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Abstract

The domain of spatiotemporal applications is a treasure trove of new types of data as well
as queries. For designing and testing novel data types and access methods that will support

these applications, large spatiotemporal datasets are needed. As in many cases it is not possi-
ble to obtain real datasets, either they do not exist or they are not accessible, synthetic data-
sets are governed by artificial parameters rather than by the (sometimes invisible) rules
governing real-world behavior. In this work, we show how, at least for some cases, one can

generate spatiotemporal datasets that simulate real-world behavior. We illustrate example
cases and translate them into appropriate calls of GSTD2 a spatiotemporal data generator.
The generated data is illustrated using two-dimensional snapshot pictures as well as three-

dimensional (two spatial plus one temporal dimension) trajectory images.
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1. Introduction

Spatiotemporal database management is an emerging technology. Example appli-
cations include fleet management, traffic management, and navigational systems, as
well as the thriving developments behind mobile computing (Barbará, 1999). The
estimates are that by the year 2003, 500 million people will use mobile terminals
(Karppinen, 1999). Most of these terminals will be equipped with a GPS device, and,
thus, may make their positions available to the outside, digital, and geo-referenced
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world. Applications, here, include spatiotemporal data mining, as well as providing
geo- and time-referenced content.
New techniques comprising data structures and access methods are necessary to

handle this novel type of data and queries (Pfoser & Jensen, 2001; Pfoser, Theo-
doridis, & Jensen, 2000; Theodoridis, Sellis, Papadopoulos, & Manolopoulos, 1998).
The testing of these techniques, in turn, requires the existence of datasets, either real
or synthetic. Since real datasets (1) are not accessible for some applications and (2)
may not be useful for stress testing conditions, a lot of work can be found in the
literature on generating synthetic data, following some specifications (desirable car-
dinality, distribution, etc.).
Work in the area of data generation includes Gray, Sundaresan, Englert, Back-

lawski, and Weinberger (1994), which aims at generating billion-record SQL data-
bases using C programs running on a shared-nothing computer system consisting of
a hundred processors, with a thousand discs. The data generated there is alphanu-
meric. A generator for Web data, i.e. tables and Web pages, is introduced in Priya-
darshini, Qin, Lim, and Ng (1999). Soo (1997) presents a temporal data generator.
This work can be seen as the one-dimensional case of spatial data generators such as
presented in Günther, Oria, Picouet, Saglio, and Scholl (1998); a web-based spatial
data generator that produces sets of rectangles. The generator uses statistical dis-
tributions to compute the size, shape, and location of the data. Examples of spatio-
temporal data generators are Oporto (Saglio & Moreira, 1999), a network-based
generator (Brinkhoff, 2000), and GSTD (Theodoridis, Silva, & Nascimento, 1999).
The Oporto generator uses a driving application, the modeling of fishing ships.
Ships are attracted by shoals of fish while, at the same time, avoiding storm areas.
Fish themselves are attracted by plankton areas. Ships are moving points; shoals,
plankton, and storm areas are moving regions. Brinkhoff’s network-based generator
uses, as its name suggests, an underlying network in which movement occurs.
Besides two supplied networks, the user can add its own to the generator. Network
edges are of varying weight to model different categories of roads permitting varying
movement speeds. This in combination with varying the number and speed of the
moving objects allows for a close-to-real-life generation of movement data. The
GSTD generator produces moving point or rectangular region objects according to
several user-defined parameters. The generator uses various distributions to control
the movement and the shape of the objects. Theodoridis et al. (1999) present six
scenarios on generating spatiotemporal datasets with respect to the desirable head-
ing of objects, speed, etc. Although useful for access methods testing purposes
(Nascimento, Silva, & Theodoridis, 1999), the original algorithm turns out to be
limiting with respect to specific real-world behavior, such as directed movement or
movement obstructed by buildings or alike objects, which we term infrastructure.
In this paper, we extend GSTD to facilitate building such scenarios. In particular,

