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Abstract: Map construction algorithms attempt to derive a spatial graph representing a road network from 
GSP-sampled movement trajectories. Existing methods commonly use the trajectory without considering the specific 
sampling methodology, hence, the movement information is not preserved in the map construction results. The 
proposed map-construction method considers the particularities of the sampling process and how they affect the 
trajectory data to improve the overall result quality. Specifically, our proposed algorithm constructs nodes first by 
using weights to cluster sampled turn points based on their estimated proximity to the actual turn location. As nodes 
are the aggregate of turn points, edges are constructed using the respective trajectories that connect turn points and by 
attracting nearby trajectory segments that are with little turn information based on their cluster weights. An edge is 
constructed by aggregating the trajectory segments between nodes using so-called segment conflation. Experiments 
using trajectory datasets at different spatial scales, data complexities, and data sources in combination with several 
assessment methods show that the movement-aware map construction method produces maps of greater accuracy 
than the experimented existing approaches. 
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1. Introduction 
With the proliferation of the Internet as the primary medium for data publishing and information exchange, we have 
seen an explosion in the amount of online content available on the Web. The volumes of such User-Generated Content 
(UGC) are already staggering and constantly growing. With geospatial content playing an essential UGC role (Pfoser, 
2011), research in this area takes advantage of this explosion in Volunteered Geographic Information (VGI) 
(Goodchild, 2007; Haklay & Weber, 2008) to produce datasets that complement authoritative datasets rather than 
replace them (Yang & Tang et al., 2018; Wu et al., 2019). User-generated geospatial content has been categorized in 
several ways. Explicit content is generated purposefully in the desired form. An example here is the OpenStreetMap 
road network. In contrast, implicit content reflects derived information from user-generated content that was produced 
with a different purpose in mind. However, the desired content can still be derived by using targeted data mining 
efforts, e.g., road boundaries (Yang et al., 2018), lanes (Tang et al., 2016), intersections (Deng et al., 2018), and turn 
restrictions (Efentakis et al., 2014; Wang et al., 2017). In our case, this translates to constructing a road network from 
GPS tracking data.  

So-called map construction algorithms rely on the fact that movement typically recorded as trajectories is 
constrained by an underlying transportation network. Aggregating such trajectory datasets recorded by, for example, a 
myriad of smartphones produces up-to-date road networks (Zheng & Zhou, 2011; Ahmed et al., 2015b; Karagiorgou 
et al., 2017; Ni et al., 2018; Bhattacharjee et al., 2019). Such VGI-derived road network construction is especially 
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important in areas of little commercial interest, e.g., in developing countries, or in situations where updates are costly, 
such as rural areas. However, VGI data quality is highly dependent on the device and application used (Zandbergen, 
2009), and there is a lack of unified rules and regulations to standardize the contributed trajectories (Neis & Zipf, 2012; 
See et al., 2013), which poses significant challenges (Flanagin & Metzger, 2008; Haklay, 2010; Lee & Krumm, 2011; 
Fan et al., 2014; Mehdipoor et al., 2015; Karagiorgou et al., 2017; He & Bastani et al., 2018) for map construction 
research. Due to a heterogeneity of data sources, a method that works for one dataset may not perform well for others. 
Further, as trajectories are an approximate representation of movement affected by measurement (GPS) and 
sampling error (Pfoser & Jensen, 1999), they do not accurately capture the geometric features of the underlying road 
network and deriving a road network from a collection of trajectories becomes a data mining challenge.  

A comprehensive overview of existing map construction algorithms is given in (Ahmed et al., 2015b). 
Distinguishing three basic categories of algorithms, (i) point clustering methods include k-means algorithms, 
density-based methods, and approaches based on neighborhood complexes, (ii) incremental track insertion methods 
construct a street map by incrementally inserting trajectories into an initially empty map, and (iii) intersection linking 
methods focus on the correct detection of intersections and then linking them with edges.  

This work proposes a novel intersection linking approach termed Movement-Aware Map Construction (MAMC). 
At the core the method, nodes (intersections) are derived from clustered turn points. We use an adaptive clustering 
approach that considers when a turn point was sampled in relation to the “true” node location based on the trajectory 
geometry. Edges are constructed by conflating incident as well as adjacent trajectory segments using a so-called arc 
editing approach. 

The remainder of this paper is structured as follows. Section 2 discusses related wok. Section 3 provides a 
detailed description of the movement-aware map construction algorithm. Experiments and results are discussed in 
Section 4, followed by conclusions and future work in Section 5. 

 

2. Related Work 
Trajectory data is a semantically rich data source that has resulted in a large number of research directions ranging 
from database research and data mining to more recent trends such as urban science. In relation to this effort, map 
construction algorithms generally differ in how they consider the error that is associated with trajectories when 
recording movement with respect to infrastructure such as road networks. Trajectories are a representation of 
movement that is affected by a measurement error (e.g., GPS) and a sampling error, i.e., the movement being 
sampled at regular time intervals (Pfoser & Jensen, 1999). If both errors would be close to 0 then the trajectories 
could be used directly to reconstruct the network. Although affected by uncertainty, the trajectories can be assumed 
to follow a normal distribution around the true shape of the road (Guo, Iwamura, & Koga, 2007). What follows is a 
discussion of the various approaches on how to use such noisy data to reconstruct a road network. The various 
techniques can be categorized as follows (Ahmed et al., 2015a).  
 

