of SQL queries. Recently, HopDB [25] proposed a customized solution
that utilizes secondary storage also during preprocessing. Unfortunately, both
methods have their shortcomings. HLDB has only been tested on road networks
and consequently small labels sizes (<100). Its speed would seriously degrade
for large-scale graphs due to the much larger label size. HopDB answers only
vertex-to-vertex queries and is a customized C++ solution that cannot be used
with existing database systems and, hence, has limited practical applicability.

This work presents a database framework that may service multiple distance
queries on massive large-scale graphs. Our pure-SQL COLD framework (COm-
pressed Labels on the Database) can answer multiple exact distance queries
(point-to-point, kNN) in addition to RkNN and one-to-many queries not han-
dled by previous methods, rendering it a complete database solution for a variety
of practical massive, large-scale graph problems. Our extensive experimentation
will show that COLD outperforms previous solutions, including specialized graph
databases, on all aspects (including query performance and memory require-
ments), while servicing a larger variety of distance queries. In addition, COLD is
implemented using a popular, open-source database engine with no third-party
extensions and, thus, our results are easily reproducible by anyone.

The outline of the remainder of this work is as follows. Section 2 presents
related work. Section 3 describes the novel COLD framework and its implemen-
tation details. Experiments establishing the benefits of COLD are provided in
Section 4. Finally, Section 5 gives conclusions and directions for future work.

2 Related work

Throughout this work we use undirected, unweighted graphs G(V,E) (where V
represents vertices and E arcs). A k-Nearest Neighbor (kNN) query seeks the
k-nearest neighbors to an input vertex q. The RkNN query (also referred as
the monochromatic RkNN query), given a query point q and a set of objects P ,
retrieves all the objects that have q as one of their k-nearest neighbors according
to a given distance function dist(). In graph networks, dist(s, t) corresponds to
the minimum network distance between the two objects. Formally RkNN(q) =

2

{p ∈ P : dist(p, q) ≤ dist(p, pk)} where pk is the k-Nearest Neighbor (kNN) of p.
Throughout this work, we assume that objects are located on vertices and we
always refer to snapshot kNN and RkNN queries on graphs, i.e, objects are not
moving. Also, similarly to previous works, the term object density D refers to
the ratio |P |/|V |, where P is a set of objects in the graph and |V | is the total
number of vertices. Although, there is extensive literature focusing on kNN and
RkNN queries in Euclidean space, since our work focuses on graphs we will only
describe related work focusing on the latter.

Regarding road networks and kNN queries, G-tree [33] is a balanced tree
structure, constructed by recursively partitioning the road network into sub-
networks. Unfortunately, this method cannot scale for continental road networks,
since it requires several hours for its preprocessing. Moreover, it requires a target
selection phase to index which tree-nodes contain objects (requiring few seconds)
and thus, cannot be used for moving objects. Recently, the work of [17] expanded
the graph-separators CRP algorithm of [13] to handle kNN queries on road
networks. Unfortunately, (i) CRP also requires a target selection phase and thus,
cannot be applied to moving objects and (ii) it may only perform well for objects
near the query location. Hence, this solution is also not optimal. The latest work
for kNN queries on road networks is the SALT framework [22] which may be
used to answer multiple distance queries on road networks, including vertex-
to-vertex (v2v), single source (one-to-all, range, one-to-many) and kNN queries.
This work expands the graph-separators GRASP algorithms of [20] and the ALT-
SIMD adaptation [19] of the ALT algorithm and offers very fast preprocessing
time and excellent query times. For kNN queries, SALT does not require a target
selection phase and hence it may be used for either static or moving objects.

For RkNN queries on road networks, the work of [30] uses Network Voronoi
cells (i.e., the set of vertices and arcs that are closer to the generator object)
to answer RkNN queries. This work has only been tested on a relatively small
network (110K arcs) and all precomputed information is stored in a database.
Despite the fact that the preprocessing stage for computing the Network Voronoi
cells is quite costly, the queries’ executions times range from 1.5s for D = 0.05
and k = 1, up to 32s for k = 20, rendering this solution impractical for real-time
scenarios. Up until recently, the only work dealing with other graph classes (be-
sides road networks) is [32], although it has only been tested on sparse networks,
e.g., road networks, grid networks (max degree 10), p2p graphs (avg degree 4)
and a very small, sparse co-authorship graph (4K nodes). In this work, the con-
ducted experiments for values of k > 1 refer only to road networks, therefore
the scalability of this work for denser graphs and larger values of k is question-
able. Recently, Borutta et al. [10] extended this work for time-dependent road
networks, but presented results were not very encouraging. The larger road net-
work tested had 50k nodes (queries require more than 1s for k = 1) and for a
network of 10k nodes and k = 8, RkNN queries take more than 0.3s (without
even adding the I/O cost). In a nutshell, all existing contributions and methods
have not been tested on dense, large-scale graphs, cannot scale for increasing k
values and their performance highly depends on the object density D.

