
Mobile Task Computing:
Beyond Location-based Services and EBooks

John Liagouris1, Spiros Athanasiou1, Alexandros Efentakis2, Stefan
Pfennigschmidt3, Dieter Pfoser1,2, Eleni Tsigka3, Agnès Voisard3

1Institute for the Management of Information Systems
Research Center Athena

G. Bakou 17, 11524 Athens, Greece
{liagos|spathan|pfoser}@imis.athena-innovation.gr

2RA Computer Technology Institute
Davaki 10, 11526 Athens, Greece

{efedakis|pfoser}@cti.gr
3Fraunhofer ISST

Steinplatz 2, 10623 Berlin, Germany
{stefan.pfennigschmidt|eleni.tsigka|agnes.voisard}@isst.fraunhofer.de

Abstract. Mobile devices are a promising platform for content delivery
considering the (i) variety of attached sensors, (ii) widespread availabil-
ity of wireless networks, (iii) even increasing screen estate and hardware
specs. What has been missing so far is the adequate coupling of content
to those devices and their users’ actions. This is especially apparent in
the area of Location-based Services (LBS), which, with few exceptions
(e.g., navigation), have not fulfilled their predicted commercial success in
mobile environments due to the following reasons: (i) content in typical
LBS applications is still narrow and static, (ii) available methods and
interfaces in mobile handsets for the discovery of available content are
at best cumbersome (e.g., keyword-type search), and (iii) existing struc-
tured content available in LBS applications is hard to reuse. In this work,
we propose the concept of task computing to complement and extend
LBS as a means to enable the intuitive and efficient re-purpose, discov-
ery, and delivery of rich content according to the user’s needs. Further,
we establish the theoretical foundations of task computing and its appli-
cation in the LBS domain. We also present a fully functional prototype
iPhone application structured around the concept of task computing.

Keywords: task computing, location-based services, ontologies, ebooks

1 Introduction

Location-based services have emerged a few years ago to allow end-users to
obtain information based on some location, usually the position of the user.
Such services, for instance mechanisms to answer a query such as “Where is
the nearest subway station?” or “What are the exhibitions in the city today?”
are currently receiving a great deal of interest. They manipulate the common

2 Liagouris et al.

aspects of location and time but also more complex notions such as the profile
of a user.

General LBSs for mobile users are either extremely narrow and static in their
content offerings, or address the needs of business users (e.g., fleet management).
However, within the past few years, certain important arrivals of LBSs for every-
day, casual users have emerged. These products and services focus either (i) on
expanding the reach of geospatial information, or (ii) on coupling social network
activities on a geospatial domain.

In particular, a class of services adequately represented by Google Maps and
Google Earth for mobile devices, focuses on the simple task of delivering standard
geospatial products (such as maps), along with “free text”-based search for web
content. Other similar services come from Microsoft Bing Maps, Nokia Ovi Maps
and so on. Though truly fascinating upon their arrival, these services have not
changed the way users discover and consume content. Discovery still requires
the users input from a hardware or on-screen keyboard. At best, a catalogue of
available content is presented to the user, according to her search parameters and
location. So the basic paradigm of how users manipulate geospatial information
has not been altered. Rather, it has been poorly ported to mobile devices, simply
by re-purposing available interface and information retrieval concepts for smaller
screens. For example, a simple query for desktop-based users, such as “Is there
a nice restaurant within 1km from location X that costs less than 10 euro per
person?” requires several searches, and the gradual filtering/refinement of web
content from several sources (e.g., maps, guides, blogs, portals, social networks,
etc.). Obviously, a mobile user does not have the time, nor adequate hardware
resources to perform this search.

The second class of products and services focuses on overlaying a geospa-
tial mantle upon social networks and interactions. Users can annotate content
with location attributes, whether it concerns their own interaction (e.g., geo-
tag profile messages) or points of interest (e.g., leave a restaurant review). Such
services include Facebook, Twitter, Yelp, Foursquare, Layar, and Google Buzz.
They have also been embraced by the users with great interest, but they still
remain a shallow means for general geospatial content discovery and delivery.
While users can see where their friends are, read and submit reviews on POIs,
etc., the prevalent paradigm we discussed earlier is kept intact. Moreover, these
services highlight the problem even further, since they essentially comprise iso-
lated islands of geospatial knowledge. For example, unless one has a Facebook
account, she cannot search through the available content.