1. Density-based map construction methods such as (Edelkamp & Schrödl 2003; Davies et al., 2007; Worrall 
& Nebot, 2007; Shi et al., 2009; Ge et al., 2011; Aanjaneya et al., 2012; Biagioni & Eriksson, 2012b; 
Wang, Wang, & Li, 2015; Kuntzsch et al., 2016; Li et al., 2016; Chen et al., 2016; He et al., 2018; Huang 
et al., 2018; Ni et al., 2018; Bhattacharjee et al., 2019) take the density distribution of all the trajectory 
position samples and extract the density peak lines with a maximum local sampling density; 
 

2. Movement-based map construction methods such as (Bruntrup et al., 2005; Cao & Krumm, 2009; Fathi & 
Krumm, 2010; Zhang et al., 2010; Torre et al., 2012; Karagiorgou & Pfoser, 2012; Karagiorgou et al., 2013; 
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Kasemsuppakorn & Karimi, 2013; Ahmed et al., 2015a, Wang et al., 2015, Xie et al., 2015; Karagiorgou et 
al., 2017; Zhang et al., 2017; He et al., 2018; Mariescu-Istodor, et al., 2018) utilize the movement aspect of 
the trajectories, i.e., not just a point cloud, to construct a road network and preserve those features in the 
resulting network. 

 
In the case of the density-based map construction methods, two kinds of methods are commonly used: (i) 

kernel density estimation (KDE) (Davies et al., 2007; Shi et al., 2009; Biagioni & Eriksson, 2012b; Wang et al., 
2015; Kuntzsch et al., 2016), and (ii) the point cluster method (Worrall & Nebot, 2007; Ge et al., 2011; Aanjaneya et 
al., 2012; Li et al., 2016; Chen et al., 2016; Ni et al., 2018; Bhattacharjee et al., 2019). KDE approaches typically 
divide space into small grid cells and density distributions of position samples are aggregated using a kernel 
function. For example, Davies et al. (2007) propose a scalable, distributed, real-time based map construction 
method by counting the trajectories that pass through each grid cell, computing a 2D histogram for the whole 
gridded area, and constructing the road network by deducing edge positions and computing the centerlines. Shi et al. 
(2009) compute the density distribution by constructing a bitmap according to the trajectory sampling points and 
construct the road network graph using a thinning algorithm. Wang et al. (2015) propose a topological map 
construction method from trajectory density images according to Morse theory, and road maps are constructed by 
extracting stable manifolds with local maximum density values. Biagioni & Eriksson (2012b) propose a KDE 
density-based map construction method utilizing a “density estimation, map generation, trace map matching, 
topology refinement, geometry refinement” pipeline. The method is robust to noise and disparity problems in 
trajectories. Kuntzsch et al. (2016) combine a raster-based method to estimate the road segments with a 
vector-based optimization that estimates type and location of the junctions linking the road segments. This combines 
the generalization effect of KDE with the topological information from the original trajectories.  

Common to all KDE methods, space is subdivided by means of a grid, which affects the resolution of the final 
map. The point cluster method does not rely on grids. Edelkamp & Schrödl (2003), Worrall & Nebot (2007) and 
Bhattacharjee et al. (2019) propose automated map construction methods through trajectory compression by 
clustering the trajectory points. Road networks are generated by linking the cluster centers. Chen et al. (2016) utilize 
a junction detection and recognition process with some pre-defined node structures. Li et al. (2016) analyze the 
linear nature of the trajectory points and propose a spatial linear cluster method to construct the road edges in linear 
directions, which can be well applicable for straight road edges. Ge et al. (2011) and Aanjaneya et al. (2012) use a 
Reeb graph to generate a network from the graph model with topological structures. A challenge with these methods 
is that nearby clusters might be miss-connected due to not fully utilizing the movement information available 
through trajectories. He et al. (2018) approach the map construction process as an image signal reconstruction 
problem and extract the road segment geometries using a Hough transformation. Huang et al. (2018) propose a 
method to generate the road segments by means of structure learning, similar to He & Bai et al. (2018). Ni et al. 
(2018) compress the trajectories by extracting representative points using Delaunay Triangulation and interpret the 
road segments as short triangle edges to construct a network. However, the method is still a density-based approach, 
as the length of the edges in the Delaunay Triangulation is affected by the density of the position samples. Overall, 
without considering the complex connection relationship between position samples, the density-based methods are 
usually fast in terms of run time and are robust with respect to noise by using a proper density threshold. However, 
movement information is usually eliminated in these approaches. Another drawback is that they typically need a lot 
of data to calculate meaningful networks. 