3

Our work builds upon the 2-hop labeling or Hub Labeling (HL) algorithm
of [23, 12] in which, preprocessing stores at every vertex v a forward Lf (v)
and a backward label Lb(v). The forward label Lf (v) is a sequence of pairs
(u, dist(v, u)), with u∈V . Likewise, the backward label Lb(v) contains pairs
(w, dist(w, v)). Vertices u and w are denoted as the hubs of v. The generated
labels conform to the cover property, i.e., for any s and t, the set Lf (s) ∩ Lb(t)
must contain at least one hub that is on the shortest s− t path. For undirected
graphs Lb(v) = Lf (v). To find the network distance dist(s, t) between two ver-
tices s and t, a HL query must find the hub v ∈ Lf (s) ∩ Lb(t) that minimizes
the sum dist(s, v) + dist(v, t). By sorting the pairs in each label by hub, this
takes linear time by employing a coordinated sweep over both labels. The HL
technique has been successfully adapted for road networks in [2, 3, 15, 4]. In the
case of large-scale graphs, the Pruned Landmark Labeling (PLL) algorithm of [5]
produces a minimal labeling for a specified vertex ordering. In this work, vertices
are ordered by degree, whereas the work of [14] improves the suggested vertex
ordering and the storage of the hub labels for maximum compression. The HL
method has also been used for one-to-many, many-to-many and kNN queries on
road networks in [16] and [17] respectively. Our latest work [21] proposed Re-
Hub, a novel main-memory algorithm that extends the Hub Labeling approach
to efficiently handle RkNN queries. The main advantage of the ReHub algorithm
is the separation between its costlier offline phase, which runs only once for a
specific set of objects and a very fast online phase which depends on the query
vertex q. Still, even the costlier offline phase hardly needs more than 1s, whereas
the online phase requires usually less than 1ms, making ReHub the only RkNN
algorithm fast enough for real-time applications and big, large-scale graphs.

Regarding secondary-storage solutions, Jiang et al. [25] propose their HopDB
algorithm that suggest an efficient HL index construction when the given graphs
and the corresponding index are too big to fit into main memory. The work of [1]
introduced the HLDB system, which answers distance and kNN queries in road
networks entirely within a database by storing the hub labels in database tables
and translating the corresponding HL queries to SQL commands. Throughout
this work, we will compare our proposed COLD framework to HLDB, since to the
best of our knowledge, it is the only framework that may answer exact distance
queries entirely within a database. Moreover, within the COLD framework we
also adapt our ReHub main-memory algorithm into a database context, so that
its online phase may be translated to fast and optimized SQL queries.

3 Contribution

This section presents the COLD (COmpressed Labels on the Database) database
framework. COLD can answer multiple distance queries (vertex-to-vertex, kNN,
RkNN and one-to-many) for large-scale graphs using SQL commands. Since
COLD builds on HLDB [1] and ReHub [21], we will follow the notation and
running example presented there, for highlighting the necessary concepts and
challenges for adapting those previous works, (i) in the context of large-scale

4

Vertex Hub Labels (h,d)

0 (0,0)

1 (0,1), (1,0)

2 (0,1), (2,0)

3 (0,1), (3,0)

4 (0,1), (4,0)

5 (0,2), (1,1), (5,0)

6 (0,2), (1,1), (6,0)

7 (0,2), (1,1), (7,0)

8 (0,2), (2,1), (8,0)

9 (0,2), (3,1), (9,0)

10 (0,2), (4,1), (10,0)

11 (0,3), (1,2), (5,1), (11,0)

12 (0,3), (1,2), (6,1), (12,0)

13 (0,3), (1,2), (7,1), (13,0)

Fig. 1 & Table 1: A sample Graph G and the created hub-labels

graphs for [1] and (ii) within the boundaries of a relational database manage-
ment system (RDBMS) for [21]. To this end, we chose PostgreSQL [29] for our
implementation, given that it is a popular, open-source RDBMS. Although we
use some PostgreSQL-specific data-types and SQL extensions, we do not use any
third-party extensions but only features included in its standard installation.

3.1 Implementation

The COLD framework assumes that we have a correct hub labeling (HL) frame-
work that generates hub-labels for the undirected, unweighted graphs we wish
to query. Although COLD will work with any correct HL algorithm, in this work
we use the [6] implementation of the PLL algorithm of [5] to generate the neces-
sary labels. To highlight the results of this process, the labels for the undirected,
unweighted graph G of Figure 1 are shown in Table 1. Throughout this work,
we will refer to those labels as the forward labels. The forward label L(v) for
a vertex v is an array of pairs (u, dist(v, u) sorted by hub u. Since our work
also focuses on snapshot kNN and RkNN queries, there also some objects P∈V
that do not change over time. For our specific running example we assume that
P = {4, 10, 12} and thus, we highlight the respective entries of Table 1.

Vertex-to-Vertex (v2v) queries. To find the network distance dist(s, t) be-
tween two vertices s and t, a HL query must find the hub v ∈ L(s)∩L(t) that
minimizes the sum dist(s, v) + dist(v, t). For our sample graph G, the minimum
distance between e.g., vertices 2 and 7 is d(2, 7) = 3, using the hub 0. To trans-
late this HL query into SQL commands, in HLDB [1] forward labels are stored
in a database table denoted forward where the labels of vertex v are stored as
triples of the form (v, hub, dist(v, hub)) (see Table 2). The table forward has the

5

Table 2: The forward table used in
HLDB for the sample graph G

v hub dist
.
2 0 1
2 2 0
.
7 0 2
7 1 1
7 7 0
.

Table 3: The forwcold table used for
COLD for the sample graph G

v hubs dists
.
2 {0, 2} {1, 0}
.
7 {0, 1, 7} {2, 1, 0}
.

