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ABSTRACT
Geospatial data has become an important resource in today’s Web
applications not only as type of content, but also as metadata. De-
spite its undisputed usefulness, issues need to be addressed with re-
spect to the availability, the accuracy, and the cost of the data. The
advent of Web2.0 created several creative-commons initiatives ad-
dressing geospatial dataset creation and countless (mobile) applica-
tions have been producing large amounts of point cloud datasets.
In this work, we demonstrate how to query user-contributed point-
cloud data using a collaborative Web-based approach.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

Keywords
data mining, geospatial data fusion, user-contributed content, mapre-
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1. INTRODUCTION
An increasing number of contexts and applications use space as

the primary means to structure and access information simply be-
cause geospatial reasoning (“where” is easier to comprehend than
“what”) is essential to everyday problem solving. The boost in the
number of applications is coupled with an increasing demand for
sizable and ever-up-to-date geospatial data. Here, with the prolifer-
ation of the Internet as the primary medium for data publishing and
information exchange, we have seen an explosion in the amount of
online content available on the Web. Prominent examples of such
User-Generated Content (UGC) for the geospatial domain include
(i) photo sharing sites such as Flickr, Panoramio, Picasa, and many
others, and (ii) microblogging sites with a geotagging feature such
as Twitter, Facebook, Google+ as well as related photo sharing sites
(twitpic).

While such geodata streams use geographic reference systems and
are thus comparable at the coordinate level, they do pose a challenge
with respect to semantic integration, i.e., to which spatial object, or,
Point of Interest (POI) does the geotag in question relate, and loca-
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tion ambiguity. Consider here the example of geotagged Flickr pho-
tos. While many of them might refer to the same POI, the recorded
coordinate information hardly matches up due to positioning inac-
curacy, or, simply, wrong geotagging. For example, for large scale
objects different users will record different coordinates. Some of
them might even capture the POI from a distance, which will set the
coordinates completely off.

The objective of this work is to transform available UG geocon-
tent into meaningful chunks of information, geospatial datasets, ob-
tained with simplicity and speed comparable to that of Web-based
search. To achieve this task, we propose a search method utilizing
crowdsourcing concepts implemented as a Web-based, collaborative
search tool termed Jeocrowd1.

In recent years various approaches have been developed that aim
at exploiting UGC and here especially tag information to derive geospa-
tial data, or, in more general terms, place information. The follow-
ing discussion should give an indication as to what has been achieved
and makes no claim of completeness. [1] gives an approach to derive
geospatial shape information from geotagged Flickr photos. Yahoo!
GeoPlanet WOEIDs as part of the metadata are exploited by means
of direct access to the Flickr database. [4] extract place semantics
from Flickr tag information based on the spatial distribution of the
data. In [3], again Flickr data is used to identify places and also rela-
tionships among them (e.g., containment) based on tag analysis and
spatial clustering. While all the above approaches have certain simi-
larities with the basic premise of our work, i.e., to extract geospatial
information from user-contributed datasets, our contribution will be
towards defining a collaborative data mining framework that actively
involves the user and its resources in the process.

The outline of the remainder of this work is as follows. Section 2
surveys the type of user-generated data we will exploit in this work.
Section 3 describes the advocated computational approach, while
the actual computing framework is given in Section 4. Section 5
describes the resulting application and its interface as it will be de-
moed at the conference. Finally, Section 6 presents conclusions and
directions for future work.

2. USER-GENERATED AND GEOSPATIAL
DATA

Users generate data by means of many different applications in
which the geospatial aspect does not play a major role but is sim-
ply used to index and access the collected data. As mentioned,
prominent examples here are photo sharing sites and microblogging
services using geotagging features. To illustrate the potential for
1The tool is named Jeocrowd, which is a combination of Geo +
Crowd, using a J instead of G, to emphasize the use of Javascript
as its core calculation platform.



(a) Point cloud (b) Grid approach

Figure 1: Point cloud for the “Plaka” area in Athens, Greece.

geospatial data generation, consider the use of flickr data for the
computation of feature shapes of various spatial objects including
city scale, countries and other colloquial areas [1]. The approach is
based on computing primary shapes for point clouds that are grouped
together by Yahoo! GeoPlanet WOEIDs (Yahoo! Where On Earth
IDs), which are part of the flickr metadata. Flickr currently contains
150+ million geotagged photos.