Movement-based map construction methods usually construct road networks incrementally (Bruntrup et al., 
2005; Zhang, et al., 2010; Zhang et al., 2017; He & Bastani et al., 2018) by combining sets of trajectories. Prior to 
map construction, map matching methods identify similarity portions between of trajectories and known/constructed 
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road networks (cf. Brakatsoulas et al., 2005; Wenk et al., 2006). In the past, trajectories were used to complement 
existing road networks (Torre et al., 2012; Kasemsuppakorn & Karimi, 2013). Bruntrup et al. (2005) proposed an 
incremental map construction method to identify new network edges based on trajectories. The uncertainty in 
relation to trajectories does not always make it easy to identify the disparities between the road networks and gaps 
identified by trajectories. Towards a robust map construction approach, Cao & Krumm (2009) use a trace 
clarification process prior to an incremental graph construction step by simulating trace attractions to nearby 
trajectories. Ahmed & Wenk (2012) propose a partial matching-based method that uses a free space diagram to 
match trajectories to an incrementally grown road network. The Fréchet distance is used to locate similar (close) 
and dissimilar (far) portions of trajectories to the road network. Here, the network initially only consists of a 
trajectory. The impact of uncertainty is reduced to some extent by the free space diagram. Zhang et al. (2017) and 
He & Bastani et al. (2018) propose a similar method that incrementally merges single trajectories with a growing 
graph. A problem with all these approaches is the identification of intersections, given that they are not always 
properly captured as turns in a sampling-based trajectory recording approach. In addition, these methods are 
susceptible to noise in the trajectory data. Here, Fathi & Krumm (2010) proposed a road intersection detection 
method based on machine learning and a shape descriptor. A road network is constructed by connecting the detected 
intersections/nodes using trajectories. The generated road network geometry depends on the quality and quantity of 
available trajectory data. For tackling this challenge, a number of approaches exist. Xie et al. (2015) and 
Mariescu-Istodor et al. (2018) proposed a map construction method that uses trajectory segmentation in relation to 
the constructed intersections and merges the segments to construct a network. Karagiorgou & Pfoser (2012) and 
Karagiorgou et al. (2013 & 2017) propose the so-called trace bundle algorithm that just does that, i.e., 
merges/bundles trajectory segments between constructed intersection nodes to generate edges of the road network. 
To construct intersection nodes, position samples related to changes in movement are identified in trajectories based 
on turn types.  

The various approaches differ by how much movement-derived information (e.g., speed, direction, road 
category, and vehicle type) is considered and how. This work presents a novel map-construction algorithm that 
considers the characteristics of recorded movements such as the sampling rate and the position samples in related to 
turns as captured in the trajectory data. Our approach belongs to the family of movement-based map construction 
methods, i.e., methods that aggregate polylines representing trajectories when reconstructing the road network. We 
will compare our results to various known map construction methods and on different open datasets. 

 

3. Methodology 
The proposed Movement-Aware Map Construction (MAMC) algorithm infers a road network graph from a set of 
user-generated trajectories and preserves movement features such as turn restrictions and edge direction using the 
following three steps: (i) node generation using an adaptive clustering approach that considers the position samples of 
turn points in relation to the “true” node locations, (ii) trajectory segmentation based on an adaptive attraction of 
trajectories to the nodes themselves, and (iii) segment conflation to construct the road network edges.  
These three MAMC steps are described in detail in the following sections. 
 
3.1 Motivation 
Trajectories are the time-sequence (denoted as in Eq. 1) ordered movement records comprising position 

samples , with each sample consisting of a x, y coordinate pair and a time stamp. Such trajectories record 

the vehicular movement of users typically constrained by a movement network such as a road. 

( ), ,ip x y t
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                                  (1) 

 
Users move along a road and turn at intersections. Trajectories can thus be represented by a sequence of segments 
and turn points (cf. Eq. 2). Edges and nodes of the road network can be extracted from trajectories as shown in Eq. 
3. 

   (2) 

  (3) 

 
However, as the road network is usually oversampled, i.e., the same road is sampled by different users carrying 

different types of smartphones and apps that use different sampling methods, map construction becomes a 
challenging task. This article proposes a movement-aware map construction algorithm as shown in Fig. 1.   

 

 
Fig. 1: The movement-aware map construction framework 

 
A road network is constructed from trajectories in three steps. First, we detect the nodes of the potential road 

network graph. This is done by using a weight-based clustering of turn points. Turn points that are deemed to be closer 
to the actual node are given a higher weight. As we will see in the next section, the weight is derived from the 
knowledge we have about the sampling process and the resulting trajectory geometry. Second, the constructed nodes 
are then connected using trajectories. Here, nodes attract trajectories based on their cluster weights, i.e., nodes that are 
the aggregate of many turn points attract trajectory segments that can be further away than nodes comprising fewer 
turn points. Third, the trajectories between nodes are aggregated using a so-called segment conflation approach. 
 
3.2 Node detection 

To infer the nodes of a road network, we use an adaptive approach that (i) detects turn points in trajectory data and 
(ii) aggregates turn points to nodes by considering the geometry of the sampled trajectories around the turn points.   

3.2.1 Turn point detection 
As a trajectory represents user movement, a change in direction is reflected as a heading change captured by the 
trajectory. We can quantify this change as the difference in heading towards and from a suspected turn point. 
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   (5) 

 
Eq. 4 captures the heading towards a potential turn point pi with respect to the previous point pi-1 of the trajectory, 
and Eq. 5 captures the heading with respect to the next point pi+1 of the trajectory. Based on the definitions of Eq. 4 
and 5, the first and the last point of a trajectory will have the same heading from and to the point, i.e., for the first 

point , which means that they cannot be a turn point. The function  is used to compute the angle of a 

vector between two trajectory points with respect to a reference direction (e.g., North). Thus, the turn angle of 
position samples can be computed based on the change in heading as Eq. 6. 
 

   (6) 

 
Based on turn angles, we can use a threshold, e.g., 45°, for identifying turn points. 
 

3.2.2 Node inference  
Given the inherent uncertainty of VGI, it is hard to infer a road network node from a single turn point. However, 
also thanks to VGI, we typically have many “observations” for each node, i.e., users moving through the same 
intersection. Since we use GPS-based sampling, the associated error for all position samples follows a normal 
distribution. Assuming normal driving behavior, the true location of all position samples is on the centerlines of 
roads and lanes (Guo, Iwamura, & Koga, 2007). Given reduced speeds and constant sampling rates, a considerable 
number of position samples will be recorded around intersections. We refer to those samples as turn points. We can 
infer node locations by aggregating turn points. We propose a new node inference method based on weighted turn 
point clustering. Turn points that are deemed to be closer to the eventual node are given a higher weight. The weight is 
derived from the knowledge we have about the sampling process and the resulting trajectory geometry. 
 