Stemming from the previous observations, we introduce the principles of
task computing as a viable alternative to the problems we described. The con-
tributions of this work include the theoretical foundation of task computing in
mobile environments as well as the development of a complete framework con-
taining all the necessary tools, libraries, and APIs to provide modularity and
simple integration with existing solutions. Before continuing, we emphasize that
our approach is orthogonal to more traditional tourism applications which rec-
ommend sites based on people profiles (with a recommendation system that can

Mobile Task Computing: Beyond Location-based Services and EBooks 3

be more or less elaborate, see for instance [12]). In addition, it complements
previous works based on the notion of task computing in that it addresses the
problem of delivering rich fine-grained content to the users. In a nutshell, the
main focus of our work is the dynamic discovery, delivery, and presentation of
rich and personalized content to mobile users based on the tasks they want to
perform.

The remaining document is organized as follows. Section 2 describes the
concepts of task computing. Section 3 presents the principles of our approach
and the overall architecture of the implemented infrastructure. Section 4 presents
the proof of concept through the TALOS1 prototype. We conclude in Section 5
with directions for future work.

2 Task Computing

It is a common sense that users organize their everyday lives around solving prob-
lems (tasks) and thus both services and content should be structured around
tasks in order for them to be easily discovered and assimilated. This idea is
strongly encouraged by the enlightening evaluation of NTT DoCoMo’s task-
based approach [18]. It is shown that the percentage of users reached the appro-
priate services by employing a keyword-type search through their handsets was
no greater than 16%, whereas in the existence of a task-oriented search interface
the corresponding percentage grew up to about 63%. According to the same test,
it is also astonishing that 50% of the latter (one out of two) reached the services
within five minutes, compared to just 10% (one out of ten) of the keyword-type
search users.

Task computing [13, 15, 14] is a relatively novel concept in regards to the
design, implementation, and operation of computing environments, aiming to
fill in the gap between tasks (i.e., what users want to do) and services (i.e.,
functionalities available to the user). In contrast to the current traditional com-
puting paradigm, task-oriented computing environments are ideal for non-expert
users, since they provide access to useful information in a goal-centric manner,
requiring minimal user adaptation to the particularities of the user interface and
device characteristics. Furthermore, task computing is ideal for pervasive and
ubiquitous environments, i.e., computing applications aiming to help users in ac-
complishing their daily goals. In such environments, users expose high demands
for minimal interaction and show limited tolerance to ineffectual content. The
organization of content and services around tasks offered in this discipline, has
the potential to greatly improve the computing experience, since users receive
timely and accurate information for the exact task in hand.

As mentioned in the previous, although the research in this area is still in its
early stages, there are systems and prototype applications which demonstrate
persuasive evidence about the importance and benefits of task computing. Be-
sides the system developed by NTT DoCoMo labs which includes (i) a knowledge

1 http://www.talos.cti.gr/

4 Liagouris et al.

base of tasks that a mobile user performs in daily life, and (ii) a database of ser-
vices that can be used to accomplish these tasks, another important work in this
field is the Task Computing Environment (TCE) [20], a service discovery and
composition framework for pervasive computing environments. TCE can reduce
the cost of performing a task by displaying the tasks that could be performed
by executing pervasive services located around the user.

2.1 Ontologies in a Task-oriented Environment

Precondition for providing automated task-based services is the formal descrip-
tion of the potential tasks. This procedure amounts to the construction of a
task model or, in other words, a so-called task ontology. Up to now, task ontolo-
gies have been used in various fields ranging from Artificial Intelligence [25, 26]
and Expert Systems [17] to Geographical Information Systems [23, 9, 10] and UI
Modeling [22]. In general, the reason for their popularity lies in that they pro-
vide a flexible way for representing problem solving procedures, mainly because
they facilitate sharing and reuse of knowledge along with automated reasoning
capabilities [27].

Fig. 1. Task Hierarchy Example

In the context of the Semantic Web [8], the definition of ontology could be
that it is “a formal specification of a conceptualization”. Each ontology of the
Semantic Web consists of two parts: (i) a vocabulary (intentional knowledge)
that consists of concepts (classes) and relationships (properties or roles), and (ii)
additional knowledge (instantiation) consisting of individuals, class and property
assertions. A class assertion denotes that a specific individual belongs to a class,
while a property assertion assigns a pair of individuals to a specific property.

Mobile Task Computing: Beyond Location-based Services and EBooks 5

Ontologies in this context are used to provide order for a set of concepts and
thus they are also referred to as domain ontologies.

Similarly, task ontology is a term referring to a formal model of tasks. Accord-
ing to the domain of interest, a task may represent a software procedure (e.g.,
“Sort an array of integers”), a business process (e.g., “Review the proposals”)
or even a simple human activity (e.g., “Cook food”). In our scenario, each task
ontology includes the specification of the task attributes and parameters (e.g.,
name, input, necessary and/or sufficient conditions for accomplishing a task)
and the definition of the relations between different tasks, such as subsumption
and temporal ordering.