Section 2 provides the background of this work, namely the issue of spatiotemporal
objects and the rationale of the GSTD generator, Section 3 proposes appropriate
extensions to the algorithm in order to support directed and obstructed movements,
while some example scenarios are presented in Section 4. Finally, conclusions and
future work are discussed in Section 5.
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2. Background

Many different objects in the real world exhibit spatiotemporal characteristics.
We can distinguish those objects by, either, their spatial extent or their temporal
characteristics. By temporal characteristics we refer to how objects change their
properties over time, i.e. continuous or discrete. As for the spatial extent, we
distinguish point objects (no spatial extent) and aerial objects (spatial extent). In
the real world we can identify point objects but also aerial objects whose extent
does not matter in the given application context, and, thus, is reduced to a
point; as an application, consider the tracking of the continuous movement of
cars, planes, people, etc. Aerial objects, on the other hand, may have an extent
that changes over time. Examples of spatially continuously changing objects are
storms, troop formations, grasshopper populations, tribes, etc., while examples
of spatially discretely changing objects are land parcels (Pfoser & Tryfona,
1998).
An important aspect of a continuous movement is that it cannot be recorded in its

entirety. Let us consider the example of a moving object whose position is sampled
at points in time, i.e. a moving vehicle or a person, a military unit in the battlefield,
etc. In order to record its movement, we would have to know its position at any
time, i.e. on a continuous basis. However, GPS and telecommunications technolo-
gies only allow us to sample an object’s position, i.e. to obtain the position at dis-
crete instances of time, such as every few seconds.

2.1. Trajectories of moving objects

A first approach to represent the movements of objects would be to simply store
the position samples. This would mean that we could not answer queries about
the objects’ movements at times in-between sampled positions. Rather, to obtain the
entire movement, interpolation is necessary. The simplest approach is to use linear
interpolation, as opposed to other methods such as polynomial splines (Bartels,
Beatty, & Barsky, 1987). The sampled positions then become the end points of line
segments of polylines, and the movement of an object is represented by an entire
polyline in three-dimensional space. In geometrical terms, the movement of an
object is termed a trajectory (we will use ‘‘movement’’ and ‘‘trajectory’’ inter-
changeably). The solid line in Fig. 1 represents the movement of a point object.
Space and time are combined to form one (three-dimensional) coordinate system.
The dashed line shows the projection of the movement on the plane of x- and y-
coordinates (Pfoser & Jensen, 1999). The issue of interpolation becomes more com-
plex when we consider aerial objects. In this case, interpolating instances means to
interpolate the shape as well.
Interpolating trajectories raises questions about the uncertainty associated with a

particular representation. Did Pfoser and Jensen (1999) describe uncertainty as
related to trajectory data, so do Pfoser and Tryfona (2001) address the general
issue of uncertainty and imprecision in temporal, spatial, and spatiotemporal
contexts.
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2.2. GSTD overview

A fundamental issue in generating synthetic spatiotemporal datasets is the defini-
tion of a set of parameters that control the evolution of spatial objects. GSTD
(Theodoridis et al., 1999) addresses the following:

� duration of an object instance, which involves change of timestamps between
consecutive instances,

� shift of an object, which involves change of spatial location (in terms of center
point shift), and

� resizing of an object, which involves change of an object’s size (only applic-
able to aerial objects).

Since the evolution (or ‘‘history’’) of a spatiotemporal object, identified by its
o_id, is represented by a set of instances (o_id, si, ti), where si is the location of
object o at instant ti (si and ti are called spacestamp and timestamp, respectively),
the goal to be reached is the calculation of its consecutive instances, starting from
an initial instance (o_id, s1, t1). It is also assumed that the spatial workspace of
interest is the unit square [0,1)2 and that time varies from 0 to 1 (i.e. the unit
interval). For illustration reasons, four instances of a moving object are shown in
Fig. 2 together with the corresponding projections on the spatial plane and the
temporal axis.
The shift, the duration, and the resizing of an object’s instance are represented by

the functions:

