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A B S T R A C T

With the rapid development of location-based services, many types of applications in urban areas such
as transportation planning, traffic management, and deployment of infrastructure depend on spatial
objects that are distributed along the road network. As current place datasets include millions of
spatial objects and human mobility datasets capture billions of locations, it is an important challenge
to answer 𝑘-nearest neighbor queries efficiently. However, shortest-path distance calculations are the
computational bottleneck for a 𝑘-nearest neighbor queries on road networks. Existing query algorithms
partition the network to mitigate this bottleneck, but they do not take the data distribution into account,
which leads to inefficiencies in dense areas and sparse areas. In this paper, an efficient and scalable
indexing method, called the Partition Bridge tree (PB-tree), is proposed based on hierarchical network
partitions that consider network connectivity and data distribution. The structure of the PB-tree mainly
includes distance matrices, union-bridges, bridges, and active network nodes component. Based on
the PB-tree, a 𝑘 nearest neighbor query processing algorithm is proposed by combining "bottom-up",
"top-down", and adjacent extension methods . By using different road networks and datasets, the
effectiveness and practicability of PB-tree are evaluated; the experimental results show that PB-tree
outperforms the state-of-the-art methods and the classical approach.

1. Introduction
With the continuous evolution of mobile devices and

telecommunication technologies, we now witness substan-
tial value in location-based services (LBS). In particular, in
metropolitan areas, we observe many users that are content
to subscribe to LBS, such as traffic assistance, location-
based games, and location-based social networks [1–3]. As
LBS became more popular, it has motivated the development
of different types of nearest neighbor queries on road net-
works [4]. For example, for people going on a trip: (1) they
want to find the five hotels closest to their conference venue;
(2) they want to find the three seafood restaurants closest
to their hotel; or (3) they may want to find the locations of
their ten closest friends in a location-based social network.
To support LBS on road networks, many companies (e.g.,
Google, Microsoft, and Tencent) provide road network maps
enriched with points of interests, reviews, and other spatial
objects (SOs) located on the edges of the spatial network.
Finding the nearest SOs for a given query location is an
important tool in any LBS [5]. When executing a (𝑘) near-
est neighbor (𝑘NN) query the shortest network distances
(SNDs) between the query point and SOs are computed
and the (𝑘) SO(s) that minimize this distance are returned.
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As shortest path computations are the bottleneck of 𝑘NN
processing on networks [4], an efficient 𝑘NN query process-
ing algorithm requires efficient solutions for shortest path
computation.

Many nearest neighbor query processing solutions have
been developed for road networks. They can be roughly
classified into three categories: (1) Query method based on
the Dijkstra algorithm [6–15]: The main idea is to extend the
search area along the adjacent edge of the query point; then
update the distance between the query point and its adjacent
points until the 𝑘 nearest neighbor (𝐾NN) spatial objects
are found. To improve efficiency, different indexing struc-
tures and pruning strategies are also proposed. (2) Heuris-
tic expansion methods based on Best-First-Search (BSF):
These methods find the most promising candidate objects
based on heuristic strategies [16–23]. (3) Adjacent region
expansion methods [24] which partition the road network
into sub-networks based on set rules. When the 𝑘NN query
is performed, the sub-network containing the query point
are explored first followed by adjacent sub-networks. If no
valid object is found, the process is repeated iteratively.
All the above-methods have been proven to handle some
specific applications. Usually, query methods based on the
Dijkstra algorithm are suitable for small or middle-scale
road networks with a high density of objects. Heuristic
expansion modes have better performance for large range
road networks with low-density SOs.The adjacent regions’
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expansion modes search the middle range road network with
smaller 𝑘 value [25].

As the popularity of LBS increases, applications now
create vast amounts of spatial objects. Rather than captur-
ing hundreds of points of interests, modern LBS may now
capture millions of user-generated spatial objects (such as
comments or reviews), and spatial databases may capture
billions of past user locations. Capturing such very large
numbers of spatial objects creates challenges for efficient
𝐾NN query processing. Furthermore, the density of spatial
objects is very heterogeneous. Some areas of a city that
have many popular restaurants may have millions of spatial
objects, whereas residential areas may have very few spatial
objects. While existing solutions for spatial query processing
on road networks often assume a homogeneous distribution
of spatial objects, we propose an adaptive spatial 𝑘NN
processing algorithm based on a novel data structure called
the partition bridge tree (PB-tree). The core part of the PB-
tree is to recursively partition the road network into sub-
networks based on data distributions and connectivity of
road edges. This recursive partitioning (i) ensures a balanced
distribution of spatial objects among sub-partitions, rather
than balancing the size of the partitioned regions and (ii)
defines a partition tree structure on top of the underlying road
network, with each tree-node representing a sub-network.
The PB-tree is a balanced search tree where each partition
a similar number of spatial objects. Thus, the PB-tree adapts
to non-uniform distributions of spatial objects on a network.
The structure of PB-tree is similar to that of HN-tree [26],
but there are some differences:(1)The HN-tree just considers
the high density of spatial objects, the PB-tree can adapt to
high and low density spatial objects;(2) the query processing
algorithm is new. In summary, the contributions of this paper
are as follows:
(1) PB-tree with an adaptive and efficient tree indexing,
which has low space overhead and better performance, is
developed.
(2) An efficient query algorithm that combines top-down and
bottom-up and adjacent extension methods is devised.

The remainder of this paper is organized as follows.
Related works are summarized in Section 2. Section 3 in-
troduces the context for PB-tree by defining road network,
line graph, and graph partitioning. The hierarchical graph
partitioning is described in section 4. We present the PB-
tree index structure and query algorithm in Section 5. Exper-
imental results and analysis are shown in Section 6. Section 7
summarizes the main contributions and highlights future
work.