Code 1.1: V2v query for HLDB

1 SELECT MIN(n1.dist+n2.dist)

2 FROM forward n1, forward n2

3 WHERE n1.v = s

4 AND n2.v = t

5 AND n1.hub = n2.hub;

Code 1.2: V2v query for COLD

1 SELECT MIN(n1.d+n2.d) FROM

2 /* Expand hubs , dists arrays */

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold WHERE v = s) n1,

6 (SELECT UNNEST(hubs) AS hub ,

7 UNNEST(dists) AS d

8 FROM forwcold WHERE v = t) n2

9 WHERE n1.hub=n2.hub;

combination of (v, hub) as the primary key and is clustered according to those
columns, so that “all rows corresponding to the same label are stored together to
minimize random accesses to the database” [1]. Then we can find the distances
between any two vertices s and t by the SQL query of Code 1.1.

Although the HLDB vertex-to-vertex (v2v) query is very simple, there is one
major drawback. For such a query, HLDB has to fetch from secondary storage
the subset of |L(s)| + |L(t)| rows with common hubs. Although this is prac-
tical for road networks where the forward labels have less than 100 hubs per
vertex [3], it cannot scale for large-scale graphs where the forward labels have
thousand of hubs per vertex. Moreover, on such graphs the forward DB table
and the corresponding primary key index will become too large, which is also an
important disadvantage. To this end, we take advantage of the fact that Post-
greSQL features an array data type that allows columns of a DB table to be
defined as variable-length arrays. Hence, in COLD we store hubs and distances
for a vertex (both ordered by hub) as arrays in two separate columns (i.e., hubs
and dists) in a single row. The resulting forwcold compressed DB table is shown
in Table 3. This approach not only emulates exactly how labels are stored on
main-memory for fast v2v queries but also has considerable advantages: (i) The
forwcold DB table has exactly |V | rows (ii) The forwcold DB table has the
column v as primary key without needing a composite key. This alone facili-
tates faster queries. Moreover the size of the corresponding index will be much
smaller. In fact, our experimentation will show that the primary-key index for
forwcold may be > 4, 400× smaller than the index size of HLDB. (iii) For a v2v

6

Table 4: Necessary data structures for the sample graph G, P = {4, 10, 12} and
one-to-many, kNN and RkNN queries

Backward Labels kNN Backward RkNN Backward kNN Result (k=1)
Hub (to-many) [16] Labels (k=2) [1] Labels (k=1) [21] Obj. (Obj., dist) [21]
0 (4,1), (10,2), (12,3) (4,1), (10,2) (4,1), (12,3)

4 (10,1)
1 (12,2) (12,2) (12,2)
4 (4,0), (10,1) (4,0),(10,1) (4,0), (10,1)

10 (4,1)
6 (12,1) (12,1) (12,1)
10 (10,0) (10,0) (10,0)

12 (4,4)
12 (12,0) (12,0) (12,0)

query, COLD needs to access exactly two rows, regardless of the sizes of |L(s)|
and |L(t)|. This way, we efficiently minimized the secondary-storage utilization,
even working inside a database. The resulting SQL query for COLD is shown in
Code 1.2. There we exploit the fact that PostgreSQL “guarantees that parallel
unnesting” for hubs and distances for each nested query “will be in sync”, i.e.,
each pair (hub, dist) is expanded correctly since for the same v the respective
arrays have the same number of elements4.

Additional queries overview. For answering more complex (kNN, RkNN and
one-to-many) distance queries on a HL framework for a set of objects P , we need
to build some additional data structures from the forward labels (for undirected
graphs). Then to answer the respective query we only need to combine the for-
ward labels L(q) of query vertex q, with the respective data structure explained
in the following. Those data structures are summarized in Table 4.

For answering one-to-many queries, i.e., calculate distances between a source
vertex q and all objects in P , we need to build the backward labels-to-many by
basically ordering the forward labels of the objects by hub [16] and then by
distance for the same hub. For kNN queries we only need to keep at most the
k-best pairs (of smallest distances) per hub from the backward labels-to-many to
create the kNN backward labels [1]. In our specific example, the kNN backward
labels for k = 2 and hub 0, do not contain the pair (12, 3). Finally, for RkNN
queries, we must first calculate the kNN Results (i.e., the NN of the object 4 is the
object 10 with distance 1) and then we build the RkNN backward labels, based
on the observation that “we need to access those pairs from the backward labels-
to-many to a specific object, if and only if those distances are equal or smaller
than the distance of the kNN of this object” [21]. In our specific example, the
RkNN backward labels for k = 1 and hub 0, do not contain the pair (10,2) since
the NN of object 10 (the object 4) is within distance 1. Although for our small
graph the differences between the individual data structures seem minimal, for
larger graphs those differences become very prominent. This was also showcased
by the theoretical analysis provided in [21] which showed that backward labels-
to-many will have on average D · |HL| pairs, the kNN backward labels have at
most k · |V | pairs and the RkNN backward labels have on average ε ·D · |HL|

4 http://stackoverflow.com/a/23838131

7

Table 5: The knntab table used in
HLDB for the sample graph G, k = 2
and P = {4, 10, 12}

hub dist obj
0 1 4
0 2 10
1 2 12
.