(1) Mean shift clustering 
Since the spatial network coverage of a trajectory is usually unknown, the number of expected nodes as a result of 
the map construction process is also not known. In a similar fashion, Karagiorgou & Pfoser (2012) merely use 
spatial proximity to cluster turn points and do not consider the movement characteristics in relation to the 
intersection. We use the mean shift clustering method (Fukunaga & Hostetler (1975); Cheng (1995)) to derive 
intersection nodes from turn points. It is a non-parametric point clustering method based on density gradient ascent, 
and the input parameters are the detected turn points and the distance for the cluster search. The cluster center Ci is 
shifted to higher density locations with each iteration according to the shift vector M(Ci) (cf. Eq. 7).  

  (7) 
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  (8) 

 
In Eq. 7, d is the search distance for neighboring turn points pj around cluster center Ci in the i-th iteration, and 

 is the kernel function for the density distribution around Ci. There are many kinds of kernel functions, and in 

this work, we use the most commonly used Gaussian kernel function (denoted as in Eq. 8). In Eq. 8, with = d, 
the latter is the only input parameter and the method will compute cluster centers for turn points until M(Ci) 
converges. The resulting centers are nodes in the road network graph that typically represent intersections. The 
choice of a parameter d is a non-trivial decision, since (i) if d is too small, clustering will produce too many cluster 
centers around the very same intersection and (ii) if d is too large, few cluster centers will represent a greater 
number of intersections.  

In general, d is chosen based on expected road network properties. The heuristic we employed is based on the 
expected density of nodes and lengths of edges of the road network to be constructed. A good choice for d was 
found to be half of the length of a typical road network edge, i.e., in our case this equates to a d between 50m and 
100m. 
 
(2) Clustering and weights 
To compute the best possible clusters, we need to consider the particularities of trajectory sampling, especially when 
it comes to turn points. Consider the example of Fig. 2, which shows several trajectories turning at node N. We see 
that very few turn points are actually located close to N. Thus, we have to consider the specific data collection 
approach when clustering turn points. 
 

 
Fig. 2: Possible turn points and angles for one intersection node N 

               
We observed in our ground-truth road network datasets that a typical turn angle at intersections is 90°. As such turn 
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points with angles close to 90° are considered to be of higher quality and more credible than others. Assuming a 
fixed sampling rate for trajectories such as 30s, there is a relationship between the distance of the turn point to the 
intersection node and the measured turn angle. Further away turn points have more oblique angles. A turn point 
with a measured angle of 90° is expected to be closest to the node. To cluster the turn points, we thus weigh them 
based on the obliqueness of their angles. 
 
 
 
(3) Node inference 
We now introduce weighted turn points to our mean-shift clustering method. Step 1 categorizes the turn points 
based on their turn angles and assign different weights to each category, i.e., the closer the angle is to 90°, the higher 

will be the weight. For example, for , , and  we can assign the 

weights 1, 2, and 3, respectively. In Step 2, we choose a search distance d with respect to the targeted type of road 
network and randomly pick a turn point as the seed point and start searching the nearby turn points within distance d. 
We compute the kernel densities at each of the turn points and duplicate them according to the assigned weight. For 
example, a turn point with weight = 3 will be considered a total of three times during clustering. The cluster centers 
are refined until their location converges. Step 3 selects a new seed point that has not been included in any other 
cluster yet and Step 2 is repeated. The algorithm proceeds until all turn points have been included in clusters, i.e., 
are represented by a cluster of which its center will become an intersection node. During this node inference process, 
we preserve movement direction and the respective turn information for each inferred node N. 

An example of clustering turn points and inferred nodes is given in Fig. 3. In this figure, turn points with 
different turn angles are classified into three categories and a different weight is assigned to each. The colors 
ranging from light to dark brown visualize turn points with respective weights. The figure also shows two 
alternative cluster centers, one computed with and one without considering weights. The weighted cluster center is 
considerably closer to the ground-truth intersection node location. 

 
  

 
Fig. 3: Clustering turn points - intersection nodes with and without weight consideration 

 
3.3 Trajectory segmentation based on adaptive node attraction 
Nodes are inferred from turn points, which are position samples of trajectories. We can now use the trajectories to 
connect the nodes, i.e., to derive edges in our road network graph that we want to construct. We achieve this by 
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using, in the simplest case, trajectory segments related to turn points, but also newly discovered segments based on 
so-called split points. 
 
(1) Turn-point segment aggregation 
Each turn point is subsumed by a node. Thus, turn points can be connected to the node. Consider the example of Fig. 
4, which shows a trajectory T1 with 4 turn points (P1 to P4) that are included in the clusters that generated nodes N2, 
N3, N4, and N5. We want to assign trajectory segments to node pairs (Nn, Nm). In our example, the three trajectory 
segments T11-2, T12-3, and T13-4 are linked to node pairs (N2, N3), (N3, N4), and (N4, N5), respectively. Also, as a 
convention, for a trajectory segment to be assigned to a node pair, both of its constituting (turn) points need to be 
part of a node cluster. Segments are otherwise discarded such as is the case for T1?-1 and T14-? in the example of Fig. 
4. 

 
Fig. 4: Turn point attraction 

 
(2) Split-point segment aggregation 
Following the previous step, not all trajectory segments have been assigned properly to nodes as the movement 
generating the trajectory might not include turns. In those cases, a trajectory “passes” by a node, e.g., passes 
through an intersection. An example here is trajectory T2 in Fig. 4. The question now is how we can match such a 
trajectory to nodes and still include the trajectory segments as part of our constructed map. We propose a 
gravity-based method that “attracts” trajectories to close-by nodes.  

