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ABSTRACT
This paper presents a novel approach for trajectory anomaly de-
tection using an autoregressive causal-attention model, termed
LM-TAD. This method leverages the similarities between language
statements and trajectories, both of which consist of ordered el-
ements requiring coherence through external rules and contex-
tual variations. By treating trajectories as sequences of tokens,
our model learns the probability distributions over trajectories,
enabling the identification of anomalous locations with high preci-
sion. We incorporate user-specific tokens to account for individual
behavior patterns, enhancing anomaly detection tailored to user
context. Our experiments demonstrate the effectiveness of LM-TAD
on both synthetic and real-world datasets. In particular, the model
outperforms existing methods on the Pattern of Life (PoL) dataset
by detecting user-contextual anomalies and achieves competitive
results on the Porto taxi dataset, highlighting its adaptability and
robustness. Additionally, we introduce the use of perplexity and
surprisal rate metrics for detecting outliers and pinpointing specific
anomalous locations within trajectories. The LM-TAD framework
supports various trajectory representations, including GPS coordi-
nates, staypoints, and activity types, proving its versatility in han-
dling diverse trajectory data. Moreover, our approach is well-suited
for online trajectory anomaly detection, significantly reducing com-
putational latency by caching key-value states of the attention
mechanism, thereby avoiding repeated computations. The code to
reproduce experiments in this paper can be found at the following
link: https://anonymous.4open.science/r/LMTAD-31EA/.
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1 INTRODUCTION

Figure 1: A conceptual visualization of trajectories as natural
language statements. Language statements and trajectories
share similarities: both consist of ordered elements from
a finite set (words vs. GPS points) and require connections
by semantic or spatiotemporal relationships to be coherent.
They are governed by external rules (grammar for the lan-
guage, road networks for trajectories) and vary by user or
context (writing style vs. movement behavior).

Effective techniques for gathering and analyzing movement data,
including the contribution of this work on anomaly detection are
becoming increasingly important with the growth in terms of data
and different types of applications. Specifically, trajectory anomaly
detection has several interesting and practical use cases across var-
ious fields, such as Transportation and Traffic Analysis (accident
detection, road safety analysis), Maritime Navigation and Safety
(shipping lane monitoring, piracy detection), Air Traffic Control
(airspace safety), Wildlife Monitoring (behavior change), Sports
Analysis (injury prevention, game strategies), Healthcare and El-
derly Care (behavior change and detecting health issues or emer-
gencies), Disaster Response and Management (disaster response
and crowd monitoring) and Urban Planning and Smart Cities (mo-
bility analysis, public transit optimization, pedestrian safety). This
work focuses on detecting trajectory anomalies that deviate from
patterns observed in collections of historical datasets.

Extensive research has been conducted on trajectory anomaly
detection for unlabeled data [5, 11, 16, 27, 34, 36]. However, this
body of prior work has several limitations.

Firstly, it is difficult to pinpoint specific locations within the
trajectory where the anomaly occurs, as the anomaly score is at-
tributed to the entire trajectory or sub-trajectory. Secondly, these
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methods do not adequately consider anomalies in relation to the
individual user’s context. This is significant because different users
exhibit distinct behavior patterns, and what constitutes a normal
pattern for one user might be deemed anomalous for another. Fi-
nally, anomaly detection has primarily focused on spatiotemporal
trajectory data (i.e., GPS coordinates), but the concept of a trajectory
can be more abstract. A trajectory can be a chronological sequence
of qualitative staypoints (i.e., work → restaurant → apartment)
for a particular user. Additionally, anomalies may not lie solely in
the spatial properties of the data; they can also involve the types
of places a user visits, such as a restaurant or a shopping mall
on specific days of the week or the duration spent at a particular
location.

To address these issues, we propose a LanguageModel forTrajec-
tory Anomaly Detection, (LM-TAD). The motivation for using a
language modeling approach stems from the idea of modeling tra-
jectories as statements [19], as illustrated in Figure 1. Language
statements and trajectories share several similarities: 1) both consist
of ordered elements from a finite set (words vs. GPS points and
segments); 2) both require coherence, meaning the elements must
be connected by semantic (language) or spatial/temporal (trajecto-
ries) relationships. For example, in Figure 1, the word to cannot be
followed by any random word in the vocabulary, just as a GPS point
can only be followed by a limited set of other GPS coordinates. 3)
Additionally, both are governed by external rules—grammar for
language and road networks or physical constraints for trajecto-
ries. Grammar dictates sentence construction, while road networks
dictate possible routes from point A to point B. In Figure 1, the
paths from the source (S) to the destination (D) are constrained by
the road network. 4) Finally, the specific combination of elements
(words vs. temporal sequence of locations) varies with the user or
context. Similar to writing styles, users have different movement
behaviors, determining the use of certain words or speed/mobility
patterns, respectively. As illustrated in Figure 1, just as one can
choose different words to convey the idea of going to the beach
with friends, one can also select different trajectories to travel be-
tween the source (S) and destination (D). Based on these similarities,
just as a language model can be trained to score the likelihood of
sentences, we aim to train a model to score the probability of given
trajectories and, hence, detect anomalous trajectories.