Intuitively, building a task ontology in our case amounts to modeling what
the user of a mobile handset may want to do, e.g. “Go to the Theater”, “Visit
a Museum” or “Eat at a Restaurant”. The basic feature of such an ontology is
that complex tasks like those mentioned before are broken, following a natural
human-like thought process, into simpler subtasks as shown in Fig. 1. Here, the
hierarchy defined in the task ontology serves as a task-oriented index that is used
for retrieving the appropriate content while guiding users to perform a task.

As shown in Fig. 2, users’ tasks are described in the form of task ontologies
whereas domain and context ontologies contain some of the data needed for
instantiating these tasks, i.e., for capturing specific users activities.

Fig. 2. Ontologies in a task-based service provision system

When defining a task, we may need to refer to one or more domain ontologies
for concepts and definitions that are used to describe inputs, outputs, precondi-
tions of the task and so on. Consider for instance the task “Find a Museum”.

6 Liagouris et al.

Here, a necessary list of museums in the area can be generated from the instances
of a respective domain ontology. In general, by exploiting the expressiveness and
flexibility of ontologies, we are able to perform the following:

– Classification of resources: Instead of just providing to the user a list
of museums in the city that may prohibitively grow huge, especially for a
screen of small size, the classification of museums according to their type
can be very useful and time-saving when searching for the appropriate one.

– Reuse of knowledge: Already described knowledge about solving a task
must be accessible for reuse in another task if suitable. Thus, by using
ontology-based techniques, we are able to extract parts of solutions related
to different tasks and combine them in creating solutions for new tasks. A
representative example of this case is the knowledge about transportation
as shown in Fig. 1. In this example, the highlighted group of tasks can be
reused in more than one levels of the task ontology enabling the authors to
easily define multiple “paths” for accessing the same resources depending on
the tasks a user selects to perform.

– Context-aware filtering: The resources for accomplishing a task alter dy-
namically according to the current context, e.g., the user’s location. Thus,
by also modeling context, we are able to use conjunctive query answering
techniques (including both context and structured content) for the efficient
extraction of the most appropriate resources. A similar approach is followed
in [19].

– Access to various data sources: By using the W3C standard languages
for describing ontologies, i.e. the Resource Description Framework (RDF) [3]
and the Web Ontology Language (OWL 2) [5], we can import and process
data from various data sources existing in the web (e.g. DBpedia [1]). This
can be done either in a forward-chaining manner, where data are processed
and stored in the system database offline, or even directly through the mobile
device when the user uses the application. One of the first attempts to store
and efficiently manage voluminous RDF data in a mobile device with limited
capabilities is presented in [24] with very promising results.

– Consistency check: When constructing a task ontology one has to pay
attention not only to the syntax, but also to the semantics of the latter.
The former, i.e. the syntax validation, can be ensured by restricting authors
to construct the ontology through a graphical interface and automatically
interpret the graphical notations into XML. However, regardless the correct
syntax, there may be declarations in the ontology that contradict one another
(e.g. two tasks each one of them requiring the other to have been performed
previously). From our experience, allowing IT-illiterate authors to arbitrar-
ily define their own task ontologies will definitely result in various logical
contradictions or redundancies whose identification requires additional algo-
rithms.

When faced with a particular type of content one has to be aware that not
all content can be modeled using ontologies. For instance, the travel guide con-
tent that we use in our prototype is in the form of unstructured text. However,

Mobile Task Computing: Beyond Location-based Services and EBooks 7

besides the part of the content, such as the POI-related data (e.g., museums,
parks, etc.), which can be modeled using ontologies, unstructured text that is
stored and retrieved into/from a relational database can still be used in instan-
tiating the tasks of a task ontology. We address this issue in Section 4.3. At this
point we emphasize that, in an ontology-based approach, POIs along with their
properties (e.g., addresses, operating hours, specific features etc.) are regarded as
pieces of well-structured information that is extracted from the overall available
(unstructured) content and modeled using ontologies. This kind of POI-related
information can be either static (extracted from a book) or dynamic material
(retrieved from the web). Context-related information (e.g., date, time, loca-
tion, weather, users profile) can be modeled using context ontologies [11] and,
similarly to the case of POIs, it can be either static (e.g., the users profile) or
dynamic (e.g., the location of the user retrieved on-the-fly).

2.2 Task Modeling

A task reflects what an end-user wants to do in a high-level layer of abstraction,
e.g., “Visit a Museum”. Each task is accompanied by a set of properties (e.g.,
input, output, precondition, etc.) and it is instantiated by (i) context and (ii)
content in order to become an activity. Following the object-oriented program-
ming paradigm, a task can be regarded as a class of activities (instances) that
share common types of attributes. For example, if we assume that the task “Visit
a Museum” has the attributes “Museum” and “Date” defined as inputs, then
it can produce activities like “Visit the Museum of Acropolis on 26/6/10” or
“Visit the Louvre on 28/7/10” and so forth.