2. Related Work
Various spatial objects 𝐾NN algorithms on road net-

works can be classified into three types. In the following, the
performance of some classical and the state-of-the-art 𝐾NN
algorithms are reviewed in detail.

2.1. Query methods based on Dijkstra algorithm
An incremental network expansion (INE), which is

based on the R-tree [6]. The query process, which is a
network expansion approach, uses Dijkstra’s algorithm to
compute the distance between query point 𝑞 to SOs until
the termination condition is satisfied. Moreover, M𝑘NN
is presented by improving INE [7]. INE and M𝑘NN can
perform well on road networks with the high density of
SOs, but for road networks with a low density of SOs, the
query cost increases and performance degenerates. Safar
proposed PINE performs 𝐾NN query by combining R-tree
and Voronoi diagram [8]. The main process is to first locate
the Voronoi unit containing the query point and to expand
the other adjacent Voronoi units to check for other NN
objects. Usually, when 𝑘 is large, PINE performs worse. All
distances for SOs with the radius𝑟 should be precomputed
[9]. The query processes include two steps: first, it checks
the “Island” containing the query point; if the number of
SOs is greater than 𝑘, the 𝐾 nearest neighbor SOs are
found; otherwise, it will use the Dijkstra algorithm to extend
other “Islands” until the condition is satisfied. A unique
continuous search algorithm (UNICONS), which is similar
to “Island”, is used to precompute NN SOs of cross-vertices
[10]. Island and UNICONS have advantages for the different
densities of SOs on road networks, but they can increase
the query cost when 𝑘 is more than the number of NN
precomputed SOs.

Hu et al. develop the shortest path tree with horizontal
edges (SPIE) that converts road networks into intercon-
nected shortest-path trees [11]. SPIE views each SOs as
vertices of the road network. The main processes of SPIE
are first to find NN SOs in the descendant node of the
query point 𝑞 and then extend to the parent node of 𝑞,
finally find the NN SOs in other descendant nodes of the
parent node. The processes are repeated until the root node
is accessed. SPIE can efficiently avoid the query cost of
network expansion, but its performance is heavily dependent
on the known spatial object sets. Moreover, many extra
vertices are added in the process of SPIE construction, which
greatly increases the network’s scale. Huang et al. proposed
the S-GRID indexing, which is based on the hash and grid
[12]. The query processes of S-GRID first locate the grid
containing the query point and then find the NN SOs within
the grid; if the number of found SOs is less than 𝐾 , the
adjacent grids are checked using the Dijkstra algorithm.
The S-GRID can quickly find satisfying SOs with efficient
encoding technology. However, for a large and sparse road
network and larger 𝐾 , the performance declines greatly. The
ROAD is the classical 𝐾NN method, its main objective is
proposed to improve the Dijkstra algorithm on the hierarchi-
cal road network [13, 14]. The ROAD uses route overlay and
associate directory to search vertices and SOs, respectively.
In the query process, if a sub-network does not contain
any SO, the shortcut strategy can skip the sub-network to
improve the performance. However, for road networks with
a uniform distribution of SOs, the performance of ROAD is
the same as that of Dijkstra. HLDB is a novel 𝐾NN method
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that is implemented completely in SQL [27]. The HLDB
contains "forward" and "poilab" tables. In the query process,
HLDB uses the bucked-based approach to obtain the results.
However, the costs of preprocessing and space overhead are
high.

2.2. Heuristic query methods
IER uses the Euclidean distance as the lower boundary

to perform the search; the basic idea is based on a heuristic
search pattern to extend the NN vertices [6]. When the
Euclidean distance between query point and SOs is similar to
the network distance between them, IER has good efficiency.
Otherwise, the performance can be worse.

Spatially induced linkage cognizance(SILC) is proposed
based on the consistency idea of the shortest path on road
networks [16]. To improve performance, Distance Brows-
ing(DisBrw) is proposed based on SILC [17]. However, if
several SOs are distributed in certain areas, both methods be-
come less efficient. Distance signature(Dist Sign) computes
all distances between all vertices and SOs in advance and
then encodes all distances based on distance range [18]. The
query processes first check the SOs encoded as label 0, if
the number of checked SOs is less than 𝑘, the objects of
label 1 are identified. Although the classified distances are
encoded to save the storage space, the costs of preprocessing
and space overhead remain high. G-tree is a balanced search
tree [19, 20]. First, it hierarchically partitions the whole
road network into some sub-network with each sub-network
representing a tree-node. Moreover, the distance matrices
of union borders in each non-leaf-node are computed in
advance, and the distances between all border vertices and
vertices in the leaf nodes are be pre-computed. When G-tree
performs the query, it first identifies leaf-node that contains
the query point 𝑞, and then other tree-nodes are checked if
the SOs of the leaf-node cannot satisfy the conditions. G-tree
just computes the distances between border vertices or some
vertices, which can improve efficiency. However, when the
road network is a large scale with different densities of spa-
tial objects, the 𝐾NN query performance can be improved.