Our specific approach is using an autoregressive causal-attention
model to learn the distributions over trajectories. We train the
model by learning to predict the next location in a trajectory given
a historical context. Having learned the model, we can compute the
probability of generating a location (i.e., discretized GPS coordinate,
staypoints, etc.) in a trajectory given its historical context, e.g.,
in its simplest case, a location history. Anomalies are detected by
identifying low-probability locations. To learn normal behavior for
specific users, we can further condition the trajectory generation
with a unique user token (i.e., USER_ID) and flag anomalies on a
user basis accordingly. The language model uses discrete tokens and
can handle different abstractions of a trajectory, such as discretized
GPS coordinates using spatial partitions or qualitative staypoint
information (i.e., "home, work, restaurant, and so forth").

To distinguish between normal and anomalous trajectories, we
use perplexity, a well-established metric in natural language pro-
cessing. Intuitively, perplexity can be viewed as a measure of uncer-
tainty when predicting the next token (location) in a trajectory. We
also use the surprisal rate of each location to identify anomalous
locations to identify where the anomaly is in a trajectory.

Our contributions can be summarized as follows:
• We propose a new way to detect anomalies in trajectory data
by using an autoregressive causal-attention model. With this
approach, we can 1) identify the location in the trajectory
where the anomaly occurs, 2) find anomalies with respect to
a user, and 3) handle various definitions of a trajectory (GPS
coordinates, staypoints, etc.)

• We show the application of perplexity as a metric for iden-
tifying outlier trajectories, both in the context of the entire
dataset and with respect to the trajectories of a specific user.
Additionally, we illustrate using the surprisal rate to identify
potential anomalous locations within a trajectory.

• Our findings indicate that our method performs exception-
ally well on the Pattern of Life dataset (PoL) [43], effectively
identifying anomalous trajectories in the context of a user
while training on all data, including anomalies. We also show
that our approach is on par with state-of-the-art methods
for trajectory anomaly detection when tested on the Porto
dataset [32, 33], using solely GPS coordinates. Furthermore,
our approach is suitable for online anomaly detection as
the trajectory is being generated. Unlike autoencoder meth-
ods that require the computation of the anomaly score for
the entire sub-trajectory each time a new GPS coordinate is
sampled, our method benefits from low latency by caching
key-value (KV cache) states [15, 22] of the attention mecha-
nism for previously generated tokens (i.e., GPS coordinates),
thereby avoiding repeated computations.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 gives the basic formulation of the
problem. In Section 4, we present our autoregressive generative
approach to detect anomalies in trajectories. Section 5 provides an
experimental evaluation that highlights the benefits of our method
compared to existing approaches. Finally, Section 7 concludes and
provides directions for future work.

2 RELATEDWORK
2.1 Trajectory Anomaly Detection
Existing work for anomaly detection in trajectories can be grouped
into two broad categories: heuristic-based methods [5, 13, 17, 34, 41]
and learning-based methods [26, 27].

Heuristic-based methods primarily rely on hand-crafted features
to represent normal routes and employ distance or density met-
rics to compare a target route to normal routes. The study in [13]
suggests a partition-and-detect framework for trajectory outlier
detection, effectively identifying outlying sub-trajectories by com-
bining two-level trajectory partitioning with a hybrid distance-
based and density-based detection approach. Studies by [34] and
[5] introduce related methods that systematically extract, group,
and analyze trajectories based on the source and destination. These
methods identify anomalies by how rare they are and how much
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they deviate from usual patterns, using the principle of isolation to
ensure effective and reliable anomaly detection. Another research
effort by [41] presents a time-dependent approach for detecting
trajectory anomalies, employing edit distance metrics to ascertain
whether a given target trajectory deviates significantly from histor-
ical normal trajectories. Similarly, [17] uses edit distance coupled
with a density-based clustering algorithm to identify anomalous
trajectories. Heuristic-based methods exhibit certain limitations.
Primarily, the characterization of a trajectory is dependent on man-
ually curated features encompassing various parameters, such as
frequency, distance, or density thresholds, to flag a trajectory as
anomalous. Furthermore, the construction of these features tends to
be domain-specific, necessitating specialized expertise in the respec-
tive field. Additionally, the applicability of these methods across
different regions is constrained owing to the inherent dissimilarities
in trajectories across diverse geographical locations.

Learning-based methods rely on machine learning techniques.
The work by [27] employs trajectory embedding learned by recur-
rent neural networks (RNN) to capture the sequential information
and distinctive characteristics of trajectories to detect anomalies.
However, the model requires labeled data, usually unavailable in
real applications due to the cost of labeling a dataset. Several studies
on unlabelled data have been proposed to overcome the limitations
of using labeled data. [26] suggest a method combining Infinite
Gaussian Mixture Models with bi-directional Generative Adversar-
ial Networks to detect anomalies in trajectory data using a com-
bination of the reconstruction loss and discriminator-based loss.
Deep learning methods based on autoencoders have recently been
applied to various anomaly detection tasks [7, 18, 39, 42]. These
methods work by learning to compress and reconstruct the input.
They use the premise that anomalous input will produce a signifi-
cant reconstruction error, as they differ from the learned normal
patterns. A recent study by [16] proposes an autoencoder method
for online anomalous trajectory detection with multiple Gaussian
components in the latent space to discover various types of normal
routes. Outside of autoencoder methods, another recent study by
[37] suggests a reinforcement learning-based solution for detecting
anomalous trajectories and sub-trajectories. However, the methods
have two main limitations. Firstly, these methods are limited in pin-
pointing the specific location of an anomaly within the trajectory,
as they rely on an aggregate anomaly metric, typically the recon-
struction error. Secondly, there is a notable lack of generalizability
in these approaches to scenarios requiring user-specific anomaly
identification, as what constitutes an anomaly for one user might
be deemed normal for another.