Table 6: The knntab table used in
COLD for the sample graph G, k = 2
and P = {4, 10, 12}

hub dist objs
0 1 {4}
0 2 {10}
1 2 {12}
.

pairs where ε may be < 0.01 for specific datasets and experimental settings.
Moreover, Efentakis et al. [21] have shown how these additional data structures
may be constructed from the forward labels in main-memory, requiring less than
few seconds, even for the larger tested datasets.

kNN queries. To translate the HL kNN query into SQL, HLDB stores kNN
backward labels in a separate DB table denoted knntab that stores triples of the
form (hub, dist, obj) (see Table 5). The respective table knntab has the combina-
tion of (hub, dist, obj) as a composite primary key and is clustered according to
those columns. Note that in HLDB, we cannot use the combination of (hub, dist)
as a primary key, because especially in large scale graphs we will have a lot of
distance ties even for k-entries for the same hub. Then we can can answer a kNN
query from vertex q by the SQL query of Code 1.3. Again, the kNN HLDB query
has the same drawbacks as before, i.e., it has to retrieve |L(q)| rows from forward
and k · |L(q)| rows from knntab tables, for a total of (k+1) · |L(q)| rows retrieved
from secondary storage. Moreover in a database, it makes sense to create one
large knntab table for the maximum value kmax of k (e.g., for k = 16) that may
be serviced by the DB framework and that same table will be used for all kNN
queries up to k = kmax. In that case, the HLDB framework will have to retrieve
(kmax + 1) · |L(q)| rows for every kNN query regardless of the value of k.

To remedy the HLDB drawbacks, COLD creates the knncold DB table (Ta-
ble 6) that has the columns (hub, dist, objs), whereas objects are grouped and or-
dered per hub and distance (the column objs is an array). Although for our sam-
ple graph G, the DB tables knntab and knncold seem identical, COLD’s method
offers several advantages: (i) We can now use the combination of (hub, dist)
as a primary key, which makes the respective index significantly smaller and
faster and (ii) In case of many distance ties (common to large-scale graphs) and
one large knncold DB table that services all kNN queries for values of k up to
the maximum value kmax , we only need to fetch the first k-objs entries (i.e.,
objs[1:k]) per hub and dist, which makes the later sorting faster (see Code 1.4).

One-to-many queries. Similar to how COLD handles kNN queries, for one-
to-many queries, COLD stores the backward labels-to-many in a new objcold
DB table that has an identical format to knncold, i.e., it has three columns
(hub, dist, objs) whereas objects are grouped and ordered per hub and distance.
Objcold also uses the combination of (hub, dist) as a primary key. The resulting

8

Code 1.3: kNN query for HLDB

1 SELECT MIN(n1.dist+n2.dist),

2 n2.obj FROM

3 forward n1 , knntab n2

4 WHERE n1.v = q

5 AND n1.hub = n2.hub

6 GROUP BY n2.obj

7 ORDER BY MIN(n1.dist+n2.dist)

8 LIMIT k;

Code 1.4: kNN query for COLD

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj FROM

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold WHERE v = q) n1,

6 /* k-entries per hub ,dist */

7 (SELECT hub , dist ,objs [1:k]

8 FROM knncold) n2

9 WHERE n1.hub=n2.hub

10 GROUP BY obj

11 ORDER BY MIN(n1.d+n2.dist)

12 LIMIT k;

one-to-many query (Code 1.5) is quite similar to COLD’s kNN query, but (i) it
operates on the larger objcold DB table (ii) It does not have the ORDER BY ...

LIMIT k clause and (iii) We use the entire objs array per hub and distance
instead of objs[1:k]. Note that HLDB cannot possibly support such queries
because it will need to retrieve on average |L(q)| rows from the forward table
and a total of |L(q)| · D · (|HL|/|V |) [21] rows from the corresponding objlab
table, which will be prohibitively slow for very large datasets.

Table 7: The knnres table used in
COLD for RkNN queries, the sam-
ple graph G, k = 1 and P =
{4, 10, 12}

obj dists objs
4 {1} {10}
10 {1} {4}
12 {4} {4}

RkNN queries. For RkNN queries,
COLD stores the RkNN backward la-
bels in a separate revcold DB table that
has an identical format to previous knn-
cold and objcold DB tables, i.e., three
columns (hub, dist, objs) where objects
are grouped and ordered per hub and dis-
tance and the combination of (hub, dist)
used as a primary key. COLD also stores
the kNN Results, i.e., the kNN of all ob-

jects in another knnres DB table that has the format (obj, dists, objs,) where
obj is the primary key and objs and dists are arrays (both ordered by distance).
Therefore the kNN of object p is the objs[k] within distance dists[k] of the
respective row for p. Again it makes sense to build a knnres DB table for a max
value of kmax that may service RkNN queries for varying values of k. As a result,
during the RkNN COLD query, we will have to use an additional JOIN between
the revcold and knnres DB tables. The resulting query is shown in Code 1.6.

We see that even the more complex RkNN query in COLD requires just a
few lines of SQL code that will work on any recent PostgreSQL version without
any need of third-party extensions or specialized index structures. In fact, all
DB tables in COLD, use only standard B-tree primary key indexes, without
any modifications. To satisfy this strict requirement, we effectively compressed

9

Code 1.5: One-to-many COLD query

1 SELECT MIN(n1.d+n2.dist),

2 UNNEST(objs) AS obj FROM

3 (SELECT UNNEST(hubs) AS hub ,

4 UNNEST(dists) AS d

5 FROM forwcold

6 WHERE v = q) n1 ,

7 objcold n2

8 WHERE n1.hub=n2.hub

9 GROUP BY obj;

Code 1.6: RkNN query for COLD

1 SELECT n3.id2 ,n3.dist FROM

2 /* n3 subquery is a modified

3 one -many -query to revcold */

4 (SELECT MIN(n1.d+n2.dist) AS d3 ,

5 UNNEST(objs) AS obj FROM

6 (SELECT UNNEST(hubs) AS hub ,

7 UNNEST(dists) AS d

8 FROM forwcold WHERE v = q) n1,

9 revcold n2

10 WHERE n1.hub=n2.hub

11 GROUP BY obj

12 ORDER BY obj ,MIN(n1.d+n2.dist)

13) n3,

14 /* Join with knnres table */

15 (SELECT obj , dists[k] AS dist

16 FROM knnres) n4

17 WHERE n3.obj=n4.obj

18 AND n3.d3 <=n4.dist

19 ORDER BY n3.obj;

the index sizes by grouping rows per vertex (forcold table) or object (knnres
table), or by hub and distance for knncold, objcold and rknncold. And although
we used PostgreSQL specific SQL extensions for expanding the stored arrays,
latest versions of other databases (e.g., Oracle) support similar array data-types.
Hence, it would be quite easy to port COLD to other database vendors as well.