The HN-tree is a hierarchical tree structure consider the
data distribution, but it focuses on the range query of high
density of spatial objects[26]. When the density of spatial
objects is very low, the leaf node of HN-tree may contain
many network nodes, thus, in the worst case, its performance
is equal to that of the INE [6]. The structure of PB-tree is
similar to that of HN-tree, but their main differences can be
summarized as follows:(1) the graph partitioning of PB-tree
considers the case for the low density of spatial objects, when
the number of spatial objects in the partition is less than
“fanout”, the graph partitioning only considers topology
structure, it can ensure that leaf nodes of PB-tree cannot con-
tain many network nodes;(2) PB-tree adds the active network
nodes and lowest active nodes to improve the shortcoming
of HN-tree that is hard to adapt to the low density of spatial
objects;(3) to improve PB-tree construction efficiency and
𝐾NN query performance, the distance matrices of PB-tree
are improved which can adapt to low/high spatial objects.

2.3. Adjacent region query methods
VN3 partitions the entire road network into many Voronoi

units, the centers of that are each spatial object [24]. Further-
more, the distances between border points and the center
point should be precomputed in each Voronoi unit. Besides,
the R-tree is used to query each Voronoi unit. VN3 is suitable
for a middle-scale network with a middle or low density of
spatial objects, and it performs well, especially for 1NN.

3. Problem Definition
The PB-Tree index structure supports efficient 𝑘-Nearest

Neihgbour query processing on road networks. This sec-
tion first provides a formal definition of road networks in
Section 3.1 and formalizes the problem of finding the 𝑘
Nearest spatial objects of a query location in a road network
in Section 3.2. The following definitions in this section are
equivalent to those in related works [1, 26].

3.1. Definitions
Definition 1 (Road network). A road network can be rep-
resented as 𝐺 = ⟨𝑉 ,𝐸⟩, 𝑉 is the set of nodes, 𝐸 is the set of
network links that connect the nodes.

We assume that spatial objects (such as user locations and
points of interest) are located on edges of the road network.
We formally define spatial objects as follows.

Definition 2 (Spatial Object (SO)). Let 𝐺 = ⟨𝑉 ,𝐸⟩ be a
road network. A spatial object 𝑠𝑜 =< 𝑖𝑑, 𝑒, 𝛼 > is a triple
where 𝑖𝑑 is a unique identifier, 𝑒 ∈ 𝐸 is the link identifier
the object is located on, and 𝛼 is the SO’s relative location
on link 𝑒 = (𝑣𝑖, 𝑣𝑗). The (absolute) spatial location of 𝑆𝑠𝑜
can be obtained as follows:

𝑆𝑠𝑜 = 𝑆𝑣𝑖 + 𝛼 ⋅ (𝑆𝑣𝑗 − 𝑆𝑣𝑖 ), 𝛼 ∈ [0, 1].

We let 𝑆𝑂 define the set of all of spatial objects. In addition,
all spatial objects are unchanging.

Our proposed approach is based on recursive partition-
ing of the road network into smaller subnetworks. For the
correctness of our algorithms it is paramount that such as
partitioning is lossless, that is, it does not discard any nodes
or links of the road network. This observation is impor-
tant, as traditional graph partitioning algorithm (such as the
METIS algorithm [28]) partition the set of nodes. While
such algorithm minimize the number of links “cut” between
nodes of different partitions, such algorithm cannot avoid
cutting links. A common strategy used in the literature for
lossless partitioning of road networks is based on the concept
of the Line Graph of a network. The line graph of a network
represents each network link as a line graph node, and
connects line graph nodes with edges if the corresponding
links in the network share an adjacent node in the network.
Intuitively, the line graph of a network allows to partition
the links of the network rather than the nodes. The line
graph can then be partitioned, and once line graph partitions
are mapped back into road network representation, nodes

Xiangqiang Min et al.: Preprint submitted to Elsevier Page 3 of 13



The Partition Bridge (PB) Tree: Efficient Nearest Neighbor Query Processing on Road Networks

may appear (redundantly) in multiple partitions and all links
are retained. More details on the concept of transforming a
a road network into a line graph for lossless partitioning,
including examples, can be found in [26]. Here, formally
define the line graph of a road network as follows.

Definition 3 (Line Graph). Given a road network 𝐺 =⟨𝑉 ,𝐸⟩, the corresponding line graph 𝐺 = ⟨𝑉 ,𝐸⟩ is con-
structed by defining each link 𝑣𝑖 ∈ 𝑉 as a graph vertex 𝑣𝑖 ∈
𝑉 , and defining an undirected edge 𝑒 = (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 between
any pair of vertexes 𝑣𝑖 and 𝑣𝑗 whose corresponding edges 𝑒𝑖
and 𝑒𝑗 in𝐺 are connected, i.e., share a common vertex. Thus,
edges in 𝐺 capture the adjacency relations among links in
𝐺. Each vertex 𝑣𝑖 has a weight 𝑤𝑖 that corresponds to the
number of SOs on the corresponding link 𝑒𝑖 on the road
network. Notice that in the network model, the roads are bi-
directional.

3.2. k-Nearest Neighbor Query
Given a road network 𝐺 enriched with spatial objects

𝑆𝑂 and a query location 𝑞, a 𝑘-Nearest Neighbor (𝑘NN)
query returns the set of 𝑘 spatial objects having the smallest
network distance from 𝑞. We formally define a 𝑘𝑁𝑁 query
as follows.