2.2 Language Modeling on Trajectory Data
The field of languagemodeling has receivedmuch attention recently
since the introduction of the transformer model [30]. Language
models like BERT [8], GPT-2 [24], and LLaMA [28] have been shown
to achieve great performance on a variety of natural language
tasks, including question-answering, sentiment analysis, and text
generation. Language modeling techniques have been extended
to other applications, including image classification [23, 40] and
speech processing [2, 3]. Recent studies have also applied language
modeling techniques to a wide range of applications on mobility

Figure 2: Architecture of LM-TAD, our trajectory model.

data. For example, the work in [31] leverages language modeling
techniques for human mobility forecasting tasks, while the work
in [12] uses similar techniques to predict the next visited location
in a trajectory. The work in [19] proposes a conceptualization of
a BERT-inspired system tailored for trajectory analysis. However,
none of the previous work used a generative approach for anomaly
detection in trajectory data.

3 PROBLEM FORMULATION
A trajectory is a finite chronological sequence of visited locations
and can bemodeled as a list of space-time pointsmodeled as location
and time stamp pairs 𝑇 = 𝑝0, . . . , 𝑝𝑛 with 𝑝𝑖 = ⟨𝑙𝑖 , 𝑡𝑖 ⟩ and 𝑙𝑖 ∈
𝑅2, 𝑡𝑖 ∈ 𝑅+ for 𝑖 = 0, 1, . . . , 𝑛 and 𝑡0 < 𝑡1 < 𝑡2 < . . . < 𝑡𝑛 .

In the simplest case (shown above), a location 𝑙𝑖 is represented
as a geographic coordinate in two-dimensional space. Other repre-
sentations could be to map locations to cells of a discretized space
such as a regular spatial or a hexagonal grid [29].

Alternatively, 𝑙𝑖 can capture qualitative staypoints (visited points
of interest such as "home," "work," or "restaurant") or spatial par-
titions that capture functional areas of a city, e.g., “commercial”,
“business”, or “residential” areas. Therefore, 𝑙𝑖 can include both a
staypoint and functional area, e.g., 𝑙𝑖 = [apartment, downtown]).

A collection of related trajectories𝑇𝑖 constitutes a datasetD. The
dataset D may contain both normal and anomalous trajectories. In
general, an anomalous trajectory refers to one that does not show
the normal mobility pattern and deviates from the majority of the
trajectories in D [6, 36]. Given a dataset D with 𝑛 trajectories, our
goal is to train a model that distinguishes between normal and
anomalous trajectories without having explicit labels.
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(a) Discretized GPS (b) Staypoints

(c) Staypoints + duration (d) Activities

Figure 3: Example location configurations. Locations can be (a) discretized GPS coordinates, (b) staypoints, (c) staypoints
enhanced with dwell time, or (d) activities.

4 METHOD
Our approach is to train amodel that learns probability distributions
over trajectories. An autoregressive generative model will allow us
to infer the probability of a trajectory given the historical context

𝑃 (𝑇 ) = 𝑝 (𝑙1)𝑝 (𝑙2 |𝑙1)𝑝 (𝑙3 |𝑙1𝑙2) . . . 𝑝 (𝑙𝑖 |𝑙<𝑖 ) . . . 𝑝 (𝑙𝑛 |𝑙<𝑛) (1)

where the probability of each location 𝑝 (𝑙𝑖 |𝑙<𝑖 ) is conditioned on
all previous location history. We note that there is no time bound
between locations; however, such information we could also use
that as part of the input. With this approach, we can find anomalous
trajectories and identify exactly which locations in the trajectory
are anomalous.

4.1 Model and Architecture
Given a dataset of trajectories D = {𝑇1, . . . ,𝑇𝑚}, LM-TAD’s goal is
to maximize the likelihood of all the trajectories in the dataset:

L(D) =
|D |∑︁
𝑖=1

|𝑇𝑖 |∑︁
𝑗=1

log 𝑃 (𝑙𝑖 |𝑙<𝑖 ;𝜃 ) (2)

where 𝑃 (·;𝜃 ) is the conditional probability modeled by a neural
network parameterized by 𝜃 . To learn the parameters 𝜃 , we opt for
a transformer-based network architecture [30]. This architecture
choice is motivated by its proven efficacy in natural language gener-
ation tasks, suggesting its potential applicability and effectiveness
in modeling trajectories as statements.

Figure 2 shows the overall architecture of our method, LM-TAD,
which consists of positional and token embeddings, 𝑁 transformer
blocks followed by a linear transformation, and a softmax layer.

To capture input semantics, the token embedding layer trans-
forms each token (location) from a categorical type to a finite-
dimensional real-valued vector. Positional embeddings play a criti-
cal role in the training process, compensating for the absence of in-
herent sequential orderingwithin the causal-attentionmodule. Each
transformer block comprises a multi-head causal-attention mecha-
nism, which is preceded and succeeded by a layer-normalization
layer and a feedforward layer. In the multi-head causal-attention
mechanism, a trajectory is transformed into three sets of vectors
—keys, values, and queries— and then split into multiple heads for
parallel processing. Each head independently computes a scaled
dot-product attention to get attention scores that assess the rel-
evance of different locations (tokens) in a trajectory. This allows
the model to concurrently learn dependencies between locations,
such as temporal or spatial ones. The outputs from all heads are
concatenated and linearly transformed to produce the final output.
Additionally, the causal-attention mechanism includes a masking

operation to prevent the attention function from accessing informa-
tion from future tokens (locations), given the autoregressive nature
of our approach.