Querying the API with a specific search term returns in essence
a “point cloud” referring to a specific POI. In other words, the geo-
tagging of each photo represents an independent observation of the
“true” location of the POI. The ambition of this work is to take point
clouds as input and to identify an approach for extracting geospatial
location information from it. Consider the example point cloud in
Figure 1(a), which shows geotags of retrieved flick images for the
query “Plaka”. The result includes also locations outside the actual
area (shaded polygon). The task at hand is how to derive the area
information from this point cloud data. Complicating things is the
fact that the location of a POI might be that of a point or area fea-
ture. Prominent examples here are “Central Park” (area feature) and
“Parthenon” (point feature) 2.

Overall, to extract place information from point clouds, we pro-
pose a method based on online (live search), collaborative (many
users querying the same term speed up the search), Web-based (browser-
based computing) crowdsourcing (users contributed expertise - the
search term, and resources - computation power and bandwith). The
core contributions of this work are (i) a collaborative spatial search
implemented by means of (ii) Web and browser-based computing
utilizing a modified MapReduce approach as described in the fol-
lowing two sections.

3. COLLABORATIVE SPATIAL SEARCH
The basic task at hand is how to derive spatial datasets from user-

contributed point cloud data that have basically no quality guarantee.
A typical approach would entail the clustering of the points (cf. [1])
in combination with outlier detection. The latter should eliminate
points that have been assigned false coordinate information in con-
nection with image labels.

In Jeocrowd, we employ a grid-based clustering approach (cf.
[5]). Point cloud locations are aggregated by means of a 5 × 5 hierar-
chical grid. The grid at the basic level (Level 0) has a spacing of 50m
× 50m, at Level 1 the grid has a spacing of 250m, etc. When query-
ing point cloud APIs, we record for each grid cell a count, i.e., how
many photos are located in a specific cell. The search entails “in-
telligently” filling the cells of the grid with point cloud data based

2The authors acknowledge however that whether a location can be
represent by a point or an area depends on the scale and (practical)
degree of abstraction at which the data is represented.

Figure 2: Exploratory and refinement search traversing up and
down the hierarchical grid structure

on a specific search term, e.g., “Plaka, Athens”. Figure 1(b) shows
the example of “Plaka” with a hierarchical grid overlay. Using vari-
ous thresholds such as occupancy and connectedness, the result will
comprise as set of connected cells whose spatial extent will be the
position of the searched for spatial feature (POI). The typical result
will be a polygon, with the accuracy of the shape being limited by
the spacing of the grid.

Using a grid has the advantage that the search (i) can be par-
allelized, i.e., cells can be populated simultanesouly from various
data sources and (ii) is in fact continuous, i.e., as additional user-
generated data becomes available, the search result will be refined.
For example, city boundaries may change in subsequent searches to
reflect newly observed data.

Since dealing with remote data sources, our goal is to retrieve as
little data as possible so as to speed up search and reduce traffic. To
this effect we split our search into an exploratory part, which tries to
quickly find a good estimate of the extent of the spatial feature and
a refinement part, which then tries to explore the shape of the spa-
tial feature in greater detail. As shown in Figure 2, the hierarchical
grid is used to expand the search area after exploratory search and
eliminate unlikely areas during the refinement stage.

Exploratory search aims at randomly retrieving points to get an
overview of the spatial extend of the spatial feature, i.e., is it a point
location (statue, coffee shop) or are we looking for an area feature
(neighborhood, city, country). Point cloud, and specifically in this
work, Flickr data is retrieved in chronological order starting with the
oldest photo. The percentage of how much data is retrieved in this
step is a search parameter. Figure 3(a) shows the result of the ex-
ploratory search for “Plaka” (Level 0). Specifically a neighborhood
map is shown, in which colors from blue to red are assigned to cells
based on how many neighboring cells have also collected point cloud
data. Isolated cells are colored blue and surrounded cells are shaded
red.