� duration(o_id,interval,curr_tstamp,new_tstamp)
� shift(o_id,�c[],curr_sstamp_c,new_sstamp_c)

� resizing(o_id,�ext[],curr_sstamp_ext[],new_sstamp_

ext[])
Fig. 1. A moving object trajectory.
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which calculate the new timestamp and the new spacestamp’s center and extent,
called new_tstamp (a numeric value), new_sstamp_c (a two-dimensional point),
and new_sstamp_ext[] (an array of two intervals), respectively, of an object
identified by its o_id, as the sums of the respective current values and the respective
parameters, namely interval, �c[], and �ext[].3

Not all generated instances of objects are within the workspace. GSTD manip-
ulates invalid instances according to one among three alternative approaches: (1) the
‘‘radar’’ approach, where coordinates remain unchanged, although falling beyond
the workspace, (2) the ‘‘adjustment’’ approach, where coordinates are adjusted
(according to linear interpolation) to fit the workspace, and (3) the ‘‘toroid’’
approach, which assumes a toroidal workspace, as such once an object traverses one
edge of the workspace, it enters back in the ‘‘opposite’’ edge.
In summary, GSTD gets several user-defined parameters as input:

� N and D correspond to the initial cardinality and density (i.e. the ratio of the
sum of the areas of data rectangles over the workspace area) of the dataset,
Fig. 2. Consecutive instances of a time-evolving object and the corresponding projections.
3 The parameters interval, c[], and ext[] are as follows: inter-

val(distr_t(),min_t,max_t), c[](distr_c(),min_c,max_c), ext[](dis-

tr_ext(),min_ext,max_ext).
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� starting_id corresponds to the initial identification number of every
object in the dataset,

� numsnapshots corresponds to the time resolution of the workspace,
� distr_init(), the inital distribution of centers
� distr_t(), min_t, and max_t correspond to the distribution and the

domain of the interval parameter,
� distr_c(), min_c[], and max_c[] correspond to the distribution and

the domain of the �c[] parameter, and
� distr_ext(), min_ext[], and max_ext[] correspond to the distribu-

tion and the domain of the �ext[] parameter.

Several GSTD parameters are controlled by statistical distributions. For example,
the initial spatial distribution distr_init is a choice among uniform, gaussian, and
skewed. For more details on GSTD, please refer to the original paper (Theodoridis et
al., 1999) and the GSTDWeb interface (Theodoridis & Nascimento, 2000).
3. Introducing semantics in GSTD

Spatiotemporal movement characteristics make it necessary to add new features to
the current GSTD implementation. Introducing a new parameter called dinterval

allows us to create more realistic object movements. Additionally, the infrastructure
concept permits the creation of trajectories stemming from objects moving in an
obstructed environment, e.g. cities. We present an infrastructure generator as well as
modifications to the GSTD algorithm to consider this information during trajectory
generation.

3.1. Extending the GSTD algorithm

The majority of objects in the real world do not move according to statistical
parameters but, rather, move intentionally. For example, the movement of a car is
guided by the will of its driver, which could be to reach many destinations con-
secutively. However, the path to such destinations is not linear but according to many
factors such as the road network, traffic conditions etc. Overall, however, a movement
towards a destination is directed. With the current GSTD implementation such a
movement that is overall directed and locally undirected cannot be simulated. Cur-
rently, the spatial shift parameter, which is responsible for a change of direction, is
changed for each new timestamp, i.e. after every interval. Thus, by using a broad
�c[] parameter the change in shift can be larger, and as a consequence, the
objects move ‘‘nervously’’. Alternatively, by using a narrow �c[] parameter all
objects move in one direction during the whole time frame. To find a middle ground,
i.e. objects having directed movements for longer periods of time, we introduce a new
parameter called dinterval. During a dinterval, �c[] is kept constant. Was the
�c[] parameter so far only governed by a distribution function specified as input to
GSTD, does it now become a more complex function with the following format:
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� �c[](dinterval,new_tstamp,distr_c(),min_c[],max_c[]

The format of the new parameter is dinterval(distr_dt(),min_dt,-

max_dt), thus introducing three extra input parameters, namely distr_dt(),

min_dt, and max_dt, corresponding to the distribution and the domain of dinterval.