Below is the formal description of the muti-head self-attention:

Attention(Q,K,V) = softmax

(
QK𝑇√︁
𝑑𝑘

)
V (3)

where 𝑑𝑘 is the dimension of the keys. Concatenating the output
values results in:

MultiHead(Q,K,V) = Concat(head1, ..., headℎ)W𝑜

with head𝑖 = Attention(QW𝑄

𝑖
,KW𝐾

𝑖 ,VW
𝑉
𝑖 )

(4)

where theW𝑄

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑞 ,W𝐾

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 ,W𝐾

𝑖
∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣

are projection matrices that are learned during training. The pro-
jection matrix W𝑜 linearly combines the outputs from different
attention heads, enabling the model to flexibly adjust and fine-tune
the aggregated attention, thereby enhancing the model’s capacity
to learn complex patterns. In LM-TAD, 𝑑𝑞 = 𝑑𝑘 = 𝑑𝑣 = 𝑑𝑚𝑜𝑑𝑒𝑙/ℎ
where ℎ is the number of heads.

The feedforward layer consists of two linear transformations
linked with a ReLU activation function:

FFM(𝑥) = max(0, xW1 + b1)W2 + b2 (5)

where the weightsW1 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑓 𝑓 ,W2 ∈ R𝑑𝑓 𝑓 ×𝑑𝑚𝑜𝑑𝑒𝑙 and the
biases b1 ∈ R𝑑𝑓 𝑓 , b2 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙

. The transformer block uses the
layer-normalization layer in addition to residual connections to
stabilize learning and improve training efficiency.

The output of the transformer block goes through linear and soft-
max layers to predict the distribution of each token in a trajectory.
.
4.2 Location Configurations
An advantage of using a generative approach to model trajectories
is the ability to abstract the locations of a trajectory in different
ways. Figure 3 shows a few examples of location configurations.
In the simplest case, a trajectory can be represented by a finite
chronological sequence of GPS coordinates. These coordinates can
be discretized using regular grid cells (Figure 3a) [14] or hexagons
[9]. However, various other trajectory configurations are possible.
Instead of GPS coordinates, we can also use staypoints (“home”,
“workplace”, “restaurant”, etc.) (Figure 3b) or points of interest.
We can even model a trajectory as a chronological sequence of
a person’s activities (“eating”, “working”, and “playing sports”) (Fig-
ure 3d), where each location in the trajectory corresponds to a
person’s activity at a particular time. These trajectories can even
be enhanced with additional metadata, such as the dwell time at a
location (Figure 3c), method of transportation, or proximity to the
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previous location. An advantage of LM-TAD is its ability to work
with any of these different trajectory configurations.

4.3 Anomaly Score
We use perplexity to determine how anomalous a trajectory is. Per-
plexity is a well-established measure to evaluate language models
[4, 8, 21], and can be viewed as a measure of uncertainty when
predicting the next token (location) in a trajectory [20]. Euqation 6
shows how we can calculate the perplexity of a trajectory 𝑇 with 𝑡
locations, and Equation 7 shows how we compute the perplexity
over a dataset D with 𝑛 trajectories 𝑇𝑖 .

𝑃𝑃𝐿(𝑇 ) = exp

{
− 1
𝑛

𝑡∑︁
𝑖=1

log 𝑃 (𝑙𝑖 |𝑙<𝑖 )
}

(6)

𝑃𝑃𝐿(D) = − 1
𝑛

𝑛∑︁
𝑖=1

𝑃𝑃𝐿(𝑇𝑖 ) (7)

The lowest possible perplexity is 1, which implies that the model
can correctly predict the next location with absolute certainty. How-
ever, the maximum of this measure is unbounded. To determine
when a trajectory is anomalous (“high” perplexity), we need to
provide a threshold. We note that the choice of a threshold can
be application- and dataset-dependent [1]. We can compute the
threshold as follows:

threshold = mean[𝑃𝑃𝐿(D)] + std[𝑃𝑃𝐿(D)]
where mean[𝑃𝑃𝐿(D)] and std[𝑃𝑃𝐿(D)] are the mean and stan-
dard deviation of the perplexities of 𝑛 training trajectories. To iden-
tify abnormal trajectories with respect to a specific user, we cus-
tomize the threshold for each user. Here, the mean and standard
deviation will be computed only using the training samples of that
user.

5 EXPERIMENTS
In this section, we describe the experimental setup used to evaluate
the effectiveness of our proposed LM-TAD model. We compare our
method against several state-of-the-art baselines on two different
datasets and utilize different evaluation metrics to measure the
accuracy and robustness of anomaly detection.

5.1 Datasets & Preprocessing
In our experiments, we use simulated and real-world datasets.
Specifically, we use the Pattern-of-Life (PoL) simulation dataset [43]
and the Porto taxi dataset [32, 33].

5.1.1 Pattern-of-Life Dataset (PoL). The PoL dataset was gener-
ated through the pattern of life simulation [43]. The PoL simula-
tion consists of virtual agents designed to emulate humans’ needs
and behavior by performing human-like activities. Activities in-
clude going to work, restaurants, and recreational activities with
friends. These activities are performed in real locations obtained
from OpenStreetMap [10]. While agents engage in these activities,
the simulation also records the location, which includes the GPS
coordinates and the staypoints (i.e., home, work, restaurant), as
well as the timestamps at the location.