This method uses the number of turn points each constructed node comprises. Based on this count we construct 
a circle around each node that exudes the importance or gravity of this node. The larger a node’s gravity and thus its 
radius, the more it “attracts” trajectories around it. An example range for the radius of a gravity circle is [0.5d, 3d], 
where d is the search distance used to perform mean shift node clustering.  

Finally, we find all trajectory segments that intersect with gravity circles of nodes. For each segment, we 
compute a split point at the closest distance of the segment to the node to split the trajectory segment into two 
smaller parts. Fig. 5 gives an example with a gravity circle around a node attracting various trajectory segments that 
intersect it. Split points are created for each of the intersecting trajectories (empty circles).  
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Fig. 5: Split point attraction 

 
A split point will adjust the location of the respective node it is attracted to. Suppose n turn points were used to 

compute the location of node N and in addition it attracts m split points, then a new cluster center  can be 

derived as a weighted mean shift cluster as shown in Eq. 9.  

  (9) 

Here, N and  represent the weighted mean shift clusters of the original turn points and the newly discovered 

split points, respectively. The weights are defined as  and .  

  
3.4 Movement-aware segment conflation 
Having discovered all relevant trajectory segments in between intersection nodes, the edges of a road network can 
be constructed by conflating these segments. 

Each edge is represented by a set of segments. We propose a movement-aware segment conflation method 
based on the so-called “Arc Edit” approach (Lyu et al., 2017). The trajectory segments are conflated by inserting 
virtual vertices to preserve the movement features in the original trajectory as depicted in Fig. 6. Calculating 
so-called Accumulated Length Percentages (ALP), makes trajectory segments comparable and will allow us to 
merge them. Intuitively, the ALP for a given segment provides a one-dimensional distance signature of its vertices 
with respect to the starting vertex. Having such signatures for a set of segments, we decide on whether virtual 
vertices need to be inserted to make them comparable.  

This method comprises the following three steps to make two trajectory segments comparable and to finally 
merge/conflate them. 
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 Fig. 6: Trajectory segment conflation based on Arc Edit 
(1) Accumulated Length Percentage (ALP) 

Suppose there is a trajectory  and a sub-trajectory composed of position samples denoted as 

 (such as the segment in Fig. 6(a)), the ALP  of  is calculated as follows: 

 (10) 

 calculates the Euclidean distance between two points. For T, the ALP of all of the sub-trajectories can be 

denoted as: 

 (11) 

Consider the example of Fig. 6(a), which shows a trajectory T1 that is composed of 3 vertices and a trajectory T2 that 
has 4 vertices. ALPs for T1 and T2 are computed as a1 and a2, respectively.  

 
(2) Movement-aware vertex insertion 

Suppose there are two trajectory segments T1 and T2 with m and n vertices and ALPs and , respectively. The 

unified ALP a can be denoted as follows. 

  (12) 

It integrates all individual values from  and  into one sorted sequence, i.e., in ascending order with respect 

to the movement direction. Consider the example of Fig. 6(a), which shows an ak (in a1) with no corresponding 
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value in a2, i.e., its value is between  and . Here we insert a virtual vertex  in T2 between  and 

 following Eq. 13. The same applies to points in T1. 

                        (13) 

 
(3) Geometric feature preserving trajectory segment conflation 
Following the movement-aware vertex insertion, each of the two trajectory segments has the same number of 
vertices with comparable ALPs (temporal signatures) (cf. Fig. 6(b)). As such, each set of corresponding vertices can 
be conflated based on the average position of each vertex. This conflation process can be illustrated by using the 
example of Fig. 6(c) using 3 trajectory segments. Virtual vertices are added to the trajectory segments based on Step 
2 – Movement-aware vertex insertion. The resulting edge (green) is constructed based on the conflation of vertices 
in each ALP group (index i). In addition, trajectories linking the same nodes, but having opposite movement 
directions are also conflated by reversing the movement direction of the segments. Here the direction information is 
stored with the constructed edges. 

 

4. Experiments and discussion 
The scope of our experimental evaluation is to assess the map construction result quality in comparison to other 
methods and by using a range of metrics and datasets. The specific datasets, evaluation methods and comparison 
methods used in the following experiments are discussed in more detail in Ahmed et al. (2015a &2015b) and were 
retrieved from http://mapconstruction.org.  
 
4.1 Movement-aware map construction results and quality 
This first experiment illustrates the steps of the MAMC algorithm and the data that is generated during each step. 
The experiment uses data collected in a part of Chicago, IL (cf. experimentation in Biagioni & Eriksson (2012a & 
2012b)) and covers an area of about 30km2 and includes 889 trajectories generated by university shuttle buses as 
shown in Fig. 7. As this dataset is not too large and has been widely used in other works, it provides a fitting initial 
assessment of our method. What follows is a discussion of the results in relation to the steps of the MAMC 
algorithm. 
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Fig. 7: The Chicago dataset 
 
(1) Node inference  
Nodes are derived by clustering turn points, which in turn are trajectory points that fulfill certain turn angle qualities. 
Only trajectory points with turn angle between 45° and 100° are considered. The movement-aware weights for the 

turn points are assigned as 1, 4, 16 for , , , respectively and the 

search distance d parameter of the mean shift cluster method is set to be 30m. This distance relates to the smallest 
distance between two parallel road segments. Those weight parameter settings were established following a brief 
experimentation with different weight values. Although the actual values are not that important, what matters is to 
choose weights that significantly differentiate between the angles and as such the turn point in question. 