Fig. 3. Task Properties

8 Liagouris et al.

Definition 1. A Task T is a collection of well-defined attributes (or properties)
Pi. T=Pi.

As shown in Fig. 3, each property Pi of a task is classified under one of the fol-
lowing categories: (i) Non-functional Properties, (ii) Functional Properties, and
(iii) Services. The first includes the metadata of a task (e.g., name, description,
version, etc.) that are useful for the task authors. The second class includes all
parameters taken into account when a task is performed by the user. This class
is divided into two subclasses, (i) Pre-information and (ii) Post-information,
that are described in the following. Finally, each task in a task ontology may be
realized by one or more web services, e.g., the task “Book a Hotel Room” that
is realized by a web service provided at “www.booking.com”. In our prototype,
the URLs of the respective web services are assigned by the author a priori.

Pre-information includes all parameters needed in order for a task to be
executed successfully. This class breaks down into two disjoint subclasses: (i)
Input and (ii) Precondition. An input stands for a parameter needed to perform a
task and it can be defined as optional. For instance, the task “Find a Restaurant”
may take as alternative inputs the exact location of the user in the form of
longitude and latitude, as long as an abstract location in the form of the city
or the neighbourhood name she is located in. In our model, task inputs can
be (i) context-related parameters, e.g., the user’s location, and (ii) POI-related
parameters, e.g. the id of the specified mall in the task “Find Shops in the
Mall” as retrieved from the user’s local database (cf. Section 3). Note that,
when defining a task, the author can specify groups of inputs that must be
instantiated all together in order for the task to be performed.

Definition 2. An input I of a task is a class defined along a hierarchy of con-
cepts that belongs either in a domain or in a context ontology.

On the other hand, a precondition represents conditions on the task inputs
that must hold in order for a task to be performed successfully. Preconditions are
logical expressions applying to (i) context, and (ii) POI-related parameters that
exist in the user’s local database. Regarding the task “Visit an Open Market”,
a representative example of the first case is “Weather = Sunny”. In the second
case, the precondition “Hotel.Rank = 5” (with Hotel defined as an input of the
respective task) can be used in filtering the hotels retrieved from the user’s local
database when looking for a luxurious one. In our prototype, such preconditions
are specified either a priori by the authors or on-the-fly by the end-user in order
to act as an (optional) filter when searching for the most appropriate resources
or services. From the UI perspective, they indicate the existence of a screen
where the user can specify her preferences on the available task inputs and/or
POI attributes.

Definition 3. A precondition PI of a task defines a restriction in the instanti-
ation of a task input.

Post-information includes all parameters that are generated after executing
the task. It breaks down into two disjoint subclasses: (i) Output and (ii) Post-
condition. An output describes information returned after performing a task.

Mobile Task Computing: Beyond Location-based Services and EBooks 9

Similarly to the case of inputs, task outputs are classified under (i) context-
related parameters, e.g. type of weather produced from the task “Get Weather
Forecast” and (ii) POI-related parameters, e.g. the name and type of a POI that
matches the specified input parameters. The difference with respect to inputs is
that a task can produce as output a piece of content in the form of unstructured
text that is retrieved either from a repository (static) or from the web (dynamic).
Note that an output of a task (except the unstructured content) may be used
as input in other tasks of the ontology introducing a dataflow. In our prototype,
the default output of a task is the unstructured content retrieved from the user’s
local database (if available).

Definition 4. An output O of a task is a piece of unstructured text or a class
defined along a hierarchy of concepts that belongs either in a domain or in a
context ontology.

A postcondition represents conditions that must hold after performing a task.
Similarly to preconditions, postconditions are logical expressions applying to (i)
context and (ii) POI-related parameters both defined as outputs of a task. An
example of a postcondition regarding the task “Move to the Park” could be
something like “User.Location = Park.Location” where the “User.Location” is
a context-related parameter referring to the user’s position (defined as output of
the task) while “Park.Location” is the location of the POI, i.e., the specified park,
also defined as an output of the task. From the mobile application perspective,
such a postcondition is useful for recommending tasks to the user and also for
helping the user (re-)organize the schedule of tasks to perform during the trip.

Definition 5. A postcondition PO of a task defines a restriction in the instan-
tiation of a task output.

Before continuing, we point out that each input and output of a task in our
prototype is instantiated by one of the following modules (cf. Section 3): (i)
the Context Aggregator that manages all context-related attributes, (ii) the user
(through the UI), and (iii) the users local database.