Using the raw data from the PoL simulation, we created daily
trajectories for each agent, consisting of places they visited on

(a) Random shift anomalies (b) Detour anomalies

Figure 4: Example of generated anomalies with 𝛼 = 0.3 and
𝛽 = 3 for both types of anomalies on the Porto dataset.

that particular day. The geographic coverage was Atlanta, GA and
we simulated the behavior of an agent population consisting of
working professionals.

The dataset includes an average of 450 daily trajectories for each
of the 1000 generated agents, resulting in a total of 444,634 trajec-
tories. Each input to the model represents a virtual agent’s daily
trajectory. To capture the patterns of each agent, the agent ID is
included at the beginning of the trajectory. Based on the hypothesis
that individual behavioral patterns exhibit consistency on the same
days of the week, we also incorporate weekday information into the
feature vector to enhance the model’s ability to detect anomalies.

For example, a daily trajectory is represented as: [agent_ID, week-
day, work, restaurant, apartment]. In our experiments, we also
consider other location confirmations, including discretized GPS
coordinates and the duration of stay at a location. We use Uber
hexagons [29] for discretized GPS and discretize the stay duration
into 1-hour buckets, using a sequence of bucket IDs as input to the
model.

The PoL dataset comes with labels to identify anomalous tra-
jectories generated by the simulation. To introduce anomalies, the
simulation selects ten virtual agents exhibiting anomalous behav-
iors. For example, work anomaly is one type supported by this
simulation: agents with work anomalies will abstain from going to
work when they typically would.

For agents with anomalous trajectories, we have the first 450
days representing normal behavior and the last 14 days that exhibit
anomalous behavior.

We trained our model on the entire dataset, including the addi-
tional 14 days of anomalous behavior from the ten virtual agents,
to ensure it could identify outliers even when they were present in
the training data. We then tested our methods against the baselines
using the entire dataset

5.1.2 Porto Dataset. The Porto dataset consists of data generated
by 442 taxis operating in the city of Porto in Portugal from January
07, 2013, to June 30, 2014. A taxi reports its GPS location at 15s
intervals. We employed preprocessing steps similar to [16] and
[14]. We discretize the map into 100𝑚 × 100𝑚 grids and group
trajectories with the same source and destination. We discarded
trajectories belonging to a “source-destination” group with fewer
than 25 trajectories. The input to our model consists of a vector
of chronologically ordered and discretized GPS coordinates (grid
cells) prepended with SOT (start of trajectory) and appended EOT
(end of trajectory) tokens.
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Table 1: Outlier detection on RED outlier agents for the Pattern of Life dataset. The best results are bolded. LM-TAD clearly
outperforms the baselines, showcasing its modality adaptation capabilities

baselines ours
SAE VSAE GM-VSAE LM-TAD

Agent F1 PR-AUC F1 PR-AUC F1 PR-AUC F1 PR-AUC

57 0.00 0.01 0.00 0.04 0.16 0.03 0.72 0.59
62 0.00 0.11 0.00 0.02 0.10 0.09 0.87 0.85
347 0.00 0.02 0.00 0.02 0.25 0.40 0.78 0.78
546 0.00 0.07 0.00 0.03 0.12 0.12 0.75 0.63
551 0.00 0.01 0.00 0.02 0.00 0.04 0.76 0.63
554 0.00 0.02 0.00 0.02 0.00 0.04 0.61 0.46
644 0.00 0.03 0.00 0.01 0.00 0.04 0.76 0.75
900 0.00 0.01 0.00 0.06 0.32 0.17 0.70 0.69
949 0.00 0.01 0.00 0.02 0.00 0.06 0.77 0.79
992 0.00 0.03 0.00 0.02 0.11 0.13 0.78 0.72

Since this dataset did not have ground-truth labels of what tra-
jectory is anomalous, we artificially generated anomalies following
the work in [16] and [38]. We created two types of anomalies, (i)
random shift and (ii) detour anomalies. Figure 5 shows an example
of the two types of outliers. For random shift anomalies, we perturb
𝛼 percentage of locations in a trajectory and move those location 𝛽

grid cells away. For detour anomalies, we create a detour for the
𝛼 percentage portion of a trajectory and shift the detour 𝛽 grid
cells away from the original trajectory. Following previous work
on this dataset for anomaly detection [14], we did not include the
artificially generated anomalous data during training.

5.1.3 Tokenization & Vocabulary. Given the nature of a language
model architecture, we created tokens to form our model’s vo-
cabulary. In the Porto dataset, a token is considered a discretized
GPS coordinate. We also added three special tokens: SOT (start
of trajectory), EOT (end of trajectory), and PAD (padding token
to help with batch training). In the POL dataset, tokens consist of
staypoints (work, apartment, restaurant, etc.), days of the week
(Monday, Tuesday, etc.), agent ID, and the EOT and PAD special
tokens.

5.2 Baselines
We compared our method to existing unsupervised anomaly de-
tection methods on trajectory data. Given the established better
performance of deep learning methods on trajectory anomaly detec-
tion [14], we omitted the inclusion of traditional clustering-based
algorithms.

• SAE: This is a standard autoencoder method trained to opti-
mize the reconstruction loss of a trajectory sequence using
a recurrent neural network. Based on the work in [18] and
[1], we use the reconstruction error as the anomaly score.

• VSAE This method is similar to SAE. However, in addition
to optimizing for the reconstruction loss, it also optimizes
the KL divergence between the learned distribution over the
latent space and a predefined prior [1, 25]. Similar to SAE,
we use the reconstruction error as the anomaly score.