3.2. Clustered movements

Different groups of moving objects exhibit different kinds of behavior. Let us
consider the movements of cars in the morning hours. Parents are dropping their
kids at schools in the suburbs, people drive to their jobs downtown, taxis move
around in the city center, and people drive to shopping malls. Here, clusters of
people exhibit similar movement characteristics.
GSTD indirectly supports clustered datasets. To achieve that, sets of objects

moving with varying speed, agility and direction are just to be generated and then
appropriately combined into a single dataset.

3.3. Infrastructure

An important assumption in GSTD was that the objects are unobstructed in their
movements with the single exception of the workspace boundary. However, in real-
world scenarios, there may exist spatial objects that hinder other objects in their
movement. We term this set of objects infrastructure. Like moving object datasets,
infrastructure can be composed by either real or synthetic data.
Focusing on synthetic data, a popular generator for spatial data (used so far in

spatial database work) has been implemented. The input parameters of the gen-
erator are the following:

� N, i.e. the number of rectangles,
� X and Y, i.e. the (maximum) size of the rectangles in x- and y- dimension,

respectively, and
� extent_type, i.e. whether the size of rectangle is constant and equal to X

or Y (extent_type=c) or variable up to X or Y (extent_type=v).

The output consists of a set of non-overlapping rectangles with their centers
obeying a uniform distribution (other popular distributions, such as gaussian or
skewed have been implemented as well).
Fig. 3 depicts an infrastructure file containing 20 rectangles, of a variable box size

of up to 20% in both dimensions. The pseudo-code of the infrastructure generator is
presented in the Appendix.
When generating moving objects data, each new instance has to be outside each of

the infrastructure objects. To achieve that, we employ a similar approach to what the
GSTD algorithm uses in treating objects that are outside the workspace (cf. Section
2.2). From the three originally proposed approaches, it is only the radar and
the adjustment approach that can be applied to infrastructure. The application of
D. Pfoser, Y. Theodoridis / Comput., Environ. and Urban Systems 27 (2003) 243–263 249



the radar approach is straightforward; the coordinates of the new instance remain
unchanged, although intersecting with infrastructure objects. More important in this
context is the ‘‘adjustment’’ approach, where coordinates are adjusted (according to
linear interpolation) to be outside infrastructure objects.
In this context, do note that we are only dealing with static obstacles, i.e. the

infrastructure. Examples of dynamic (or moving) obstacles are chunks of slow
moving traffic, motor cades, special transports blocking roads, etc. Those objects
could be generated using the GSTD tool itself. However, in such a case the whole
environment becomes quite complex.4
4. Complex scenarios on moving object trajectories

In this section we show how to generate trajectories of moving objects using
GSTD to simulate real-world scenarios. We present various scenarios and depict a
proper GSTD parameter setting. The generated data is illustrated using a two-
dimensional temporal snapshot representation as well as a three-dimensional poly-
line representation.
An initial goal of data generators is the control of basic object properties, such as

speed, heading, and agility of objects. Subsequently, we combine the groups
of objects showing similar movements characteristics to form clusters. The last set of
movement examples is characterized by infrastructure hindering the free movement
Fig. 3. Infrastructure (a set of rectangles).
4 Algorithms determining whether a moving object intersects a moving obstacle fall in the category of a

spatiotemporal join, which deserves careful investigation (Theodoridis et al., 1998).
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of objects. We use a random set of rectangles to represent static real-world objects,
e.g. the movements of cars would be obstructed by buildings, rivers, parks, etc.
For all the examples to follow, we have made some assumptions: (1) The GSTD