As far as task relations are concerned, we define four kinds of relationships
between tasks: (i) SubTaskOf, (ii) OR, (iii) CHOICE, and (iv) Sequence relation.
The SubTaskOf relation introduces a task hierarchy and denotes that the parent
task is accomplished by accomplishing all of its children in any order. The OR
and CHOICE relations introduce a task hierarchy as well, but in the former case
the parent task is accomplished by at least one of its children, while in the latter
case the parent task is accomplished by exactly one of its children (exclusive
option). Finally, a Sequence relation denotes that a task is performed always
before another one and it is accompanied by at least one parameter passing
(binding) from the first task to the second one. For instance, the tasks “Find
a Hotel” and “Learn about Hotel Facilities” are representative examples of this
case considering that the second task always needs as input the output of the
first one, i.e., the specified hotel. From the application perspective, different types
of relationships between tasks in the ontology layer define different functional
properties of the user interface (display order, redirection etc.).

10 Liagouris et al.

3 System Architecture

The architecture of the overall system is illustrated in Fig. 4. The system has a
typical three-tier architecture composed of (i) the Data Sources tier where the
task ontologies and the available content are stored, (ii) the Services tier that
includes all services implementing the business logic, and (iii) various Clients.
In addition, two kinds of tools, the Task Ontology Authoring Tool (cf. Section
4.2) and the Content Authoring Tool (cf. Section 4.3), are provided to serve as a
means to import, edit, and update the data sources. For the ease of presentation,
in the remaining document we address the use case of a (mobile) traveler but
the overall approach can be easily applied to other scenarios as well where task
computing plays a central role.

A Task Author (TA) is responsible for creating the task ontologies based on
the model we described in Section 2.2. By the time a task ontology is created
and uploaded on the server, it is regarded as an Idle Task Ontology (ITO). This
means that the ontology cannot be downloaded and used by the end-users until
content is assigned to its tasks. The latter is performed by the Content Author
(CA). By the time a CA assigns content to the tasks of an ITO, then the task
ontology becomes an Operational Task Ontology (OTO) which means that it can
now be downloaded (along with the assigned content) and used by the end-users.
Obviously, besides the assignment of (structured and unstructured) content to
tasks, the CA is also responsible for the overall management of content (import,
edit, update, geocode etc.).

Fig. 4. System Architecture

The Data Sources tier encompasses (i) the Task Knowledge Base (TKB) and
(ii) the Content Base (CB). TKB keeps all versions of every task ontology. The

Mobile Task Computing: Beyond Location-based Services and EBooks 11

main reason we keep all versions of task ontologies in TKB is because, when
downloading an OTO, the user of the mobile device may decide to include only
a part of the assigned content and not all of it. In such a case, the rest of the
content can be downloaded gradually during the use of the application. Thus,
a downloaded OTO cannot be overwritten in the server until all end-users have
updated their local copies; otherwise, in case the downloaded OTO is out of
date, incompatibility problems may occur. Apart from this, a version history of
the authors work can be very useful when, for some reason, one needs to rollback
to an older version.

All available content is stored in the Content Base. More specifically, CB
includes (i) unstructured content in the form of text, (ii) geo-referenced (struc-
tured) content in the form of POIs and their attributes, and (iii) the ids of
the (operational) tasks to which the content is assigned (Task-based Index). As
mentioned in the previous sections, POI-related data are described using an
ontological model, hence, they are stored in CB following a variation of the
widely-adopted database representations presented in [21]. As shown in Fig. 4,
the dynamic content retrieved from external sources (e.g., web pages) is accessed
by clients directly.

The Services tier encompasses components for recommending (i) tasks with
respect to a user’s situation as defined in [16] (Task Selector), and (ii) content
from the underlying Content Base using a task selected by the user along with
the user’s situation as parameters (Content Selector). Task and content selec-
tors are used when the user plans her trip (e.g., recommend content targeted
to a backpack traveler), but also during the trip when, for example, an event
occurs and an automatic re-scheduling is needed. However, the recommendation
of tasks can also be done offine by using the context-related task parameters
and preconditions defined in the operational task ontology. For example, in case
the task author has specified a weather precondition for the task “Have a Boat
Tour”, then this precondition will be evaluated using the current situation of
the user and in case there is a weather conflict, the task will be excluded from
the recommended ones. At this point we emphasize that, although the task and
content selectors support the use of content in a pull mode, a Content Filtering
Module is used for notifying the user about just-in-time content updates in the
server (push mode).