During the refinement, the search is forced into areas that are sus-
pected of being part of the feature, but for which we have not re-
trieved (many) points in the exploratory search. This is due to the
fact that users tend to take disproportionally many pictures of the
most popular locations. Here, the refining search uses the search
term in connection with location estimates to retrieve additional pho-
tos for this “unpopular areas”.

The refinement search is based on occupied cells of the hierarchi-
cal grid. The number of points associated with each cell as a result
of the exploratory search are aggregated to higher levels. The aggre-
gation stops once fewer than a minimum number of cells at a given
level are occupied. The refinement search then proceeds with search-
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Figure 3: Searching for Plaka, Athens

ing these super cells. Figure 3(b) shows the super cell of “Plaka”.
Colored cells have been discovered during exploratory search. Cells
marked with an X have not been searched yet. The refinement step
searches all cells that are either empty or have few hits. Newly dis-
covered points are added and the respective counts and neighborhood
information is updated at all levels of the hierarchical grid.

The search examines all cells at a level and eliminates as many as
possible. Eliminated cells will not be examined further at a lower
level. Cells are eliminated if they do not attract a minimum number
of point cloud locations despite forcing a search in this area. Using a
hierarchical grid, the goal is to rule out cells as early as possible, i.e.,
at high levels, since examining larger areas at lower levels is costly
(many small cells). The result of the “Plaka” search after completing
the refinement step is shown in Figure 3(c).

Our approach can also detect multi locations, if the search term
refers to more than one spatial entities. For example, the search for
“Olympic Stadium, Athens” will return two locations, the Marble
Stadium and the new Olympic Stadium.

4. BROWSER-BASED MAPREDUCE
To facilitate collaborative search, one not only needs to design

a search strategy and respective data structures, but also a comput-
ing framework that allows users to perform this task simultaneously.
Here, we propose Browser-based computing in connection with the
MapReduce [2] concept. We introduce a Web application with the
ability to apply a computational model such as MapReduce so as to
speed up the procedure by utilizing the users’ machines to perform
the computations and, thus, offloading the server.

As we saw in Section 3, during the exploratory search, the re-
trieved photos are in ascending order of the timestamp of the date
taken. During the refinement search the photos are ordered in terms
of latitude and then longitude. This ordering permits the search task
to be split into multiple subtasks, each of which can be assigned a
non-overlapping range of pages to be retrieved from the Flickr API
and to be handled by the above search procedure independently on
separate browsers (parallelizing the search) (cf. Figure 4). To keep
track of assigned and completed subtasks, we keep on the server
for each search term one search record and multiple result records

Figure 4: Browser-based MapReduce in Jeocrowd

marking the exact page ranges that were assigned and completed by
clients (browsers). Hence, when a new request for the same search
term is received, we send to the client the current state of the search
and the next range of pages currently missing. For each subtask, the
results are collected and merged with already existing ones in the
search record.

To persist the state of the search for each query, we keep all the in-
formation needed to reconstruct the lowest (most detailed) grid plus
some counters that record the progress of the search process. Having
that, it is a pure computational task to reconstruct higher levels and
resume the search. In the current implementation, each grid is stored
as a collection of grid cells and we save for each its coordinates and
the list of photos found in its enclosed area.

The difference to the original MapReduce idea is that after the
completion of a subtask by a client, the respective result record is
merged with the corresponding search record immediately. This al-
lows us to communicate the current state of the search to all connect-
ing clients. To prevent the search from missing results due to clients
failure to report back (browser closed or crashed, network connec-
tion interrupted, etc.) the system imposes a timeout to the clients in
order to complete the retrieval, computation and reporting of the re-
sult. This allows for scheduling a resubmission of a task to another
client.

One constraint to the performance is that due to dependencies in
our algorithm, all exploratory search subtasks for a search term have
to be completed before performing a refinement search. Further, in
its current implementation, the refinement search propagates down
cell levels. Here, all searches for a specific level have to be com-
pleted before progressing to the level below. This is because after
each level is completed, isolated cells for that level are discarded,
and so are enclosed cells in lower levels. If a task were to start
processing the lower level before the elimination process had oc-
cur, it might have started querying a cell that would eventually be
discarded! Hence, if all the subtasks for a specific search step have
been assigned, but not all completed, a new subtask will be created
for an already assigned portion of the search and we will consider
the result of the first respective finished subtask. Overall, these tech-
niques are very common in MapReduce implementations.