generator can generate both, point objects and aerial objects. The extent of an object
is of no importance in the present context, thus in the sequel we will only deal with
point objects. (2) The GSTD generator employs several approaches of how to adjust
the positions of objects leaving the workspace. As already mentioned, we have chosen
to experiment with the adjustment approach. (3) We assume that the spatial work-
space of interest is the unit square [0,1)2 and that time varies from 0 to 1 (i.e. the unit
interval). Finally, (4) the format in which the distributions are specified in the fol-
lowing examples is identical to the actual input stream used in GSTD, i.e. r stands for
a uniform distribution, g_0.5_0.1 stands for a gaussion distribution with a
mean=0.5 and a standard deviation=0.1, and s(1) stands for a skewed distribution.

4.1. Movement parameters

The first set of examples demonstrates how basic characteristics of objects such as
speed, agility, and direction can be manipulated using the parameters of the GSTD
generator.

4.1.1. Varying objects speed
Objects do not move with constant speed, e.g. cars are parked, stopped at traffic

lights, move in cities, or on highways. Further, different kinds of objects have dif-
ferent speed capabilities. Cyclists cannot move as fast as cars, different kinds of ships
move at different speeds, e.g. high-speed ferries and fishing boats. The scope of this
section is to illustrate the connection between the real-world speed characteristic and
the relevant GSTD parameters.
A varying object speed can be achieved by varying the distr_c(), min_c[], and

max_c[] parameters in GSTD. This means that during a temporal interval the center
of an object can move by as much as the distribution permits. The distribution can be
any one supported byGSTD. In the example shown in Fig. 4(a), we chose distr_c()
to be uniform, with min_c[x,y]=(�0.3, �0.3) and max_c[x,y]=(0.3,

0.3). However, do note that these parameters have to be seen in connection with the
given temporal interval determined by distr_t(), min_t, and max_t.
The snapshots of Fig. 4(a) are taken at timestamps 0 (initial distribution), 0.25,

0.50, 0.75, and 1 (final distribution). Fig. 4(b) gives a 3D representation of the tra-
jectories. The two spatial dimensions are in the horizontal plane, whereas the tem-
poral dimension is in the vertical direction. The cube represents the extents of the
workspace. To give a better visual impression of the movement, the spacestamps are
connected using linear interpolation to form polylines.
Fig. 5 illustrates faster moving objects. As before, we chose distr_c() to be

uniform, but with min_c[x,y]=(�0.8, �0.8) and max_c[x,y]=(0.8,

0.8). The possible range of deviation is larger. One can see that after an initial
dispersion phase, the distribution of objects is almost uniform throughout the
workspace. This is in contrast to the previous example for slower movement, where
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the initial distribution highly affects the overall positioning of the objects. Fig. 5(b)
shows a rather nervous movement of objects, i.e. a frequent change of the heading.
With the next set of examples we show how to smoothen directional movement.

4.1.2. Agility of objects
To generate trajectories for more directed movements, an additional GSTD

parameter, distr_dt(), was introduced in Section 3.1. For the example shown in
Fig. 6, we used distr_dt()=g_0.2_0.1, i.e. a gaussian distribution with a
mean=0.2 and a standard deviation=0.1, with min_dt=0 and max_dt=1. In
general, the larger a dinterval, the longer an object moves into a specified direc-
tion, i.e. with the average dinterval=0.2, there are five changes of the general
Fig. 4. Slow moving objects. (a), 2D snapshots; (b), 3D trajectories; (c) GSTD parameters.
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direction during the whole time frame. The other parameters are the same as in the
example of Fig. 4, depicting slow movement.
The overall effect of the dinterval parameter is that a chosen direction is kept

for a larger time interval. Thus, in comparing Figs. 4 and 6, one can easily see that
the trajectories now appear to be less ‘‘nervous,’’ and, at the same time, the objects
move away from their initial positions. In contrast to this, the objects in Fig. 4 move
around their inital positions; the many changes of �ext[], with a mean=0, cancel
each other.