The node inference result is shown in Fig. 8. Turn points are categorized into 3 groups with different 
movement-aware weights. The higher the weight, the closer they are expected to be to the actual intersections. The 
derived cluster centers are shown as red solid circles and they are located near the actual road intersections with 
superimposed onto the actual road network. The experiments generated 118 cluster centers. However, we discarded 
cluster centers with a support of less than 5 turn points since we consider them unreliable. Finally, 43 intersection 
nodes are inferred from the cluster centers of movement-aware weighted turn points. The example shows that all 
identified nodes coincide with actual intersection locations.  
 

[ )45 ,60a Î ° ° [ )60 ,80a Î ° ° [ ]80 ,100a Î ° °
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Fig. 8: Node inference with movement-weighted turn points 

 
(2) Trajectory segmentation based on adaptive node attraction 
For each inferred node, we record its constituting turn points. We segment the trajectories accordingly using the 
Adaptive Node Attraction method. In this experiment, the radius of the gravity circle ranges from 0.5d to 3d, i.e., 15 
- 90m in our case. These parameters were established empirically and are dictated by the density of the road 
network. The node locations, their respective gravity circles, and the trajectory segmentation results are shown in 
Fig. 9. The gravity circles are categorized into five groups shown by the red solid circles, and the trajectories are 
segmented into 91 different groups, which are shown in different colors. Each segmented trajectory represents a 
direct connection between nodes. This connectivity information in terms of trajectories is usually not preserved in 
density-based map construction methods as will be discussed later in this work. 

 

Fig. 9: Trajectory segmentation based on adaptive node attraction 
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Inferred nodes are further refined by split points derived from adjacent trajectory segments. Fig. 10 gives an 

example of how nodes (red solid circles) are adjusted (green solid circle) and are then closer to the intersection 
location. 

 

 
Fig. 10: Node refinement based on split points 

 
(3) Movement-Aware segment conflation 
Based on the movement-aware segment conflation method proposed in Section 3.4, trajectory segments connecting 
the same node pair are conflated and replaced by the resulting (constructed road network) edge. Our experiment 
generated 88 viable edges. After eliminating some edges supported by only a few trajectories (< 5), the final 
generated road network is shown in Fig. 11. 
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Fig. 11: Map construction based on movement-aware segment conflation 
 
4.2 Assessment of the map construction method 
To assess the performance of the MAMC method, we compare map construction results from different well-known 
methods, such as Edelkamp & Schrödl (2003), Cao & Krumm (2009), Ge et al. (2011), Ahmed & Wenk (2012), 
Davies et al. (2007), Biagioni & Eriksson (2012b), and Karagiorgou & Pfoser (2012). The methods are summarized 
in Ahmad et al. (2015a) and Ahmad et al. (2015b). The data and source code is available at 
http://mapconstruction.org. We re-ran all the experiments to re-generate the map-construction results for the various 
methods based on parameters provided as part of the source code. Using again the Chicago dataset, several map 
construction results are shown in Fig. 12. 
(1) Visual comparison 
The results in Fig. 12(a-b) deviate quite a bit from the ground truth road map as many additional edges are 
introduced. The approach in Fig. 12(a) relies on a k-means approach to cluster the input point set and as such 
overestimates the intersection nodes. Cao & Krumm (2009), relying on incremental track insertion, in Fig. 12(b) 
also overestimates the intersection nodes. The problem is mainly caused by data quality and trajectory outliers, 
which lead to an overestimated set of nodes. Figs. 12(c-d) show good results in terms of topology but inaccurate 
road network geometries. The result of Fig. 12(c) was generated by a method that tries to capture the topological 
structure using a Reeb graph, however the geometric shape of the road edge was not captured accurately due to the 
lack of data quality. In Fig. 12(d), the constructed map includes false nodes caused by outliers. However, the result 
has been significantly improved and the trajectories are better matched and conflated to edges using an incremental 
track insertion approach. Fig. 12(e) has limited coverage. The map construction results in Figs. 12(f-h) show the 
best coverage and accuracy in terms of topology and geometric similarity. Figs. 12(e-f) show accurate results with 
respect to geometry using a density-based sampling approach, which is more robust to outliers. On the other hand, 
areas of low density are not captured in the final result. The map construction results of Figs. 12(g) and (h) are 
comparable. The main difference is the accuracy of the intersection node locations. The nodes in Fig. 12(h) are 
generated based on a modified movement weight and direction approach. In connection with improved trajectory 
conflation, the map construction result seems to visually outperform that of Fig. 12(g).  
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(a) Edelkamp & Schrödl (2003) (b) Cao & Krumm (2009) 

  
(c) Ge et al. (2011) (d) Ahmed & Wenk (2012) 

 

 

(e) Davies et al. (2007) (f) Biagioni & Eriksson (2012b) 

  
(g) Karagiorgou & Pfoser (2012) (h) Movement-Aware Map Construction (MAMC)  

 
Fig. 12: Comparison with the results of other map construction methods 
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Tab. 1 provides an overview of the distances between the inferred and ground truth nodes for the results shown in 
Figs. 12(g) and (h) by reporting the Max, Min, Mean, and Standard Deviation values for the respective methods. 
The result of Fig. 12(h), MAMC, has a lower mean distance and standard deviation, resulting in an overall better 
constructed map. 