This section detailed the COLD framework in terms of design and imple-
mentation. COLD can answer multiple distance queries (v2v, kNN, RkNN and
one-to-many) based on data stored in an off-the-shelf relational database. We
also presented the actual queries used and the way the necessary data struc-
tures are stored within the database, so that our results are easily reproducible.
Although we focused on query efficiency, it is important to note that once we
create the forcold table, all the adjoining DB tables within COLD may also be
created using SQL commands (resulting queries were omitted due to space re-
strictions). This fact also shows that COLD is truly a pure-SQL framework for
servicing multiple distance queries on large-scale graphs. We also provided the
necessary theoretical details as to why the COLD framework will outperform
existing solutions. This will be further quantified in the following section.

4 Experimental Evaluation

To assess the performance of COLD on various large-scale graphs, we conducted
experiments on a workstation with a 4-core Intel i7-4771 processor clocked at
3.5GHz and 32Gb of RAM, running Ubuntu 14.04. We compare our COLD

10

Table 8: Networks graphs statistics
Graph | V | | E | Avg degr. | HL | / | V | PLL Preproc. Time (s)

Facebook 4,039 88,234 22 26 0.03
NotreDame 325,729 1,090,108 3 55 6

Gowalla 196,591 950,327 5 100 13
Youtube 1,134,890 2,987,624 3 167 123
Slashdot1 77,360 469,180 6 204 11
Slashdot2 82,168 504,230 6 216 13
Citeseer1 268,495 1,156,647 4 408 110
Amazon 334,863 925,872 3 689 230
DBLP 540,486 15,245,729 28 3,628 5,720

Citeseer2 434,102 16,036,720 37 4,457 5,946

framework with a custom implementation of HLDB in PostgreSQL and with
Neo4j, a well-known, popular graph database.

We use the same network graphs as our previous work of [21] that are taken
from the Stanford Large Network Dataset Collection [26] and the 10th Dimacs
Implementation Challenge website [8]. All graphs are undirected, unweighted
and strongly connected. We used collaboration graphs (DBLP, Citeseer1, Cite-
seer2) [24], social networks (Facebook [28], Slashdot1 and Slashdot2 [27]), net-
works with ground-truth communities (Amazon, Youtube) [31], web graphs (No-
tre Dame) [7] and location-based social networks (Gowalla) [11]. The graphs’ ave-
rage degree is between 3 and 37 and the PLL algorithm creates 26−4, 457 labels
per vertex, requiring 0.03−5, 946s for the hub labels’ construction (see Table 8).

COLD and HLDB were implemented in PostgeSQL 9.3.6, 64bit with rea-
sonable settings (8192Mb shared buffers, 64Mb temp buffers). We also used
Neo4j Server v2.1.5. The Neo4j queries were formulated using Cypher, Neo4j’s
declarative query language and we report query times as they were returned by
the server. Although Cypher may theoretically facilitate one-to-many queries
(besides vertex-to-vertex), testing Neo4j with our datasets and the same num-
ber of target vertices we tested COLD with, resulted in a “java.lang.Stack
OverflowError”. Providing the server with additional resources5 had no positive
effect and thus there are no results for one-to-many queries and Neo4j.

We conducted experiments belonging to four query types: (i) vertex-to-vertex,
(ii) kNN , (iii) RkNN and (iv) one-to-many. For each experiment, we used 10,000
random start vertices, reporting the average running time. Before each exper-
iment, we restart the PostgreSQL and Neo4j servers for clearing their internal
cache and we also clear the operating system’s cache for accurate benchmarking.
All charts are plotted in logarithmic scale.

4.1 Performance on HDD

In our first round of experiments, we ran experiments on an HDD, specifically a
SATA3 Seagate Barracude ST3000DM001 7200rpm with 64Mb cache.

5 http://neo4j.com/developer/guide-performance-tuning/

11

(a) Vertex-to-vertex query times (b) Memory size’s difference be-
tween COLD and HLDB

Fig. 2: Experiments on HDD for vertex-to-vertex

Vertex-to-vertex. Figure 2(a) shows results for vertex-to-vertex (v2v) queries
for COLD, HLDB and Neo4j. Results show that COLD is consistently 2 - 20.7×
faster than HLDB, with this difference amplified for the Citeseer1, Amazon and
Youtube datasets (16.8, 19.1 and 20.7 respectively). Moreover, COLD is also
9 - 143× (for the Gowalla dataset) faster than Neo4j, which exhibits stable
performance for all datasets, but is slower from both COLD and HLDB. For all
datasets, COLD requires less than 9ms for answering v2v queries.