Definition 4 (𝑘-Nearest Neighbor (𝑘NN) Query). Let𝐺 =⟨𝑉 ,𝐸⟩ be a road network, 𝑆𝑂 be a set of spatial objects on
𝐺, and let 𝑞 a query location on the road network (located at
a node or link of the network). A 𝑘-Nearest Neighbor (𝑘NN)
query returns the set of spatial objects:

{𝑘𝑁𝑁(𝑞) ⊆ 𝑆𝑂|∀𝑠𝑜 ∈ 𝑘𝑁𝑁(𝑞), 𝑠𝑜′ ∉ 𝑘𝑁𝑁(𝑞) ∶
𝑑𝑖𝑠𝑡(𝑞, 𝑠𝑜) ≤ 𝑑𝑖𝑠𝑡(𝑞, 𝑠𝑜′), |𝑘𝑁𝑁(𝑞)| = 𝑘}

4. Hierarchical Graph Partitioning
In what follows, we briefly introduce the hierarchical

graph partitioning approach that is used to iteratively parti-
tion a road network without loss of information, i.e., without
“cutting” links connecting partitions and by at the same time
considering the number of spatial objects in each partition.
To illustrate this problem, assume a spatial partitioning 
of the network topology created without considering the
distribution of spatial objects. Let 𝑠 ∈  be one partition.
In the worst case, all spatial objects may fall into 𝑠, thus all
other partitions having zero spatial objects.

This observation implies that traditional partitioning
schemes that do not consider the distribution of spatial
objects may fail to meet their purpose of partitioning the
data into smaller subsets that can be queried efficiently. Such
imbalanced indexing may incur substantial computational
overhead as many (potentially empty or nearly empty)
partitions need to be explored and as such defeat the purpose
of an index. Thus, a data driven (rather than a space driven)
partitioning of the road network is essential.

Based on above analysis, the partitioning method fully
considers both network topology and data distributions.
Moreover, for dense SOs regions, such as urban centers, it

should have a small extent. However, the partitions should
have a large extents for widely scattered SOs, such as the
countryside, where SOs are fewer than busy zones. Simi-
larly, R-tree and quadtree are also based on the rule. Further-
more, the SOs of each partition should be closer than other
groups; when we perform the query, a few node accesses can
get more valid SOs. We design the hierarchical partitioning
method based on the connectivity of network links and data
distribution.

In this paper, the line graph 𝐺 is partitioned as a hier-
archy a series of sub-graph, where large sub-graphs at the
upper level contain smaller sub-graphs at lower level. The
definition of the hierarchical sub-graphs can be as below:

Definition 5 (Hierarchical sub-graph). Let 𝐺 = ⟨𝑉 ,𝐸⟩
be the line graph of a road network 𝐺 = (𝑉 ,𝐸). 𝐺 is
partitioned into a series of sub-graphs (𝑠𝑢𝑏𝐺11, 𝑠𝑢𝑏𝐺1𝑗
,..., 𝑠𝑢𝑏𝐺𝑖𝑗), where 𝑖 > 1, 𝑗 > 1, 𝑠𝑢𝑏𝐺𝑖𝑗=(𝑉 𝑖𝑗 , 𝐸𝑖𝑗). The
hierarchical sub-graphs have the following properties in
each level:
(1)

⋃
𝑉 𝑖𝑗(1<𝑗<𝑁) = 𝑉 ;

(2) For 𝑘 ≠ 𝑠, 𝑉 𝑖𝑘 ∩ 𝑉 𝑖𝑠 = ∅ ;
(3) SO sets of each sub-graph are independent

Graph partitioning is a critical part of indexing construc-
tion. Improving graph partitioning is always a challenging
task. The main challenge is how to partition the vertex of
the line graph into approximately equal parts; for instance,
the number of edges in different sub-graphs should be mini-
mized. Moreover, when each vertex has its weight, it should
balance the weight of different partitions. It has been proven
that the graph partitioning problem is an NP-problem [28,
29]In this paper, we do not try to solve this problem; instead,
we adopt a high-quality partition algorithm to achieve our
goal. We choose a public implementation METIS [28] to
generate partitions.

The processes of the hierarchical graph partition can
be described as follows. Given a road network G, a set of
SOs, the number of bottom partitions(𝜃) as a termination
criterion. First, the road network(G) is converted into line
graph(𝐺), the converting details can see [26]. Then, the
(𝐺) is partitioned as a series of sub-graphs that are added
into the list 𝐻𝑃 (hierarchical partitioning results set) using
METIS [28]; Next, to identify the number of SOs in each
sub-graph, if the num of SOs is more than fanout, the sub-
graph is partitioned into partitions having equal number of
SOs; otherwise, the sub-graph is partitioned based on the
equally sized vertexes. This process is applied recursively
when the number of the bottom sub-graphs is less than 𝜃.
Because the 𝑘NN query is based on the road network, these
sub-graphs need to be converted into a network when the
partition of the line graph is finished.

An example of a hierarchical graph partition using bi-
nary partitions (fanout=2) is shown in Figure 1, the termi-
nation criterion is that the number of the bottom partitions
is not less than 4.For ease of presentation, the results and
processes of hierarchical graph partition are shown using
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Figure 1: Hierarchical network partition

the road network. In Figure 1, different colors’ broken lines
represent different levels’ partitions. The blue broken lines
represent the partitions at the first level, the orange broken
lines represent the partitions at the second level. Note that
some nodes (highlighted in solid red) appear in multiple
partitions. This redundancy is required to avoid loosing
(cutting) links between nodes from different partitions. We
call such nodes that appear redundantly in multiple partitions
bridge nodes.

5. The PB-tree Framework
This section introduces the PB-tree, including both index

construction and 𝑘NN query processing . The data to be
indexed by the PB-tree are SOs that are located on the
road network. Rather than considering the unconstrained
Euclidean space, our index partitions the network space
considering also an existing SO density. The number of
SOs on each road links is identified, which is the basis of
performing hierarchical network partitioning to balance the
number of SOs for each partition. To facilitate hierarchical
network partitioning, the road network is converted to a line
graph in which nodes become edges and vice versa.