 
Tab. 1: Distance between inferred and ground truth road intersection nodes [m] 
Map construction result Max Min Mean Std Dev 

Fig. 12(g) 25.3 0.1 8.2 6.1 
Fig. 12(h) 20 0.8 6.9 4.5 

 
(2) Local similarity measures 
Ahmed et al. (2014) presented a distance measure that is based on comparing the local persistent homology of two 
graphs. The method generates discs (which is an open area U) at the sampled positions  in each road 
network (R1 and R2) with an increasing radius r (r  rmax), which are used to derive the persistence diagrams for 

different road networks. A local distance signature  based on the bottleneck distance is computed using a 

filtration process. The local homology distance metric dLH is denoted as follows. 

                   (14) 

In Eq. (14), and  are non-negative weight functions. Finally, the variant  of 

the local homology metric is computed for the union of the road networks , with being the total 

length of the edges in , for the area of interest as follows. 

                                                    (15) 

Essentially, this distance measure allows us to compare spatial graphs in terms of topology and geometric similarity. 
We use this measure to construct distance signatures of a constructed network to its ground truth. What will be of 
interest is not the absolute similarity, but comparing the outputs of the various algorithms to each other.  

Here, we only evaluate the three best results shown in Fig. 12(f-h). The similarity of two graphs is calculated 
using a set of random seed points (locations) distributed over the spatial area covered by the graphs. The graphs are 
compared in circular areas of a specific radius centered on the seeds (cf. Ahmed et al. (2014)). Each circle can be 
considered as the local scope of comparison for each graph. The local homology measures then compare the two 
graphs at each location in terms of their geometric similarity and topology. 

In our experimentation, 11424 circles with a radius of 30m are generated to cover the trajectories and 
constructed road network of the Chicago area. To compare the different results, we consider for each network the 
number of seed points that have small dissimilarity measures. We chose a value of < 3000 as a threshold, which is 
not too strict and preserves a considerable number of locations to compare the various map-construction results. 
This threshold is an algorithm parameter and has no metric equivalent. A larger number of such points indicates an 
increased similarity between the constructed and the ground truth network.  

For the three methods of Biagioni & Eriksson (2012b), Karagiorgou & Pfoser (2012), and MAMC (this work), 
the respective number of seed points with such a low score are 405, 436, 459, respectively. The average dissimilarity 
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measures for the three algorithms are 4.98, 5.04, and 4.95, respectively. Both measures give an advantage to 
MAMC as producing the network with the highest number of seed points with small dissimilarity scores (459) and 
having the smallest dissimilarity measure.  

A visual representation of the dissimilarity scores superimposed on the constructed map (MAMC) is shown in 
Fig. 13. Lighter colors show re-constructed road network segments that are similar to the ground truth map. Darker 
colors indicate dissimilarity in terms of topology and geometry. Overall, areas around intersections are typically 
shown in darker colors, given that either the topology and/or the geometry (intersection node locations) differ from 
the ground truth. In examining two specific areas, we see that although road network geometries are similar, missing 
edges at an intersection contribute to higher measures (blue rectangle). The red rectangle shows a part of the road 
network that has a low dissimilarity score since the entire network was constructed.  

 

 

Fig. 13: MAMC result for Chicago – colors showing good (light color) and less good matches (darker color) 
 
4.3 Movement-aware map construction using additional data sources 
To validate the scalability and robustness of MAMC we include experiments for three additional datasets. The 
Athens (small) dataset shown in Fig. 14(a) has an extent of 15km2 covered by 129 trajectories generated by school 
buses. The Athens (large) dataset shown in Fig. 15(a) has an area of 170km2 and is traversed by 120 trajectories 
generated also by school buses. The Berlin dataset shown in Fig. 16(a) has an area of 36km2 and is covered by 
26831 trajectories generated by a taxi fleet. These three datasets represent a different type of road network at 
different spatial scales, complexities, and trajectory data sources when compared to the Chicago dataset. 
 
(1) Athens (small) map construction result 
The Athens (small) dataset is a bit smaller than the Chicago dataset, but the road network to be inferred is more 
complex. The road density is higher, which means that a map construction algorithm needs to distinguish between 
close by, possibly parallel roads. 
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Fig. 14: Map construction result of Athens (small) dataset 

 
The parameters of the MAMC algorithm are identical to the Chicago experiment, only the search distance d = 

50m. Following turn point clustering, 122 cluster centers are generated, and 122 intersection nodes are inferred. 
Segment conflation generates 219 candidate edges, of which only 167 edges are preserved. The map construction 
result for the Athens (small) dataset is shown in Fig. 14(b). With 122 nodes connected by 167 edges, the 
reconstructed road network generates the portions of the road network covered by the trajectories very well. 
 
(2) Map construction result of Athens (large) dataset 
The Athens (large) dataset covers a larger area and a considerably more complex road network. The dataset consists 
of quite long trajectories, which have few turns, i.e., do not turn at intersections. Turns are essential for our 
algorithm and as such this dataset presents quite a challenge to our method. 

 
  



 21 

 
Fig. 15: Map construction result of Athens (large) dataset 

 
Using a search distance d = 70m and otherwise unchanged parameters, we have inferred 1039 nodes and 1461 

edges. The map construction result for the Athens (large) dataset shown in Fig. 15(b) is impressive given its 
coverage and accuracy. 
 
(3) Map construction result of Berlin dataset 
The Berlin dataset covers an area similar to Athens, but exhibits a more nuanced road network in terms of mix of 
road categories. The dataset was collected with a high sampling rate (10-30s) and has considerable sampling errors. 
The data quality has a direct impact on the map construction result. 
 