• GM-VSAE [16]. This method generalizes the VSAE by mod-
eling the latent space with more than one Gaussian compo-
nent and also uses the reconstruction error as the anomaly
score.

5.3 Evaluation Metrics
We use Precision-Recall AUC and F1 scores to evaluate the per-
formance of our method and the baseline methods [16, 35]. These
metrics are suitable for assessing the performance of anomaly de-
tection methods as the number of anomalies in each dataset is small
compared to normal trajectories. For the Porto dataset, these met-
rics are computed across all trajectories. Conversely, we conduct
these evaluations on a per-virtual-agent basis for the Pattern-of-
Life (PoL) dataset. Additionally, the surprisal rate metric is used to
locate the specific occurrence of an anomaly within a trajectory.

6 RESULTS
The following sections present the anomaly detection results for the
PoL and Porto datasets. Anomaly detection for the Porto dataset is
a global challenge, since taxi movements are customer/ride-driven
and the movements captured by individual trajectories are largely
independent. This is in contrast to the PoL dataset, which contains
sets of trajectories that model the behavior of individual agents,
and anomaly detection will be agent-specific.

6.1 Agent-based Outliers - Patterns-of-Life Data
In the PoL dataset, we have user IDs, i.e., sets of trajectories that can
be linked to a specific user, and the anomaly detection challenge be-
comes user-specific. This is justified by the fact that the anomalous
behavior of one agent may be the normal behavior of another agent.
Therefore, we report results for the ten virtual agents that have each
14 additional days of anomalous behaviors. Table 1 summarizes
F1 and Precision-Recall Area-under-the-Curve (PR-AUC) results
for these ten anomalous agents. Results of the rest of the agents
are not included in table 1 because these agents are not anomalous
within their respective contexts. LM-TAD outperforms all competitor
methods as it is more efficient in finding anomalies with respect to
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(a) SAE (b) SVAE

(c) GM-SVAE (d) LM-TAD

Figure 5: Anomaly results for all methods trained on all the pattern of life dataset trajectories. Each dot represents the
perplexity of a trajectory for any of the ten agents with normal and anomalous trajectories. Unlike other methods, our method
(d) distinguishes between anomalous trajectories and normal trajectories by scoring most anomalous trajectories with high
perplexity.

anomalous users. We identify three reasons why the autoencoder
approaches fail to identify anomalies for the PoL dataset. 1) First,
autoencoder approaches are optimized to reconstruct the input
by minimizing the reconstruction error. This training approach
would tend to learn a model that overfits training data, which may
contain anomalies and hence fail to distinguish normal and anoma-
lous trajectories. 2) Secondly, autoencoder-based methods yield
a high reconstruction error for inputs divergent from the overall
data patterns within the dataset. Nonetheless, these methods are
suboptimal for identifying anomalies on an individual-agent basis.
Theoretically, GM-SVAE can model distinct Gaussian distributions
that can correspond to each virtual agent, thereby learning trajec-
tory distributions unique to each agent. However, this approach has
little control over the distributions learned by each component in
the latent dimension. Even if we had control over the distributions
in the latent space, this approach would be very expensive to train
in practice as the increase in the number of agents would require
an increase in Gaussian distributions. 3) The final reason is related
to defining what we consider anomalies. Recent literature on tra-
jectory anomaly data [16, 36] define normal trajectory between a
source (S) and destination (S) as a trajectory that was traveled by
the majority of taxis in the train data. Therefore, in this context,
an anomalous trajectory was not or was readily traveled on by
taxis. However, the PoL dataset’s anomalies differ from the Porto
dataset’s. As described in section 6.1, anomalies in the PoL dataset
refrain from their typical behavior. For example, they refrain from
going to work on days of the week when they are supposed to

go to work. Autoencoder approaches fail to capture these types of
anomalies by not being able to learn the anomalous behavior on a
per-agent basis.

LM-TAD offset the limitations of the autoencoder approaches for
the following reasons. 1) First, LM-TAD can learn the likelihood that a
particular agent will visit a particular location. Therefore, if an agent
hardly visited a location, even if it was part of the training data, the
model will give a low probability of such a location and distinguish
anomalies. 2) LM-TAD uses a special token to provide the context for
generating an agent’s trajectory, therefore finding anomalies on an
individual-agent basis. 3) LM-TAD is highly customized for different
types of anomalies. LM-TAD can learn the normal pattern for each
agent for each day of the week because LM-TAD can condition the
generation of a particular trajectory with an agent and week special
tokens. Therefore, this approach is still practically feasible even if
the number of agents increases.

Moreover, Figure 5 illustrates as to why competitor methods
have low F1 and PR-AUC scores. In this figure, the red dots rep-
resent the perplexity or reconstruction error associated with the
trajectories of agents. The expectation is that trajectories deemed
anomalous (indicated by red dots) would yield higher levels of per-
plexity or reconstruction error. However, for autoencoder-based
methods, we find that the reconstruction error associated with
anomalous trajectories is comparatively lower than that of many
normal trajectories. In contrast, LM-TAD aligns with the expected
model behavior, attributing higher perplexity scores to anomalous
trajectories.
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Table 2: Anomaly detection results on the Porto dataset. The best results for a particular metric in a specific category are bolded.
LM-TAD performs largely on par with the best baseline.