Regarding the Clients tier, there are two different clients that use the ser-
vices of the system. First, a Content Portal facilitates the pre-selection of con-
tent based on tasks planned by the user (Planning Mode). In this case, the
content can be compiled into a personalized travel guide eBook augmented with
(i) additional information from the web, and (ii) a task-based index. Second,
the content can also be compiled into a database (e.g., an SQLite file) that is
downloaded and used as an offine source of content in the mobile device. In the
latter case, the user’s local database contains a (personalized) portion of the
content stored in the Content Base of the central server that is coupled with
the tasks of the downloaded task ontology. To access this information in a task-
based and situation-dependent manner while traveling (Trip Mode), besides the

12 Liagouris et al.

actual content and the task-based index, a situation provider component (the
Context Aggregator) is included in the application. The situation provider uses
various techniques to collect and aggregate context data in a pull-mode or even
anticipate user situations. Context changes are forwarded to the client logic that
calls the services and adapts the task and content recommendations accordingly.

4 The TALOS Prototype

This section describes the TALOS prototype infrastructure. The core objective
in developing the prototype was not only to facilitate the end-user interaction
through an intuitive and easy-to-use interface, but also to make task and content
authoring as easy as possible.

4.1 General Information

The mobile travel guide provides a task-based interface where a mobile user can
select tasks from a predefined task hierarchy and access relevant content. The
Context Aggregator component gathers all data describing the user’s situation,
i.e., the user’s current location, time, weather, and the user’s traveler profile.
Depending on the user’s interaction with the UI, and the current context, content
and tasks are recommended to the user, allowing for personalized information
provision. Apart from accessing information, the user can also use the planning
functionality supported by the mobile guide in order to create a trip schedule.

The available content in our prototype involves static content that consists
of an existing travel guide for Brussels and a piece of geo-referenced content
created by Michael Müller Verlag2, as well as dynamic information from the
web. Dynamic information includes (i) map tiles provided by the OpenStreetMap
project, (ii) scraped information from various web sites concerning POIs (e.g.,
hotel sites), and (iii) information obtained by different web services, e.g., the
Yahoo [6] and Geonames [2] weather services. Data storage on the mobile device
is handled by an SQLite database [4]. A combination of the Apple Core Location
Framework and wireless positioning techniques [7] are utilized in order to capture
the users location (indoors and outdoors) and to offer context-aware content. The
prototype is developed as a stand-alone application for the iPhone.

4.2 Task Authoring

The creation of task ontologies is done within the Task Ontology Authoring Tool
(TOAT). TOAT provides an interactive 2D canvas where the authors can define
the tasks of the ontology along with the relations among them by simply dragging
elements from a palette. The result of this procedure is a Directed Acyclic Graph
(DAG) where each node represents a task, and each edge represents a relation
between two tasks. For the ease of presentation, the underlying task parameters

2 http://www.michael-mueller-verlag.de/

Mobile Task Computing: Beyond Location-based Services and EBooks 13

(if defined according to the task model we described in Section 2.2) are not
visualized in 2D, otherwise the graph would be quite difficult to handle. Instead,
task properties are defined and shown from within a dynamic form shown in the
right part of Fig. 5.

Fig. 5. Task Ontology Authoring Tool

After finishing the authoring procedure, the task author (TA) can get the
XML file of the task ontology by clicking on the respective option in the menu.
Before producing the XML representation of the ontology, TOAT performs a
number of validations to ensure (i) that the file is valid according to a prede-
fined XML Schema and (ii) that the ontology does not contain contradictions
or redundancies. The XML file generated by the editor is stored in the central
task knowledge base (TKB). This XML file defines the structure and the basic
functionality (e.g., inputs, preconditions, dataflow, etc.) of the task-based UI. In
this sense, it serves as an abstract model of the hierarchical user interface. The
approach we follow here is reminiscent of the well-known Model-View-Controller
(MVC) architecture paradigm where the view (what the user interacts with) is
based on a generic model which changes (through the controller) according to (i)
the user’s actions, (ii) the current context, and (iii) the available content. Note
that having a generic model as the basis from which the view is automatically
generated provides us with great flexibility in managing the UIs, because the
user’s application can be easily updated by just changing the respective graph
representations in TOAT.

4.3 Content Authoring

A core objective in the current effort was to make existing rich location-relevant
content, in our case travel guides, readily accessible through the mobile device

14 Liagouris et al.

Fig. 6. Geocoding Interface

and the task-based interfaces. To do so we (i) linked such content to task meta-
data (task annotation), (ii) geocoded the content to provide a map-based access,
and (iii) added dynamic web content to the mix by using web scraping, i.e., link-
ing content from third-party sources to our content (e.g., linking the current
exhibitions of a museum from the respective web page to the POI information
stored in our content management system). The above tasks require a content
management system, which in our case comprises a relational database (SQL
Server 2008) and an interface.