The line graph is divided into a series of sub-graphs.
The idea of partitioning the line graph instead of the directly
partitioning the road network is a traditional partitioning of
the road network would discard edges between partitions.
Using the line graph partitions and mapping them back into
the road network, we obtain partitions that retain all informa-
tion (vertices and edges) by potentially duplicating vertices

that are adjacent to edges from different partitions. More
details and an example of a the line graph transformation,
network partitioning on the line graph, and mapping back
o the network can be found in [26]. Network nodes that
appear in different partitions are denoted as bridge nodes.
The resulting hierarchical partitioning yields a tree structure
of partitions that are connected via bridge nodes. We store
distances of bridge nodes to other tree nodes in a distance
matrix.

A formal definition of bridge nodes and distance ma-
trices which we leverage for our PB-tree are described in
Section 5.1. Based on these definitions, we present our PB-
tree construction algorithm in Section 5.2. In Section 5.3, we
present our algorithm for 𝑘NN query processing based on
the PB-tree. Intuitively, our algorithm traverses the PB-tree
and the underlying road network by combining both “top-
down”, “bottom-up”, and adjacent extension methods that
exploit bridge vertices. This algorithm requires an efficient
solution to compute the shortest network distance between
two vertices which is presented in detail in [26]. Finally, Sec-
tion 6 assesses the query performance and varying parameter
settings. The above parts are summarized in Figure 2.

5.1. PB-tree Index Definition
This section presents definitions that are used in the

remainder of the paper.

Definition 6 (PB-tree). A PB-tree is a non-overlapping
search tree that satisfies the following properties:
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Figure 2: Flow diagram of the proposed approach

(1) Each tree node in the PB-tree is corresponding to
a sub-network. The root node covers the entire road net-
work𝐺. The relationships between sub-networks and parent-
network are captured in the PB-tree hierarchy;

(2) Each non-leaf node has between 𝑚 and 𝑀 child
nodes;

(3) Each lowest active node contains at least one SO;
(4) Each leaf node covers at least one network link, and

all leaf nodes are at the same level;
(5) Each tree node maintains a distance matrix for bridge

nodes.

Definition 7 (Bridge node). Given a road network 𝐺 =⟨𝑉 ,𝐸⟩, its sub-networks 𝑠𝑢𝑏𝐺𝑖𝑘 and 𝑠𝑢𝑏𝐺𝑖𝑗 , a network node
is called a bridge node if it is part of 𝑠𝑢𝑏𝐺𝑖𝑘 and 𝑠𝑢𝑏𝐺𝑖𝑗 .
The bridge nodes of 𝑠𝑢𝑏𝐺𝑖𝑗 are denoted by 𝐵

(
𝑠𝑢𝑏𝐺𝑖𝑗

)
.

Therefore, 𝐵
(
𝑠𝑢𝑏𝐺𝑖𝑘

)
∩ 𝐵

(
𝑠𝑢𝑏𝐺𝑖𝑗

) ≠ ∅; for example, the
network nodes of the red solid circles in Figure 1 represent
the bridge nodes 𝐵

(
𝑠𝑢𝑏𝐺11

)
=
{
𝑣2, 𝑣9

}
and 𝐵

(
𝑠𝑢𝑏𝐺10

)
={

𝑣2, 𝑣9
}
.

Definition 8 (Union-bridges). Given a sub-network 𝑠𝑢𝑏𝐺𝑖𝑗
of 𝐺, a set of bridge nodes of all its sub-networks is re-
ferred to as union-bridge nodes. The sets of union-bridges
of non-bottom partitions are a union of all bridge nodes
of its sub-networks. Moreover, the union-bridges of a bot-
tom sub-network are equal to its bridge nodes. The set
of union-bridges is denoted by 𝑈𝐵

(
sub𝐺𝑖𝑗

)
. Examples in

Figure 1 are 𝑈𝐵
(
𝑠𝑢𝑏𝐺10

)
=
{
𝑣2, 𝑣4, 𝑣9

}
;𝑈𝐵

(
𝑠𝑢𝑏𝐺11

)
=

{
𝑣2, 𝑣9, 𝑣12

}
;𝑈𝐵

(
𝑠𝑢𝑏𝐺21

)
=

{
𝑣4, 𝑣9

}
;𝑈𝐵

(
𝑠𝑢𝑏𝐺20

)
={

𝑣2, 𝑣4
}

.

Definition 9 (Active and Inactive network nodes). Given
an SO on link 𝑒𝑖 which comprises the nodes 𝑣𝑖 and 𝑣𝑗 , if
the closest node is 𝑣𝑖, we define 𝑣𝑖 as the active network
node. However, if none of the SOs node 𝑣𝑗 as their nearest
node, it is considered an inactive network node. The active
and inactive network node are denoted as 𝐴𝑉 and 𝐼𝐴𝑉 ,
respectively.

Definition 10 (Lowest active node). Given a tree node 𝑇𝑁 ,
if one of its child nodes does not contain any SO, the tree
node 𝑇𝑁 is called the lowest active node. The lowest active
nodes are denoted as 𝐿𝐴𝑁 .