Figure 2(b) shows the difference in memory size for the DB tables for-
cold (COLD) and forward (HLDB) and their respective primary-key (PK) in-
dexes. Results show that the size of the PK index in COLD is 3, 600 - 4, 444×
smaller than for HLDB (for DBLP and Citeseer2 respectively). As expected, the
difference in index sizes is almost identical to the |HL|/|V | ratio, since forcold
table has |V | rows and forward has |HL| rows. Likewise, the corresponding tables
are 131 - 188× smaller for COLD. Thus, the techniques used for compressing
the forward labels in COLD clearly achieve a considerable reduction in memory
size, rendering our proposed framework suitable for real-world scenarios.

kNN. Figure 3(a) shows the speedup of COLD compared to HLDB in the case
of kNN queries for D = 0.01 and k = {1, 2, 4, 8, 16}. As described in Section 3.1,
we have created two DB tables for each framework (COLD, HLDB), one for
kmax = 4 and one for kmax = 16. Then the DB table for kmax = 4 is used
for answering kNN queries for k = 1, k = 2 and k = 4 and the kNN table for
kmax = 16 is used for answering kNN queries for k = 8 and k = 16. Results
show that for k = 1, COLD is 5 - 19× faster for the five largest datasets (Ama-
zon, Citeseer,Citeseer2, DBLP. Youtube) and although this speedup degrades for
larger values of k, COLD remains consistently 2 - 10× faster even for k = 16. For
the smaller datasets, performance between COLD and HLDB is quite similar,
with COLD performing better on Facebook and Gowalla, while HLDB performs
only marginally better for Slashdot1, Slashdot2 and Notredame. In all cases,
COLD answers kNN queries for all datasets in less than 26ms even for k = 16.

In our second set of kNN experiments, we assess the performance of COLD
vs HLDB for varying values of D. For each value for D, we have build separate

12

1 2 4 8 16
0.5

1

2

4

8

16

32

k

S
p

ee
d

u
p

Amazon
Citeseer
Citeseer2
DBLP
Facebook
Gowalla
Notredame
Slashdot1
Slashdot2
Youtube

(a) kNN Speedup of COLD vs
HLDB for D = 0.01 and varying
values of k

0.001 0.0050.01 0.05 0.1
0.5

1

2

4

8

16

32

D

S
p
e
e
d
u
p

Amazon

Citeseer

Citeseer2

DBLP

Facebook

Gowalla

Notredame

Slashdot1

Slashdot2

Youtube

(b) Speedup of COLD vs HLDB
for k = 4 and varying values of D

Fig. 3: kNN Experiments on HDD for COLD and HLDB

versions of knntab (HLDB) and knncold (COLD) DB tables for D · |V | objects
selected at random from each dataset and kmax = 4. Figure 3(b) shows results
for k = 4 and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Again, for the five largest
datasets COLD is consistently 3.4 - 23.4× faster than HLDB, whereas even for
the smaller datasets, COLD is consistently 8.6 - 11.5× faster than HLDB for the
largest value of D (for D = 0.1). Moreover, COLD may answer kNN queries for
k = 4 on all datasets and all values of D in less than 14ms.

RkNN. For RkNN experiments, we only report COLD’s performance, since
there is no other SQL framework that supports these queries. In out first exper-
iment, we report the performance of COLD for D = 0.01 and k = {1, 2, 4, 8, 16}.
For all those queries we have built one version of the knnres DB table for
kmax = 16 (see Section 3.1) and 3 separate revcold tables for kmax = {1, 4, 16}.
As expected, for RkNN queries and k = 1 we use the revcold table built for
kmax = 1, for k = 2, k = 4 we use the revcold table built for kmax = 4 and
for k = 8, k = 16 we use the revcold table built for kmax = 16. Figure 4(a)
presents the results. In all cases, COLD provides excellent query times that are
below 20ms for k = 1 in all datasets and never exceed 82ms even for k = 16.

In our second set of RkNN experiments, we assess the performance of COLD
for varying values of D. Figure 4(b) presents results for k = 1 (as this is the
typical case for RkNN queries) and D = {0.001, 0.005, 0.01, 0.05, 0.1}. Results
show that although COLD’s performance degrades for larger values of D, RkNN
query times are below 49ms for all datasets and values of D, with the exception
of Youtube and D = 0.1 (109.3ms). Thus, COLD offers excellent and stable
performance in RkNN queries for all all datasets and tested values of k and D.

One-to-Many. Again, COLD is the only SQL framework that supports one-to-
many queries. Figure 5(a) presents the corresponding results for varying values of
D (D = {0.001, 0.005, 0.01, 0.05, 0.1}). COLD answers such queries in less than a

13

(a) COLD RkNN query times for
D = 0.01 and varying values of k

(b) COLD RkNN query times for k =
1 and varying values of D

Fig. 4: RkNN Experiments on HDD for COLD

(a) One-to-Many experiments for
COLD varying values of D

(b) COLD One-to-Many HDD vs
SSD

Fig. 5: One-to-many experiments for COLD

second for all datasets and values of D, except the Citeseer2 and DBLP datasets
(those with the highest |HL|/|V | ratio) that require 5601ms and 4170ms respec-
tively, for D = 0.1. For such high values of D, the one-to-many query reaches
the complexity of an one-to-all query and as expected, it cannot be any faster
on a secondary storage device. Note that even specialized graph databases like
Neo4j cannot support this type of queries for more than a 1,000 target objects,
whereas COLD answers one-to-many queries to 110,000 target objects in the
Youtube dataset in 401ms with a simple SQL query.

4.2 Performance on SSD

Having established the performance characteristics of COLD in the HDD, in our
second round of experiments, we repeat some of the previous experiments, using
a SSD to measure the impact of the secondary-storage device type to results.
The SSD used is a SATA3 Crucial CT512MX100SSD1 MX100 512GB 2.5”.