Geocoding To geocode the content, we relied on existing web services such as
the Google Maps and Yahoo Maps API, Geonames, and Open- StreetMap name
finder and developed an application wrapper that provides uniform access to any
or all services depending on the user’s needs and licensing restrictions. Advocat-
ing a semi-automatic geocoding approach, a map-based interface is introduced
that allows the user (the content author - CA) to update the automatic geocod-
ing results by dragging markers on the map. Fig. 6 shows the map interface.

Task Metadata Using a task ontology as input, the content annotation tool
provides a simple means of linking tasks to content. The content as stored in the
content management system is shown in the web interface along with the task
ontology represented in a tree structure. Clicking on a section highlights the sec-
tion and shows a new pop up window with the suggested task hierarchy as a tree
view and a list of already linked tasks with the specific section. After selecting
a portion of the content, tasks are linked by selection to the selected content.

Mobile Task Computing: Beyond Location-based Services and EBooks 15

Fig. 7. Task Annotation Interface

Multiple selection is supported and the linked tasks are visualized accordingly.
Fig. 7 shows the interface.

Dynamic Web Content When considering electronic versions of print con-
tent, an important property is the possibility of frequent (and cheap) updates.
To streamline publishing such content, we link third-party web content to our
content base (CB). Examples here are opening hours and changing exhibitions
of museums. Once such a link is established, it is simple to check if the infor-
mation at the remote site has changed. We have developed web scraping tools,
specifically a browser extension that allows one to mark content at a remote site
and so to link dynamic web content to authored content. Fig. 8 showcases the
tool.

4.4 iPhone Interface

The end-user interface of the mobile travel guide includes four different modes,
namely the (a) Activities, (b) eBook, (c) Map, and (d) Diary mode as shown in
Fig. 9. We point out that all these modes are interlinked to one another. Each
one of them provides a different way to access available information and thus it
presents another dimension of it.

The activities mode shows either the predefined task hierarchy or a context-
adapted one. It offers a task-based UI which is generated dynamically, as defined
in the task ontology. A task selection leads the user to appropriate content which
can be a piece of unstructured text or a list of POIs. The map mode offers
a spatial view consisting of a full screen map showing the (geocoded) POIs.
Selecting a POI reveals content and task recommendations.

16 Liagouris et al.

Fig. 8. Web Scraping Interface (plugin and web interface)

The eBook mode is the content view, where unstructured content, such as
text derived from existing travel guides, and structured content, such as POI
metadata can be read. For each unit of content (which could be a section of
the guide or a POI) relevant tasks and POIs are suggested. Finally, the diary
view offers a temporal view, where the user’s plans and memories are presented.
The user selects tasks in order to plan her activities and stores bookmarks of all
kinds of available content or personal pictures and notes to create trip memories,
creating in this way a personal trip diary.

5 Conclusion

In this work, we investigated the potentials of dynamic discovery, delivery and
presentation of rich content to mobile users based on the tasks they want to
perform, an approach that leads to Mobile Task Computing. Starting from the
theoretical foundation of the task computing paradigm in mobile environments,
the contributions of this work also include a complete framework containing all
the necessary programming tools, libraries, APIs, and authoring tools to provide
modularity and simple integration with the existing solutions.

The core feature of our approach is an intuitive task model that can be used
to describe the various activities of the end-users. All context-related parameters
(user’s situation) required for the dynamic discovery and personalization of the
available content are integrated with this task model by exploiting the flexibility
of ontological engineering.

Our future research directions in the field focus on collaborative task com-
puting environments where users can share or recommend tasks to others and

Mobile Task Computing: Beyond Location-based Services and EBooks 17

also on the combination of task and cloud computing techniques for retrieving
resources and services available in the cloud by utilizing task-related knowledge.

Fig. 9. iPhone screenshots. (a) Activities Mode: the task-based UI allowing for content
provision and planning (b) EBook Mode: the content view offering structured and
unstructured content (c) Map Mode: the spatial view showing POIs on a full-screen
map (d) Diary Mode: the spatial view showing users plans and memories

Acknowledgments. This work was partially supported by the TALOS project,
funded by the FP7 Research for SMEs work programme of the European Com-
mission under contract number 222292. We would like to thank all partners in
the TALOS project for their significant contributions in realizing this work.