Definition 11 (Distance matrices). The columns/rows of
the distance matrix of non-leaf nodes are its union-bridge
nodes, and the value of each entry is the shortest network
distance between the two bridge nodes. In the distance
matrix of leaf nodes, the rows are all bridge nodes and
active network nodes, and the columns are its all network
nodes. The value of each entry is the shortest network
distance between the bridge and active network nodes and
network nodes. If the lowest active node is not leaf node,
the distance matrix of this node also records the network
distance between its bridge nodes and its active network
nodes. Figure 4 gives a distance matrix for the example of
Figure 1. For simplicity, the length of each network link is
set to 1.
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5.2. PB-tree construction
The PB-tree is a balanced search tree with each partition

having a similar number of spatial objects. Thus, the PB-
tree adapts to non-uniform distributions of spatial objects on
a road network. Figure 3 shows the basic components and
structure of the PB-tree. The PB-tree consists of a hierarchy
of tree node components, the bridge component, the union-
bridge component, the active network nodes component,
and the distance matrix component. To efficiently compute
the shortest network distances (SNDs) between a query
point and the SOs, the distance matrices for each tree node
are introduced in Definition 11. Figure 4 shows a PB-tree
example for the partitions of Figure 1. The bridge nodes
of each tree node are shown under the tree nodes and the
distance matrix of each node is displayed next to the tree
node.

A sub-network 𝑠𝑢𝑏𝐺𝑖𝑗 is called a parent-network of
sub-network 𝑠𝑢𝑏𝐺(𝑖+1)𝑘, if 𝑠𝑢𝑏𝐺𝑖𝑗 is a super-network of
𝑠𝑢𝑏𝐺(𝑖+1)𝑘. Therefore, the 𝑠𝑢𝑏𝐺(𝑖+1)𝑘 is called a child-
network of 𝑠𝑢𝑏𝐺𝑖𝑗 . The PB-tree construction is based on
hierarchical graph partitions. First, the entire road network is
taken in at the root level. The sub-network 𝑠𝑢𝑏𝐺𝑖𝑗 is a child of
the root node. This process is repeated until the sub-network
has no more sub-networks, at which point it will become a
leaf-node. When the hierarchy of tree nodes is constructed,
the bridge nodes of the union-bridge nodes of each tree node
are identified; the active network nodes of each leaf node are
marked; and the lowest active nodes are found. The distance
matrices of each tree node are pre-computed and stored.

5.3. 𝐾NN query algorithm
Based on the structure of the PB-tree, two important

characteristics of PB-tree form the foundation of𝐾NN query
approach. The bridge node of a parent partition is a bridge
node of its child partitions. Since the bridge node con-
nects different partitions at each level, its child partitions
should contain these bridge node. More importantly, these
bridge nodes in the child partitions have the same func-
tion as the bridge node in the parent partition. For exam-
ple, as shown in Figure 1, 𝑠𝑢𝑏𝐺11 is parent partition of
𝑠𝑢𝑏𝐺22 and 𝑠𝑢𝑏𝐺23, 𝐵(𝑠𝑢𝑏𝐺11) = {𝑣2, 𝑣9}, 𝐵(𝑠𝑢𝑏𝐺22) =
{𝑣2, 𝑣12}, 𝐵(𝑠𝑢𝑏𝐺23) = {𝑣9, 𝑣12}.

Given a tree node 𝑠𝑢𝑏𝐺𝑖𝑗 that contains a network node
𝑣𝑘, 𝑠𝑢𝑏𝐺(𝑖−1)𝑘 is a parent node of 𝑠𝑢𝑏𝐺𝑖𝑗 , the SND between
𝑣𝑘 and 𝐵(𝑠𝑢𝑏𝐺𝑖𝑗) is less than or equal that of 𝐵(𝑠𝑢𝑏𝐺(𝑖−1)𝑘),
as shown in Eq 1.

min SND
(
vk ,B

(
subGij

)) ≤ min SND
(
vk ,B

(
subG(i−1)k

))
(1)

Where min SND
(
𝑣𝑘, 𝐵

(
sub𝐺𝑖𝑗

))
represents the mini-

mum distances between 𝑣𝑘 and 𝐵(𝑠𝑢𝑏𝐺𝑖𝑗), min SND
(
𝑣𝑘 ,

𝐵
(
𝑠𝑢𝑏𝐺(𝑖−1)𝑘

))
has the same meaning for 𝑠𝑢𝑏𝐺(𝑖−1)𝑘.

Since the space of a parent node contains that of child
nodes, the path from 𝑣𝑘 to 𝐵

(
𝑠𝑢𝑏𝐺

(
𝑖−1

)
𝑘
)

should pass
one of the 𝐵

(
𝑠𝑢𝑏𝐺𝑖𝑗

)
, besides, the distances between

network nodes are > 0, thus Eq 1 always holds. For

instance, in Figure 1, min SND
(
𝑣5, 𝐵

(
𝑠𝑢𝑏𝐺21

))
= 1,

min SND
(
𝑣5, 𝐵

(
𝑠𝑢𝑏𝐺10

))
= 3.

Given a query 𝑞 =
⟨
𝑣𝑞 , 𝑘

⟩
, the 𝑘NN query returns the 𝑘

closest SOs to 𝑣𝑞 . For simplicity and ease of presentation,
given that the distances between SOs and AVs are much
smaller than the distances between network nodes, thus in
our algorithm, we assume that both query points and SOs are
at network nodes in our algorithm. If the query point falls
on a link, we apply the nearest network node to the SO to
perform a 𝐾NN query.

Algorithm 1 shows the skeleton of the PB-tree used to
search 𝑘NN SOs. First, we initialize the result set 𝑅 and
the priority queue 𝑄 as empty and all leaf nodes become
the lowest active nodes. Second, to locate the leaf node that
contains the query point 𝑣𝑞 and identify its lowest active
node, the distances between AVs, bridge node in LAN

(
𝑣𝑞
)

and 𝑣𝑞 are computed. These AVs and bridge nodes are
enqueued in 𝑄. Next, if the size of 𝑅 is less than 𝑘 and 𝑄
is not null, the first element 𝑒 of 𝑄 is dequeued, the network
node 𝑒 is checked if is an active network node, the SOs
of 𝑒 are put into 𝑅. When 𝑒 is a bridge node, the lowest
active nodes LANs (𝑒) that contain 𝑒 are identified. For each
𝐴𝑉 that belongs to LANs(𝑒), the distances between AVs in
LANs(𝑒) and 𝑣𝑞 are computed. Similarly, the bridge nodes
in LANs(𝑒) are also computed. This process is repeated until
𝑘NN SOs are found. Finally, all valid SOs are returned.