4.1.3. Preferred direction
Direction is an important characteristic of a movement. To achieve directional

movement we, again, manipulate the min_c[] and max_c[] parameters. Conse-
Fig. 5. Fast moving objects. (a), 2D snapshots; (b), 3D trajectories; (c) GSTD parameters.
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quently, we can adjust four parameters, -x, x, -y, and y, to bias movement. In
Fig. 7, a directed movement is illustrated. The parameter setting is distr_c() to
be uniform and min_c[x,y]=(�0.03, �0.1) and max_c[x,y]=(0.03,

0.03), i.e. the distribution in the y direction is biased towards the negative direc-
tion. General directional movements can be achieved by combining smaller/larger
deviation values.

4.1.4. Summary
The objective of this section was to show the correspondence between movement

characteristics and GSTD parameters (cf. Table 1).
The speed of objects is determined by the fraction �c[]/interval. Thus, in the

examples, we specify ranges for both parameters, i.e. distributions. Slower and faster
Fig. 6. Smoothly moving objects. (a), 2D snapshots; (b), 3D trajectories; (c) GSTD parameters.
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moving objects are characterized by allowing a smaller/larger range for �c[] by at
the same time keeping interval constant.
The agility of objects is governed by the new dinterval parameter; the larger the

range, the fewer times the objects change their general direction. The immediate
direction is governed by the�c[] parameter; its values determine the direction, e.g. if
�c[x]=0.03 and�c[y]=0.03, the object moves into a ‘‘Northeastern’’ direction.

4.2. Clustered movement

In the previous section we assumed that the movement of objects within one
example is determined by one set of parameters. In this section, we show how to use
Fig. 7. A directed movement towards ‘‘south’’. (a), 2D snapshots; (b), 3D trajectories; (c) GSTD para-

meters.
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the capabilities of GSTD to generate clustered movement of objects within one
dataset.
The key parameter for this purpose is called starting_id. By generating various

datasets with different movement characteristics and appropriate starting_id

values, we can then use a simple external concatenation program to combine them.
Fig. 8 visualizes the so generated dataset of four clusters of objects moving into four
different directions. In Fig. 8(b) one can observe that the objects ‘‘crawl’’ up the
corners. The movement parameters, listed in Fig. 8(c), direct the objects to the cor-
ners. Because of the adjustment approach they are forced ‘‘inside’’ when they try to
leave the workspace, but try again to leave because of the parameter setting.

4.3. Obstructed movement

In Sections 4.1 and 4.2, we assumed that the objects could move freely in the
workspace. In this section, we illustrate how infrastructure can hinder the objects in
Table 1

GSTD parameters and their influence on movement characteristics
Parameter/Characteristic
 Speed
 Agility
 Direction
interval: distr_t(), min_t, max_t

p

p

dinterval: distr_dt(), min_dt, max_dt
p
 p

�c[]: distr_c(), min_c[], max_c[]
Table 2

Infrastructure parameters
Example
 Parameters
 Illustration
Sparse infrastructure
 N=20
X=0.2
Y=0.2
extent_type=v
Dense infrastructure
 N=40
X=0.2
Y=0.2
extent_type=v
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their movement (cf. Section 3.3). In particular, Table 2 lists the parameters to gen-
erate two infrastructure datasets containing 20 and 40 objects, respectively. The size
of the objects is limited to 20% of the size of the workspace per dimension.
The first example represents sparse infrastructure. We generated the datasets

visualized in Fig. 9. In this example, we chose the ‘‘adjustment’’ approach, i.e. when
GSTD computes a new position that is inside an infrastructure object, ‘‘adjustment’’
moves it ‘‘outside’’, where ‘‘outside’’ in this context means onto the border of the
obstacle [cf. the first snapshot in Fig. 9(a)].
The movement parameters in this example are the same as in Section 4.1. In