References

1. Dbpedia. http://dbpedia.org/About. Last accessed July 2010.
2. Geonames. http://www.geonames.org/. Last accessed July 2010.
3. Resource description framework. http://www.w3.org/TR/REC-rdf-syntax/. Last

accessed July 2010.
4. Sqlite. http://www.sqlite.org/. Last accessed July 2010.
5. Web ontology language. http://www.w3.org/TR/owl2-overview/. Last accessed

July 2010.
6. Yahoo weather. http://weather.yahoo.com/. Last accessed July 2010.
7. S. Athanasiou, P. Georgantas, G. Gerakakis, and D. Pfoser. Utilizing Wireless Po-

sitioning as a Tracking Data Source. In Proc. of the 11th International Symposium
on Advances in Spatial and Temporal Databases (SSTD), 2009.

8. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34-43, 2001.

9. W. Kuhn, Ontologies in Support of Activities in Geographical Space. In Interna-
tional Journal of Geographical Information Science, 15 (7): 613-632, 2001.

18 Liagouris et al.

10. M. Raubal, W. Kuhn, Ontology-Based Task Simulation. In Spatial Cognition and
Computation, Vol. 4, No. 1, pp. 15-37, 2004.

11. A. Bikakis, T. Patkos, G. Antonis, and D. Plexousakis. A Survey of Semantics-
based Approaches for Context Reasoning in Ambient Intelligence. In Proc. of the
Artificial Intelligence Methods for Ambient Intelligence Workshop at the European
Conference on Ambient Intelligence, 2007.

12. A. Hinze and A. Voisard. Location- and Time-based Information Delivery in
Tourism. In Advances in Spatio-temporal Databases, Vol. 2750 of LNCS, 2003.

13. R. Masuoka, Y. Labrou, and Z. Song. Semantic Web and Ubiquitous Computing -
Task Computing as an Example. In AIS SIGSEMIS Bulletin, pp. 21-24, 2004.

14. R. Masuoka, B. Parsia, and Y. Labrou. Task computing - The Semantic Web meets
Pervasive Computing. In Proc. International Semantic Web Conference (ISWC),
2003.

15. R. Masuoka and M. Yuhara, editors. Task Computing - Filling the Gap between
Tasks and Services. FUJITSU, 2004.

16. U. Meissen, S. Pfennigschmidt, A. Voisard, and T. Wahnfried. Context- and
situation-awareness in information logistics. In Extending Database Technology
(EDBT) Workshops, Vol. 3268 of LNCS, pp. 335-344, 2004.

17. R. Mizoguchi, J. Vanwelkenhuysen, and M. Ikeda. Task Ontology for Reuse of
Problem-solving Knowledge. In Proc. of the International Conference on Building
and Sharing Very Large-Scale Knowledge Bases, 1995.

18. T. Naganuma and S. Kurakake. Task Knowledge-based Retrieval for Service Rele-
vant to Mobile User’s Activity. In Proc. of the International Semantic Web Confer-
ence (ISWC), 2005.

19. T. Naganuma, M. Luther, M. Wagner, A. Tomioka, K. Fujii, Y. Fukazawa, and
S. Kurakake. Task-oriented Mobile Service Recommendation Enhanced by a Situa-
tional Reasoning Engine. In Proc. of the Asian Semantic Web Conference (ASWC),
2006.

20. Z. Song, Y. Labrou, and R. Masuoka. Dynamic Service Discovery and Management
in Task Computing. In Proc. of the First Annual International Conference on Mobile
and Ubiquitous Systems: Networking and Services, 2004.

21. Y. Theoharis, V. Christophides, and G. Karvounarakis. Benchmarking Database
Representation of RDF/S stores. In Proc. of the International Semantic Web Con-
ference (ISWC), 2005.

22. M. Van Welie. Task-Based User Interface Design. PhD thesis, Vrije Universiteit,
Amsterdam, 2001.

23. S. von Hunolstein and A. Zipf. Towards Task-oriented Map-based Mobile Guides.
In Proc. of the International Workshop HCI in Mobile Guides, (Mobile HCI), 2003.

24. C. Weiss, A. Bernstein, and S. Boccuzzo. i-MoCo: Mobile conference guide - Storing
and Querying Huge Amounts of Semantic Web Data on the iPhone/iPod touch. In
Billion Triples Challenge at the International Semantic Web Conference (ISWC),
2008.

25. B. Chandrasekaran, J. R. Josephson, The Ontology of Tasks and Methods. In Proc.
of the AAAI Conference on Artificial Intelligence, 1997.

26. D. Rajpathak, E. Motta, and R. Roy. A Generic Task Ontology for Scheduling
Applications. In Proc. of the International Conference on Artificial Intelligence (IC-
AI), 2001.

27. A. Gómez-Pérez, and V. R. Benjamins, Applications of Ontologies and Problem-
solving Methods. In AI Magazine, Vol. 20, No 1, pp. 119-122, 1999.