SND calculation is a critical part of the 𝐾NN query al-
gorithm and has a significant impact on query performance.
According to the relationship between 𝑣𝑖 and 𝑣𝑗 , we can
consider the following two types of computation: (i) 𝑣𝑖 and
𝑣𝑗 are in different leaf nodes: the dynamic programming
algorithm can be applied to effectively compute the SND
based on distance matrices. The main process is as follows:
first, to identify the lowest common ancestor of 𝑣𝑖 and 𝑣𝑗 ;
then, the all bridge nodes of all involved tree node form 𝑣𝑖/ 𝑣𝑗
to their lowest common ancestor are combined, the shortest
network distance between 𝑣𝑖 and 𝑣𝑗 can be obtained. Since
we precompute and store some distance pairs in variously
assembling these pairs and rapidly get the SND; and (ii) 𝑣𝑖
and 𝑣𝑗 are in the same leaf node: Dijkstra is used to compute
the shortest path distance efficiently given the small graph
size. Moreover, if one of 𝑣𝑖 and 𝑣𝑗 is an active network
node or a bridge node, the distance can be obtained from
the distance matrix. For more details, the reader is referred
to [20, 26].

Algorithm 1 𝐾NN query
Require: 𝑣𝑞 : query point; 𝐾: the number of nearest neigh-

bors
Ensure: 𝑅 ∶ 𝑘NN SOs to 𝑣𝑞

Notation: lowest active node (𝐿𝐴𝑁), active network
node(𝐴𝑉 ), tree node(𝑇𝑁);

1: Initialize result set 𝑅 = ∅, priority queue 𝑄 = ∅;
2: Find the 𝐿𝐴𝑁𝑠;
3: if the 𝐿𝐴𝑁𝑠 do not exist then
4: The leaf nodes are 𝐿𝐴𝑁𝑠;
5: end if
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Figure 3: PB-tree structure

6: Locate leaf node that contains 𝑣𝑞;
7: Find the 𝐿𝐴𝑁 that contains 𝑣𝑞;
8: foreach 𝐴𝑉 ∈ LAN

(
𝑣𝑞
)

do
9: 𝑄.Enqueue(AV, SND

(
𝑣𝑞 ,AV

))
10: end for
11: foreach bridge 𝑏 ∈ LAN

(
𝑣𝑞
)

do
12: 𝑄.Enqueue(b, SND

(
𝑣𝑞 , b

))
13: end for
14: while (𝑅. size() < 𝐾 and 𝑄 ≠ ∅) do
15: (𝑒, 𝑑𝑖𝑠) ← 𝑄. Dequeue();
16: if 𝑒 is 𝐴𝑉 then

17: Insert 𝑒. SOs into 𝑅
18: end if
19: if 𝑒 is bridge then
20: Find the other 𝐿𝐴𝑁𝑠(𝑒) that contain 𝑒;
21: foreach tree node 𝑇𝑁 ∈ LANs (𝑒) do
22: foreach bridge node b ∈ 𝑇𝑁 do
23: Q.Enqueue (b, SND (𝑣𝑞 , b))
24: end for
25: foreach AV ∈ 𝑇𝑁 do
26: Q.Enqueue (AV, SND (𝑣𝑞 ,AV))
27: end for
28: end for
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Figure 4: PB-tree example

Table 1
Datasets

Data Description # network
nodes # links

OL Oldenburg(undirected) 6105 7034
SJ San Joaquin(undirected) 18496 24123
SF San Francisco(undirected) 175343 223606
SZ Shenzhen(undirected) 36968 50149
BJ Beijing(undirected) 83059 11014

29: end if
30: end while
31: return 𝑅

6. Experimental Evaluation and Discussion
In this section, we experimentally evaluate our proposed

method using synthetic datasets by comparing our approach
to state-of-the-art and classical 𝐾NN methods.

6.1. Data sets and settings
Five real-world road networks, namely, Oldenburg (Ger-

many), San Joaquin (America), San Francisco (America),
Shenzhen (China), and Beijing (China), are used to test the
performance of the PB-tree. These road networks consist of
streets, roads, and beltways. Moreover, they have different
sizes from 7,000 links to 220,000 links, and various spatial
patterns. The “Brinkhoff” generator [30] is used to generate
SO datasets for those road networks. The main reason for
using the synthetic data sets is that the size and distributions
of SOs are flexible. The dataset characteristics are shown in
Table 1. To better evaluate the 𝐾NN query performance, we
compare our PB-tree with two state-of-the-art methods, G-
tree[20] and G*tree[21], and the classical approach, INE[6].
The implementations of G-Tree and G*-tree are provided
by the authors, and INE is implemented by ourselves. For

the PB-tree, the default fanout is 4, since the G-tree and
G*-tree have the optimal performance with this fanout. To
evaluate the efficiency of the 𝐾NN query, we randomly
chose 20 query points to test. For SOs, we randomly generate
the 0.002,0.02, 0.2, and 2 of network links as the datasets
(default is 0.2). For 𝑘, we use 1, 5, 10, 20, and 50.