 
Fig. 16: Map construction result of Berlin dataset 
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Using a search distance d = 70m and otherwise unchanged parameters, 517 nodes and 778 edges were created. The 
map construction result is shown in Fig. 16(b). While not all edges were found and identified correctly, the 
positional accuracy of the intersection nodes is very high.  

 
(4) Assessment of Map construction results 

The map construction results of the Athens (small), Athens (large) and Berlin datasets based on the 7 methods 
that are mentioned in Fig. 12 are consistent with the results presented in Ahmed et al. (2015b). 
http://mapconstruction.org/ provides visualizations of the respective results. Beyond visualizations, Tab. 2 provides 
the local similarity metrics introduced in Section 4.2 for all results. Unfortunately, due to the running time 
complexity of the algorithm implementing this measure, some similarity metrics could not be calculated.  
 
Tab. 2: Comparison of different map construction results based on local similarity measures (“-” means no result 

could be calculated) 

Dataset 
Athens 
(small) 

Athens 
(large) 

Berlin 

Edelkamp & 
Schrödl (2003) 

- - - 

Cao & Krumm 
(2009) 

15.76 - - 

Ge et al. (2011) 13.02 - - 
Ahmed & Wenk 

(2012) 
10.78 - 9.78 

Davies et al. (2007) 15.56 - - 
Biagioni & 

Eriksson (2012b) 
12.15 - - 

Karagiorgou & 
Pfoser (2012) 

9.94 - 8.89 

MAMC 9.86 - 8.86 
 
Tab. 2 shows that the average dissimilarity measures for MAMC is 9.86 for Athens (small) and 8.86 for Berlin. In 
both cases, this is the smallest measure for all algorithms and as such MAMC seems to produce the best overall map 
construction result. 

 
 
4.4 Map construction and movement information 
As the map construction method is movement-aware and movement features are utilized in the map construction 
process, the movement information, such as the edge direction and turn type at a node, is captured as part of the 
map construction result. 
 
(1) Direction  
The edge direction is derived from the movement direction of the trajectories. Depending on whether there is 
uniformity or not with respect to the movement when conflating segments, we have either uni- or bi-directional 
movement. The edge directions for the various constructed maps are shown in Fig. 17. 
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Fig. 17: Edge directions in the map construction result 

 
Chicago has 34 uni-directional edges and 28 bi-directional edges, Athens (small) has 118 uni-directional edges 

and 49 bi-directional edges, Athens (large) has 862 uni-directional edges and 599 bi-directional edges, and Berlin 
has 200 uni-directional edges and 578 bi-directional edges. 
 
(2) Turn types  
Turn types of nodes (is it a 4-way intersection?) are again derived from trajectory information and the respective 
turns that were observed as part of the map construction process when deriving intersection nodes. Consider here 
the Chicago map construction result as shown in Fig. 18. The nodes are given unique ids in Fig. 18(a). Three 
random nodes and their observed turns are shown in Figs 18(b-d). For example, for Node 1, we only observed a 
right turn driving East. For Node 26 we only observed a left turn. Node 15 is a busy intersection and almost all turns 
were observed.  
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Fig. 18: Turn types of the nodes in the map construction result 
 

5. Conclusions and future work 
Location data is a big data by-product of our digital world saturated with mobile computing devices. Trajectory data 
as its spatiotemporal derivative is collected by a myriad of applications tracking people and goods. Trajectory data 
is leveraged in a range of contexts such as traffic management, fleet management and logistics services, and even 
urban planning and has resulted in a range of data mining challenges including map matching, i.e., relating 
trajectories to road networks, and in our case map construction. Here the goal is to identify the transportation 
infrastructure that has actually generated these trajectories. This work presents a novel map-construction algorithm 
that considers the characteristics of recorded movements such as the sampling rate and the position samples in 
relation to turns as captured in the trajectory data. Our approach belongs to the family of movement-based map 
construction methods, i.e., methods that aggregate polylines representing trajectories when reconstructing the road 
network. The method initially constructs intersections from turn points identified in the trajectory data by 
specifically taking into account the trajectory geometry around a turn point and thus implicitly how far before or 
after an intersection the location of the vehicle was sampled. This improves the quality of the intersection nodes, 
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which are then further adjusted using adjacent trajectories as they pass by those intersection nodes. Nodes are 
constructed using a mean-shift cluster algorithm, a density-based clustering technique. We construct the road 
network edges by clustering trajectory segments connecting intersection nodes using the so-called arc editing 
method. An experimental evaluation using trajectory datasets from different geographic areas and road networks 
shows that our MAMC algorithm reconstructs road networks better than existing methods. In our experiments, we 
observed that the quality of the trajectory data directly impacts the map construction result. Especially 
movement-based methods such as our MAMC algorithm are affected. In the presence of a considerable number of 
outliers, MAMC’s performance degrades, while density-based methods perform better in these situations. However, 
those methods do not capture edge direction and turn types. Also, trajectories cannot be too sparsely sampled since 
MAMC relies on a certain point density to accurately reconstruct intersection node locations.  

Directions for future research are as follows. Since node construction is at the core of the algorithm, the 
accuracy of the inferred nodes directly impacts the map construction result. Node inference assumes a typical 90° 
turn angle for selecting turn points and also adjusting their location based on trajectory geometry. Although we 
found that most intersections obey this constraint, relaxing this assumption could yield better results. Another aspect 
we want to explore is lane information. Preprocessing and filtering trajectories using machine learning methods will 
help us detect the habits of drivers in an effort to discern lane information and provide a more detail map 
construction result. 
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