14

1 2 4 8 16
0.5

1

2

4

8

k

S
p

ee
d

u
p

Amazon
Citeseer
Citeseer2
DBLP
Facebook
Gowalla
Notredame
Slashdot1
Slashdot2
Youtube

(a) kNN Speedup of COLD
vs HLDB for D = 0.01 and
varying values of k

(b) COLD RkNN query times for
D = 0.01 and varying values of
k

Fig. 7: kNN and RkNN SSD performance

Fig. 6: SSD vertex-to-vertex

Vertex-to-vertex. Although the usage of
SSD favors HLDB more than COLD (see
Figure 6), COLD is consistently 1.6 - 3.2×
faster than HLDB (except Facebook, the
smallest of datasets). The SSD has almost
no impact on Neo4j and thus, COLD is now
11-171× faster than Neo4j on all datasets.
Note, than on the SSD, COLD requires less
than 0.9ms for all datasets and v2v queries,
except the Citeseer2 and DBLP datasets
(those with the highest |HL|/|V | ratio). But
even then, vertex-to-vertex queries still re-

quire less than 2.6ms for COLD.

kNN. Figure 7(a) shows the performance speedup of COLD compared to HLDB
in the case of kNN queries running on the SSD, for D = 0.01 and varying value
of k. Again, although the SSD lowers the performance gap between COLD and
HLDB, COLD is still faster on all datasets (except Facebook). In fact, COLD is
2.6 - 6.75× faster than HLDB for the high |HL|/|V | ratio datasets (Citeseer2,
HLDB) requiring less than 24.6ms even for k = 16.

RkNN. Figure 7(b) presents the results of the RkNN query time performance
on COLD for D = 0.01 and varying value of k. Results show that SSD usage
accelerates COLD by only 20% at most, which clearly demonstrates that COLD
effectively minimized secondary storage utilization and thus adding a better
secondary-storage medium provides minimal benefits for RkNN queries.

One-to-Many. Finally, Figure 5(b) compares one-to-many queries on HDD
and SSD for COLD. Again, the SSD usage accelerates COLD by only 2- 30%,
which further confirms the optimal secondary storage utilization of COLD.

15

4.3 Summary

Our experimentation has shown that our proposed COLD framework outper-
forms previous state-of-the-art HLDB in all performance benchmarks, including
query performance, memory size and scalability. Using HDDs, COLD is 2−21×
faster for vertex-to-vertex queries and 5 − 19× faster for kNN queries and the
largest datasets. Using SSDs, COLD is 1.6− 3.2× faster than HLDB for vertex-
to-vertex and up to 6.75× faster for kNN queries. COLD also requires up to
4, 444× less storage space (indexes) and up to 188× less storage space (DB ta-
bles) used for storing forward labels. Even specialized graph databases like Neo4j
are outperformed by COLD, which is up to 143× faster. Most importantly COLD
may service additional (RkNN, one-to-many) queries, not handled by any other
previous secondary-storage solutions, while providing excellent query times and
optimal secondary-storage utilization even on standard hard drives.

5 Conclusions

This work presented COLD, a novel SQL framework for answering various exact
distance queries for large-scale graphs on a database. Our results showed that
COLD outperforms existing solutions (including specialized graph databases)
on all levels, including query performance, secondary storage utilization and
scalability. Moreover, COLD also answers RkNN and one-to-many queries, not
handled by previous methods. This establishes COLD as a competitive database-
driven framework for querying large-scale graphs. The paper gives the design and
implementation details of COLD using a popular, open-source database system
along with the actual SQL queries used in our implementation. This should allow
for a simple replication of our results and encourage other researchers to expand
the COLD framework towards handling more complex queries and test-cases.

Acknowledgements

This work was partially supported by EU (European Social Fund - ESF) and
Greek national funds through the Operational Program ”Education and Lifelong
Learning” of the National Strategic Reference Framework (NSRF) - Research
Funding Program: Thales. Investing in knowledge society through the European
Social Fund and the EU/Greece funded KRIPIS Action: MEDA Project. D.
Pfoser’s work was partially supported by the NGA NURI grant HM02101410004.

References

1. I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck. Hldb:
Location-based services in databases. In SIGSPATIAL GIS. ACM, November 2012.

2. I. Abraham, D. Delling, A. Goldberg, and R. Werneck. A hub-based labeling al-
gorithm for shortest paths in road networks. In P. Pardalos and S. Rebennack,
editors, Experimental Algorithms, volume 6630 of Lecture Notes in Computer Sci-
ence, pages 230–241. Springer Berlin Heidelberg, 2011.

16

3. I. Abraham, D. Delling, A. Goldberg, and R. Werneck. Hierarchical hub labelings
for shortest paths. In L. Epstein and P. Ferragina, editors, Algorithms – ESA 2012,
volume 7501 of Lecture Notes in Computer Science, pages 24–35. Springer Berlin
Heidelberg, 2012.

4. T. Akiba, Y. Iwata, K. Kawarabayashi, and Y. Kawata. Fast shortest-path distance
queries on road networks by pruned highway labeling. In 2014 Proceedings of the
Sixteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2014,
Portland, Oregon, USA, January 5, 2014, pages 147–154, 2014.

5. T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries
on large networks by pruned landmark labeling. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, SIGMOD 2013, New
York, USA, pages 349–360, 2013.

6. T. Akiba, Y. Iwata, and Y. Yoshida. Pruned landmark labeling [online]. https:

//github.com/iwiwi/pruned-landmark-labeling, 2015.
7. R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the world wide web.