In the Jeocrowd approach, the server is only used for coordinating
computation tasks and storing results. All computation takes place
in the browser. This has many advantages, the main one being the in-
crease in computational capacity. The basic work flow of the search



Figure 5: Jeocrowd search interface

is shown in Figure 4.
Moving the computation part from the server to the browser means

that the communication with the external sources (e.g., Flickr in the
case of the Jeocrowd demo) will have to be initiated by the client as
well. This introduces a challenge insofar since Javascript executed in
the browser needs to contact the external server and then use the data
retrieved for computation and visualization. This contradicts with
the same domain policy enforced by browsers according to which a
script running on a page is allowed to access resources from another
source only if the protocol, the host, and the port match. To over-
come this problem we use JSONP (JSON with Padding). What this
does is that it wraps (pads) the data returned from the external source
inside a function call that eventually gets executed in the browser.
For this to work, (i) the function needs to be already defined in the
Javascript code, and (ii) the external source must agree to send the
response data wrapped in that same function name. Hence the se-
curity threat is eliminated and the function makes sure to deliver the
data to the Javascript workspace. Using this approach, the server is
relieved of the great bandwidth constraint that typically Web appli-
cation dealing with third-party data APIs are burdened with.

5. JEOCROWD DEMO
The scope of the demo will be to showcase the Jeocrowd search

interface as shown in Figure 5. The Web interface provides (i) in-
formation regarding the search status and (ii) the basic search pa-
rameters. The dominant component is the map, which visualizes the
search results. Three sliders control various parameters. The top
slider allows the user to change the number of pages that will be
fetched in this particular request, i.e., the number of flickr images.
This number can be anything from 2 (we need at least one to get the
total number of pages) up to the last page of the result set. The two
sliders below affect on what is displayed in the map. One slider sets
the neighborhood threshold for cells shown, i.e., a cell can have 0
to 8 surrounding neighbor cells. The other sets the threshold for the
minimum number of photos per cell, i.e., show only the cells that
attracted more than 10 photos. The search statistics (to the left of the
sliders and above the map) include (i) the total number of available
photos for the specific search term, (ii) the number of photos down-
loaded for exploratory (temporal) and refinement (spatial) search,
and (iii) the number of discarded photos. The information column
to the right of the map contains additional information regarding the
search, such as average loading and processing time for sets of re-
trieved images (pages), the total number of grid cells that appear on
the map, the total number of photos in all the grid cells, as well as the

number of photos in the grid cell that attracted the most photos. One
can further zoom to the “hottest” cell, i.e., the cell with the most pho-
tos. Next, we have some controls that allow the user to change the
way the results are displayed. The first one changes the coloring of
the map by switching from a hit map (cells are all the same color, but
the opacity of the cell is analog to the number of photos it attracted)
to a neighborhood heat map (cells have different colors depending
on the number of their neighbors, following the convention that red
cells have the most neighbors while blue ones have none). The inter-
face also allows one to retrieve information for a specific cell such as
visualizing all photos and captions retrieved. At the very bottom of
the interface is a log, which tracks the progress of the search, keep-
ing some stats with respect to each step. This log can be exported
to a CSV file and easily imported to external spreadsheet tools for
further analysis.

6. CONCLUSIONS
Jeocrowd provides an online, collaborative, browser-based spa-

tial search tool that employs crowdsourcing techniques to harness
user-contributed point-cloud data by means of user-contributed ex-
pertise and computing resources. The Jeocrowd application will be
freely available to the users before and after the demo sessions to
query arbitrary shaped spatial objects ranging from smaller point
features (“Riesenrad, Vienna”) up to city-scale area features (“Berlin”).
Any popular enough place name should yield good results.

Directions for future work are to improve the performance of the
algorithm, to include further data sources, and to consider existing
geospatial metadata for inferring relationships and hierarchies be-
tween spatial objects. The latter will enable us to merge results for
searches that refer to the same POI but did not use exactly the same
keywords, as well as refine searches for large areas by fusing results
from places that are known to be “part-of” it.
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