Random shift anomalies Detour anomalies
anomalies params: 𝛼 = 3, 𝛽 = 0.1 𝛼 = 5, 𝛽 = 0.1 𝛼 = 3, 𝛽 = 0.3 𝛼 = 3, 𝛽 = 0.1 𝛼 = 5, 𝛽 = 0.1 𝛼 = 3, 𝛽 = 0.3

Metric F1 PR-AUC F1 PR-AUC F1 PR-AUC F1 PR-AUC F1 PR-AUC F1 PR-AUC

baselines:
SAE 0.44 0.66 0.53 0.75 0.71 0.90 0.30 0.47 0.36 0.54 0.58 0.78

VSAE 0.40 0.67 0.51 0.76 0.69 0.90 0.28 0.47 0.35 0.56 0.57 0.77
GM-VSAE-10 0.85 0.90 0.86 0.91 0.91 0.99 0.73 0.72 0.79 0.77 0.90 0.96

ours: LM-TAD 0.85 0.91 0.85 0.91 0.90 0.99 0.69 0.65 0.73 0.68 0.89 0.96

6.2 Global Outliers - Porto Taxi Data
The results for the Porto taxi dataset are summarized in Table 2. We
use different parameter configurations 𝛼 and 𝛽 for random-shift
and detour anomalies. For random shift, we perturb 𝛼 percent of
locations in a trajectory, moving them 𝛽 grid cells away. Similarly,
for detour anomalies, we create a detour for𝛼 percent of a trajectory,
shifting the detour 𝛽 grid cells away from the original trajectory.

Our method outperforms the SAE and VSAE methods. For ran-
dom shift anomalies, LM-TAD shows performance comparable to
that of GM-SVAE. For detour anomalies, GM-SVAE is able to iden-
tify more anomalies than our method, especially for cases where the
detour is about 10% of the entire trajectory. This behavior of LM-TAD
may be explained by the perplexity of being less sensitive to captur-
ing anomalies that consist of changing a small continuous portion
of the trajectory (detour). Since most continuous locations in the
trajectory are normal, and as such, those probabilities are fairly
high, the overall perplexity will also be relatively high. Conversely,
in instances of random shift anomalies, our method exhibits com-
parable and sometimes superior performance to GM-SVAE. This
enhanced detection efficacy can be ascribed to the fact that the
random shift anomalies break the continuity dependence of one
location to its history, resulting in a sequence of locations with
lower probabilities, subsequently lowering the perplexity.

We can also observe that the distance (𝛽) of the detour or the
randomly shifted location from the original trajectory has less im-
pact on finding anomalous trajectories than the fraction (𝛼) of the
trajectory with anomalies. This suggests that metrics that tend to
summarize the anomaly of a trajectory by looking at the entire
trajectory (i.e., reconstruction error) may find identifying anoma-
lous trajectories with few anomalous locations challenging. We
introduce a local surprisal rate metric for such cases to offset this
limitation.

6.3 Identifying Anomalies using Surprisal Rate
As discussed previously, perplexity alone may not be enough to
separate anomalous trajectories from normal ones. Perplexity, being
a trajectory-level score, aggregates the scores across all tokens or
locations within a trajectory. Consequently, the presence of only
a few anomalous tokens may lead to their signal being diluted by
the averaging process. As such anomalies might go undetected
in such scenarios. Similar limitations apply to autoencoder-based

methods, where the reconstruction loss is calculated over all tokens
in a trajectory.

A further limitation in using perplexity or the reconstruction
error is the inability to pinpoint the specific location of anomalies
within a trajectory. Here, our work proposes the surprisal rate mea-
sure that operates at the level of individual locations or tokens
within a trajectory.

In our empirical analysis, we explored the application of the sur-
prisal rate for detecting potentially anomalous locations within a
trajectory on the PoL data. A high surprisal rate suggests that a par-
ticular location in a trajectory may be anomalous. Figure 6 shows
the surprisal rate for 30 trajectories of the PoL dataset (ten anoma-
lous and twenty normal ones, randomly chosen from the respective
agents). The analysis reveals that certain tokens in anomalous tra-
jectories exhibit significantly higher surprisal rates compared to
those in normal trajectories, particularly at the beginning of the
trajectories. This pattern aligns with the dataset’s structure and
the configuration of our input vector, where the initial tokens rep-
resent the agent ID, the weekday, and the first location visited by
the virtual agent on that day. Given the expected pattern of agents
visiting consistent locations on specific weekdays, deviations from
this routine, such as visiting an atypical location as the first desti-
nation, are flagged as anomalies. Consequently, the inclusion of the
weekday token in the trajectory analysis enables the identification
of instances where an agent’s initial location deviates from the
norm, resulting in a larger surprisal rate when an agent visits an
unusual place on a given weekday.

6.4 Location Configurations - Ablation Study
We conducted an ablation study to show the versatility of LM-TAD
in working with different types of inputs. In this study, we explore
the usage of discretized GPS coordinates (Uber hexagons [29]), stay-
point labels (i.e., work, restaurant, and so forth), and stay duration
(the duration at a particular location) as input for the model to infer
the anomaly detection performance of each modality. One of the
main advantages of using one modality over another is the type
of anomalies we are interested in discovering. Anomalies can lie
in the duration at a particular location (stay longer than usual),
by visiting an unusual geographical area not visited before, or by
going to a different place (i.e., shopping mall) on a given day when
supposed to go to another place (i.e., work).