CoRR, cond-mat/9907038, 1999.
8. D. A. Bader, H. Meyerhenke, P. Sanders, and D. Wagner, editors. Graph Partition-

ing and Graph Clustering - 10th DIMACS Implementation Challenge Workshop,
Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012. Proceed-
ings, volume 588 of Contemporary Mathematics. American Mathematical Society,
2013.

9. H. Bast, D. Delling, A. V. Goldberg, M. Müller-Hannemann, T. Pajor, P. Sanders,
D. Wagner, and R. F. Werneck. Route planning in transportation networks. CoRR,
abs/1504.05140, 2015.

10. F. Borutta, M. A. Nascimento, J. Niedermayer, and P. Kröger. Monochromatic
rknn queries in time-dependent road networks. In Proceedings of the Third ACM
SIGSPATIAL International Workshop on Mobile Geographic Information Systems,
MobiGIS ’14, pages 26–33, New York, NY, USA, 2014. ACM.

11. E. Cho, S. A. Myers, and J. Leskovec. Friendship and mobility: user movement in
location-based social networks. In Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, August 21-24, 2011, pages 1082–1090, 2011.

12. E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and distance queries
via 2-hop labels. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’02, pages 937–946, Philadelphia, PA, USA, 2002.
Society for Industrial and Applied Mathematics.

13. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable route
planning. In Proceedings of the 10th international conference on Experimental
algorithms, SEA’11, pages 376–387, Berlin, Heidelberg, 2011.

14. D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Robust distance queries
on massive networks. In Algorithms - ESA 2014 - 22th Annual European Sympo-
sium, Wroclaw, Poland, September 8-10, 2014. Proceedings, pages 321–333, 2014.

15. D. Delling, A. V. Goldberg, and R. F. Werneck. Hub label compression. In Expe-
rimental Algorithms, 12th International Symposium, SEA 2013, Rome, Italy, June
5-7, 2013. Proceedings, pages 18–29, 2013.

16. D. Delling, A. V. Goldberg, and R. F. F. Werneck. Faster batched shortest paths
in road networks. In ATMOS, pages 52–63, 2011.

17. D. Delling and R. F. Werneck. Customizable point-of-interest queries in road
networks. In 21st SIGSPATIAL International Conference on Advances in Geo-
graphic Information Systems, SIGSPATIAL 2013, Orlando, FL, USA, November
5-8, 2013, pages 490–493, 2013.

17

18. D. Delling and R. F. F. Werneck. Better bounds for graph bisection. In Algorithms
- ESA 2012 - 20th Annual European Symposium, Ljubljana, Slovenia, September
10-12, 2012. Proceedings, pages 407–418, 2012.

19. A. Efentakis and D. Pfoser. Optimizing landmark-based routing and preprocessing.
In CTS 2013, 6th ACM SIGSPATIAL International Workshop on Computational
Transportation Science, November 5, 2013, Orlando, FL, USA, page 25, 2013.

20. A. Efentakis and D. Pfoser. GRASP. Extending graph separators for the single-
source shortest-path problem. In A. S. Schulz and D. Wagner, editors, Algorithms
- ESA 2014, volume 8737 of Lecture Notes in Computer Science, pages 358–370.
Springer Berlin Heidelberg, 2014.

21. A. Efentakis and D. Pfoser. ReHub. Extending hub labels for reverse k-nearest
neighbor queries on large-scale networks. arXiv preprint arXiv:1504.01497, 2015.

22. A. Efentakis, D. Pfoser, and Y. Vassiliou. SALT. A unified framework for all
shortest-path query variants on road networks. In E. Bampis, editor, Experimen-
tal Algorithms, volume 9125 of Lecture Notes in Computer Science (To appear).
Springer International Publishing, 2015.

23. C. Gavoille, D. Peleg, S. Pérennes, and R. Raz. Distance labeling in graphs. In
Proceedings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’01, pages 210–219, Philadelphia, PA, USA, 2001. Society for Industrial and
Applied Mathematics.

24. R. Geisberger, P. Sanders, and D. Schultes. Better approximation of betweenness
centrality. In J. I. Munro and D. Wagner, editors, ALENEX, pages 90–100. SIAM,
2008.

25. M. Jiang, A. W. Fu, R. C. Wong, and Y. Xu. Hop doubling label indexing for
point-to-point distance querying on scale-free networks. PVLDB, 7(12):1203–1214,
2014.

26. J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collec-
tion. http://snap.stanford.edu/data, June 2014.

27. J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community struc-
ture in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009.

28. J. J. McAuley and J. Leskovec. Learning to discover social circles in ego networks.
In Advances in Neural Information Processing Systems 25: 26th Annual Conference
on Neural Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States., pages 548–556, 2012.

29. PostgreSQL. The world’s most advanced open source database [online]. http:

//www.postgresql.org/, 2015.
30. M. Safar, D. Ibrahimi, and D. Taniar. Voronoi-based reverse nearest neighbor

query processing on spatial networks. Multimedia Systems, 15(5):295–308, 2009.
31. J. Yang and J. Leskovec. Defining and evaluating network communities based

on ground-truth. In 12th IEEE International Conference on Data Mining, ICDM
2012, Brussels, Belgium, December 10-13, 2012, pages 745–754, 2012.

32. M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse nearest neighbors in
large graphs. Knowledge and Data Engineering, IEEE Transactions on, 18(4):540–
553, April 2006.

33. R. Zhong, G. Li, K.-L. Tan, and L. Zhou. G-tree: An efficient index for knn search
on road networks. In Proceedings of the 22nd ACM International Conference on
Conference on Information Knowledge Management, CIKM ’13, pages 39–48, New
York, NY, USA, 2013. ACM.

18

