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Abstract. In the current data-centered era, there are many highly diverse data
sources that provide information about movement on networks, such as GPS
trajectories, traffic flow measurements, farecard data, pedestrian cameras, bike-
share data and even geo-social movement trajectories. The challenge identified
in this vision paper is to create a unified framework for aggregating and analyz-
ing such diverse and uncertain movement data on networks. This requires proba-
bilistic models to capture flow/volume and movement probabilities on a network
over time. Novel algorithms are required to train these models from datasets with
varying levels of uncertainty. By combining information from different networks,
immediate applications of such a unifying movement model include optimal site
planning, map construction, traffic management, and emergency management.

1 Introduction

Numerous data sources exist that capture movement on (movement) networks relating
to the same geographic area. The most popular movement data sources are GPS tra-
jectories, which are readily available from a myriad of smartphone apps. In the case
of social media data, movement is often captured implicitly, as trajectories are derived
from geocoded tweets, Flickr images, or Foursquare check-ins. Such data is consid-
erably less frequently sampled, i.e., the time between samples may range from min-
utes to hours. Additional movement data sources include farecard, bikeshare, and taxi
trip data. Figure 1 shows various movement data sources for the greater Washington
DC metropolitan area including GPS traces uploaded by users to Openstreetmap’, a
colored road network to symbolize traffic conditions derived from measuring stations,
public transit fare card data, traces of Twitter users, and bikeshare data. Existing solu-
tions to predict traffic in networks [1,6-9, 11] focus on a single network, and assume
that positional data is fairly accurate and frequent, such as GPS data.

Our vision is to use this multitude of available data sources to generalize traffic
prediction towards movement prediction for known and unknown movement networks.
We anticipate that meaningful movement information from unconventional data sources
can be extracted by utilizing knowledge from a variety of data sources with varying
degrees of uncertainty. The goal is to use all of these highly diverse and uncertain
movement data sources fogether to enable movement prediction. This will allow us
to estimate and to predict movement even in locations where no authoritative data is
available, e.g., in the extreme case, to estimate traffic on road networks solely based on
social media data.

3 http://www.openstreetmap.org.
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Fig. 1. Heterogenous sources of movement network data.
2 Challenges

To develop a unified model for probabilistic movement prediction among multiple
transportation networks, the following three major challenges need to be addressed.
In the following, we describe these challenges and their feasibility in more detail.

Making Sense of Extreme Uncertainty: Techniques have been developed [1, 7-9] that
yield accurate models to probabilistically predict trajectories in transportation networks.
These models work well in the case when trajectories are given at high-frequency, thus
narrowing down the space of possible locations for a user given their previous location.
However, in cases of extreme uncertainty where observations are hours apart from each
other, predicting possible locations of individuals becomes futile. The space of possible
locations that could be reached in an hour becomes too large to make reliable predic-
tions. Yet, we can use such uncertain observation data to estimate traffic density/volume
in the network, rather than estimating the location of individuals. For instance, if we
have a large number of users that have a very small probability of being in a specific
area, then Poisson’s Law of Small Numbers states that the number of individuals in this
area is Poisson distributed, and thus, can be predicted accurately.

Correlation of Different Networks: Another research challenge is the problem of
matching and correlating data from different movement networks, such as road-traffic
loops data, public-transport data and pedestrian GPS data. These datasets stem from
different modes of transportation. They may vary in size and may include different
attributes (such as vehicular speed, volume, traffic density, etc). Furthermore, they may
be supplied to us in an aggregated form or as raw data, and their measurements may be
taken at different sets of timestamps. Finally, they may consist exclusively of observed
data points, or may include interpolated values as well.



The correlation of separate movement networks used to be impossible due to the lack
of open data sources. Using all available data sets discussed in Section 1, we are now
able to align different networks to identify how individuals move and transition between
them. Consider here for example a daily commute that includes driving by car to the
metro station, taking the metro downtown, walking to an office building and then inside,
directly to the coffee maker. By joining available movement data, we can identify tran-
sitions in between road networks, public transportation networks, pedestrian networks,
and building floor plans. Considering this correlation between networks of varying de-
grees of uncertainty, we can further enhance movement flow predictions. For example,
an inbound full metro train will lead to increased road traffic around metro parking lots.
Correlation of External Variables: The movement volume estimation can be im-
proved using other parameters such as vehicular speed. If the number of cars observed
on an edge is relatively low, but we notice that the traffic moves at a relatively slow
speed, then this might be an indicator that the actual traffic volume is higher than the es-
timated movement flow. Other observable variables that can be used to infer movement
flow are weather conditions, day-time, and event information (e.g., a football game).
By taking into account such information, we can condition the model to a set of cur-
rent variables, resulting in a model that is more tailored towards current conditions by
exploiting learned implications of these variables. For this purpose, we need to learn
the impact of such observable (and publicly available) parameters and correlate them to
movement flow, to improve prediction. The main challenge is to assess the significance
of each data source, which can be learned empirically from authoritative ground-truth
traffic volume data measured by road-side detectors.

3 Applications of Multi-Network Movement Flow Prediction

Traffic Management: Given the capability to connect different networks for volume
prediction, we can improve efficient decision making in traffic management. By sim-
ulating road closures, or closed public transportation lines, critical areas can be iden-
tified in other networks, which would be impacted by such an event. Furthermore, for
a road closure that has just occurred, our vision will allow online simulation of the
consequences, thus quickly predicting areas that will become congested soon, and so
providing traffic management systems with decision criteria to reroute traffic.

Emergency Management: In the case of a large scale disaster or emergency such as
an earthquake, a forest fire, or a terrorist attack, an optimal deployment of fire fighters
and police forces is paramount to saving lives. In order to make the right decisions,
emergency management personnel needs accurate information quickly and in the right
form. They need predictions about what may happen and information about what has
happened and where. In the report to the US Congress on Hurricane Katrina, Secretary
of Homeland Security Michael Chertoff emphasized “the importance of having accu-
rate, timely and reliable information about true conditions on the ground” and pointed
out that the response efforts during Katrina “were significantly hampered by a lack of
information from the ground” [2]. In addition to existing work [3,4, 10], which uses
only Twitter as an information source, our envisioned framework enables the fusion of
streams of location and movement data such as tweets, OSM trajectories, traffic loop
data and other sources, to model a traffic and population flow under the new conditions,
and thus making this flood of geo-social data actionable for immediate decision making.



Managing the flow of pedestrian movement in the case of an emergency is vital to
saving human lives. On 7/24/10, a crowd disaster at the Love Parade electronic dance
music festival in Duisburg, Germany caused the death of 21 people from suffocation [5].
To prevent such disasters, we envision a powerful movement prediction model for both
prevention and counter-measures. For prevention, we can simulate a disaster, showing
potential bottlenecks. To enable counter-measures, we can use real-time social media
data to quickly predict large crowd movements. This way, emergency responders can
be alerted within minutes before a deadly stampede occurs.

4 Conclusions

Most sources of movement and traffic information are highly uncertain, due to many
reasons. Existing work focuses on analyzing these sources individually. In this vision
paper we propose to unify these sources into a single movement prediction framework,
that is able to learn movement and traffic patterns from all data sources and movement
networks, including very sparse and uncertain data, simultaneously. Such a framework
will not only improve existing applications, but will also inspire entirely new research
directions in applications where precise movement data is not available.
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