Table 3 summarizes the results of using various location configu-
rations on the PoL dataset. The use of a staypoint label performs the
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Figure 6: Surprisal rate through trajectories on the Pattern of Life dataset. We plot the trajectories of each agent with some
anomalous trajectories (10 first agents), and we randomly selected 20 agents with no anomalous trajectories. The horizontal
line shows the (arbitrary) threshold for a surprisal rate high enough to correspond to anomalous trajectories. Anomalous
trajectories plotted in red have high surprisal rates for certain locations in the trajectories as opposed to normal trajectories.
Hence, LM-TAD can identify anomalous trajectories based on the surprisal rate.

best in identifying anomalies. This is consistent with the anomalies
in the PoL dataset as discussed in section 6.1, where agents abstain
from going to places they normally go on given days of the week.
GPS coordinates can still identify anomalies because the data en-
capsulates spatial information. The stay duration at locations also
proves effective, as disruptions in visited locations also affect the
time spent at those locations. These findings underscore the adapt-
ability of our approach to using different feature configurations to
find anomalies.

6.5 Online Anomaly Detection
One of the advantages of LM-TAD is the support of online anomalous
trajectory detection. LM-TAD does not require the whole trajectory
to be generated to compute the anomaly score. In addition, we do
not need to know the destination as a priority (although such knowl-
edge would enhance the anomaly detection of sub-trajectories). For
instance, as soon as a trip starts, LM-TAD can compute the anomaly
score of a partial trajectory each time a new coordinate is sam-
pled. Autoencoder approaches can be used for online anomalous
trajectory detection as well. However, they are significantly more
expensive to use since they must compute the anomaly score for the
entire sub-trajectory each time a new GPS coordinate is sampled.
LM-TAD, instead, can cache the key-value (KV cache) states [15, 22]
of the attention mechanism for previously generated tokens (i.e.,
GPS coordinates). This significantly reduces the need for repetitive

Table 3: Anomaly detection using different location config-
urations. The best results are bolded. The staypoint label
location type performs the best overall, reflecting the types
of anomalies present in the PoL dataset

Staypoint label Discretized GPS Stay duration
Agent F1 PR-AUC F1 PR-AUC F1 PR-AUC

57 0.62 0.69 0.50 0.54 0.26 0.49
62 0.86 0.81 0.88 0.80 0.78 0.80
347 0.78 0.75 0.75 0.68 0.72 0.70
546 0.75 0.76 0.67 0.65 0.67 0.62
551 0.67 0.63 0.76 0.63 0.52 0.48
554 0.62 0.46 0.53 0.61 0.62 0.46
644 0.80 0.78 0.57 0.70 0.64 0.64
900 0.71 0.66 0.46 0.60 0.71 0.59
949 0.82 0.77 0.78 0.75 0.82 0.73
992 0.78 0.68 0.72 0.73 0.67 0.69

average 0.74 0.70 0.66 0.67 0.64 0.62

computations and lowers the latency in computing the anomaly
score.

Figure 7 shows the accuracy of detecting anomalies on partial
trajectories at different observation ratios on the Porto dataset. We
evaluate partial trajectories with ratios from 0.2 to 1.0 with 0.1
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(a) F1 scores for random shift anomalies (b) PR-AUC scores for random shift anomalies

(c) F1 scores for detour anomalies (d) PR-AUC scores for detour anomalies

Figure 7: Online Anomalous Trajectory Detection Results (POL data). The results show the performance of each model for the
detour and random shift anomalies as we evaluate different ratios of the trajectory from 0.1 to 1.0. LM-TAD shows competitive
results and can detect anomalies of sub-trajectories.

increment. The results suggest that LM-TAD is more than competi-
tive in detecting sub-trajectory anomalies. Especially for random
shift anomalies, 40% of the sub-trajectory is enough to detect most
anomalies in the dataset compared to the entire trajectory. Detour
anomalies may not be easily detected with small ratios of trajec-
tories without knowing the destination because a detour becomes
obviously anomalous only given the destination or a large por-
tion of the trajectory. In general, LM-TAD performs on par with the
best baseline, but as discussed before, comes with the advantage of
significantly lower latency.

7 CONCLUSION
In this work, we introduced LM-TAD, an innovative trajectory anom-
aly detection model leveraging an autoregressive causal-attention
mechanism. By conceptualizing trajectories as sequences akin to
language statements, our model effectively captures the sequential
dependencies and contextual nuances necessary for precise anom-
aly detection. We demonstrated that incorporating user-specific
tokens enhances the model’s ability to detect context-specific anom-
alies, addressing the variability in individual behavior patterns.

Our extensive experiments validated the robustness and adapt-
ability of LM-TAD across various datasets, including the Pattern of
Life (PoL) and Porto taxi datasets. The results show that LM-TAD
vastly outperforms existing state-of-the-art methods in identifying
user-contextual anomalies. At the same, it has competitive perfor-
mance for detecting outliers in GPS-based trajectory data.

We introduced perplexity and surprisal rate as metrics for outlier
detection and localization of anomalies within trajectories, broaden-
ing the analytical capabilities of the approach. The model’s ability

to handle diverse trajectory representations, from GPS coordinates
to staypoints and activity types, underscores its versatility and
uniqueness.

Importantly, our approach also proves advantageous for online
trajectory anomaly detection, reducing computational latency, and
gaining a significant performance advantage over existing models.
This will enable real-time anomaly detection without the need for
repeated expensive computations.

In summary, LM-TAD represents a substantial advance in trajec-
tory anomaly detection, offering a scalable, context-aware, and com-
putationally efficient solution. This work paves the way for future
research in user-centric analysis and real-time anomaly detection
in trajectory data.
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