All experiments are conducted in C++ and run on an
Intel i7, 2.6 GHz CPU, 16 GB RAM, and Windows 64-bit
operating system.

6.2. Evaluation on query efficiency
The 𝐾NN search performance of PB-tree is tested for

different 𝑘s. The number of test SOs is about 20 percent
of the network links The SOs are distributed at random
on the road network, which can be uniform, random, or
clustered. The performance indexes include the query time
and the number of computed network nodes. Since the
computational bottleneck for 𝐾NN is distance calculations,
it is essential to compare the number of computed network
nodes.

Query time by varying 𝑘: The results for query times
and different datasets are shown in Figure 5. The PB-tree
always outperforms G-tree and INE. Moreover, the PB-tree
is better than G*-tree when 𝑘 is less than 40, and G*-tree and
PB-tree have similar performance when 𝑘 is 50. The main
reasons are that the (1) PB-tree partitions the road network
based on the network topology and SOs distributions, it not
only ensures the spatial proximity, but each partition has the
same number of SOs. Therefore, we can quickly find the
valid SOs by accessing fewer tree nodes; (2) The significant
step of the query process is based on the adjacent tree nodes;
we combine expanding the adjacent areas to quickly find the
nearest nodes.

The number of computed network nodes by varying 𝑘
is shown in Figure 6. PB-tree requires a fewer computed
network nodes than G-tree and G*tree because of three main
factors. First, when the distribution of SOs is uneven, each
partition has different network nodes, the tree nodes of dense
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(a) OL (b) SJ (c) SF

(d) SZ (e) BJ

Figure 5: Performance comparison on query time

areas have fewer network nodes, thus the bridge nodes are
also fewer. Second, the bridge nodes are at least shared by
two nodes of the PB-tree, thus fewer bridge nodes are com-
puted. Third, the PB-tree generally does not need to compute
some bridge nodes of non-leaf nodes that do not contain
valid SOs. PB-tree achieves comparable performance with
INE when 𝑘 is 1. The main reason is that INE uses the
Dijkstra search algorithm to find valid objects, and PB-tree
may involve brother leaf nodes. However, we can find that
PB-tree achieves excellent performance as the 𝑘 increases.

We evaluated the performance for fanouts of 2, 4, 8,
16 in Figure 7. The number of test SOs is about 20% of
the total number of network links, and the road network
is SJ (San Joaquin). Twenty random queries are used to
compare an average value. We set 𝑘 = 10 and the number
of partitions is 256. The results show that the query time
and the number of computed network nodes become larger
as fanout increases. The reasons are simply that (1) when
the fanout is larger, a tree node has more child nodes, and
the height of the PB-tree will decrease. (2) when the query
is performed, although the bridge nodes of fewer non-leafs
are computed, the bridge nodes of brother leaf nodes will
be involved. Also, index construction takes more time as
the fanout increases. Third, as the fanout is increased, the
number of bridge nodes decreases. For the second and third
characteristics, the primary reasons are that (1) there are two
main parts to indexing construction, for index construction
most of the time is spent calculating the distance matrices.
When the fanout is larger, the union bridges of non-leaf
nodes are larger, thus, it will take more time. (2) regarding

the number of bridge nodes, a smaller fanout increases the
height of the PB-tree, the number of tree nodes increases,
and so does the number of bridge nodes. Besides, a larger
fanout will produce more bridge nodes for leaf nodes.

Figure 8 presents the results of different SOs dataset
sizes, which are from 0.2% to 2 of the number of network
links. We test on the SJ road network by default and set 𝑘 =
10, 𝑓 = 4. The results show that (1) for query time, PB-tree
consistently performs the best when SOs are different num-
bers. (2) For the number of computed network nodes, the PB-
tree always outperforms the G-tree and G*-tree. Compared
with INE, PB-tree achieves comparable performance with
INE when SOs dataset size is twice the number of network
links, and in other cases, PB-tree consistently demonstrates
the best performance.

6.3. Summary of the experiments
The first part of the evaluation focused on testing the

performance indexes for query time and the number of
computed network nodes for different 𝑘. The experimental
results show that the PB-tree outperforms all the others for
different road networks and number of SOs. The second part
of the evaluation addresses fanout and we analyze fanout
relates to query performances. The third part primarily eval-
uates the various SOs dataset sizes and distributions. The
experimental results show that our method outperforms the
state-of-the-art methods and classical approach. From all
results, we can see that the PB-tree has good robustness and
scalability.

Xiangqiang Min et al.: Preprint submitted to Elsevier Page 10 of 13



The Partition Bridge (PB) Tree: Efficient Nearest Neighbor Query Processing on Road Networks

(a) OL (b) SJ (c) SF

(d) SZ (e) BJ

Figure 6: performance comparison on the number of computed network nodes

7. Conclusion and future works
This work proposes a novel access method called PB-

tree in support of 𝑘NN queries on road networks. The index
is based on road network partitioning considering the spatial
objects (SOs) distribution in combination with the network
topology, which can be suitable for different cases. This work
also introduces a 𝑘NN query algorithm that leverages the hi-
erarchical nature of the PB-tree and provides superior query
performance as established in experiments using a range
of road networks and varying numbers of spatial objects
created by a data generator. The experimental results show
that the PB-tree outperforms the state-of-the-art methods
and the classical approach.

Directions for future work are as follows. An important
aspect will be to create an index that considers updates to
the SOs as well as the road network. Also, we are working
on leveraging the PB-tree for other kinds of queries, such
as continuous 𝐾NN and reverse NN queries. It will also be
interesting to study how to use our method for real-time data,
such as moving objects streams.
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