comparing Fig. 9 with Fig. 6, we can observe that the infrastructure deflects the
Fig. 8. Clustered movements towards the corners. (a), 2D snapshots; (b), 3D trajectories; (c) GSTD

parameters.
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objects towards the upper right corner. Also, by comparing Fig. 9(b) and Fig. 6(b),
we conclude that although the movements are similar (the trajectories resemble each
other), the trajectories influenced by infrastructure are ‘‘edgier.’’
In the visualization of the trajectories in Fig. 9(b) we use linear interpolation to

connect the spacestamps, i.e. although it is guaranteed that all the spacestamps lie
outside the infrastructure objects, this does not necessarily have to be the case for
the interpolating line segments.
Fig. 10 visualizes a dataset with the same movement parameters as before, but

using the dense infrastructure dataset containing 40 objects (cf. Table 2).
Fig. 9. Obstructed movement, sparse infrastructure. (a), 2D snapshots; (b), 3D trajectories; (c) GSTD

parameters.
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5. Conclusions and future work

This work presents several examples of how real-world movement characteristics
can be translated into appropriate parameters of a spatiotemporal data generator.
In this work, we used the GSTD tool to generate trajectories of moving point
objects. To accommodate different degrees of object agility, we introduced an
additional GSTD parameter, called dinterval, over the original implementa-
tion. Furthermore, we illustrated how clustered movement can be supported.
Finally, we noticed that object movement in the real world is not free of
Fig. 10. Obstructed movement, dense infrastructure. (a), 2D snapshots; (b), 3D trajectories; (c), GSTD

parameters.
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obstacles, here termed infrastructure. Thus, as a third extension, we presented an
appropriate modification to the GSTD tool to accommodate infrastructure during
data generation.
A major part of the work is dedicated to showing different movement examples,

such as varying speed, agility, direction, as well as clustered and obstructed move-
ment. The various examples are visualized using a two-dimensional snapshot plus a
three-dimensional polyline representation of the trajectories.
This work points to several future research directions. An immediate goal is to

extend the GSTD tool provided through a Web interface (Theodoridis & Nasci-
mento, 2000) to accommodate the presented modifications.
Spatiotemporal data generators are parameterized using mathematical, better,

statistical concepts. On the other hand, several real-world movements are governed
by human behavior. An interesting approach would be to parameterize these
behavioral patterns as they can be used for data generation. A somewhat related
approach to structuring space can be found in (Raubal, Egenhofer, Pfoser, & Try-
fona, 1998). Particular semantic concepts that could be studied in this context are
closeness, e.g. objects that lie close to each other or close to an obstacle are treated
differently, and attraction, e.g. objects change direction when they approach a target.
Since these concepts raise neighborhood issues, work in nearest-neighbor (Rousso-
poulos, Kelley, & Vincent, 1995) as well as closest-pair queries (Corral, Manolpoulos,
Theodoridism, & Vassilakopoulos, 2000) is worth to be integrated into GSTD.
As we outlined in Section 2.1, one might use linear interpolation to estimate the

position in between known instances. Consequently, one cannot assume that
the ‘‘real’’ trajectory of a moving object coincides with the polyline interpolation. In
other words, every new instance is adjusted with respect to the previous instance
and the underlying infrastructure. It could be further adjusted such that even
the interpolating line segment does not intersect with any infrastructure object. The
adjustment algorithm in the current GSTD implementation does not consider this
kind of semantics, this is a task for near future work. Also, the current GSTD imple-
mentation uses only static infrastructure. As outlined in Section 3.3, infrastructure
can be dynamic and extending the GSTD tool towards this direction would be a
logical step.
Overall, data generation initiated in (Theodoridis et al., 1999) is just but one tool

in the larger framework of benchmarking access methods and query processing
techniques. In the area of spatiotemporal databases, this effort started within the
ChoroChronos project (Frank et al., 1999) and is still in progress (Nascimento et al.,
1999; Papadopoulos, Rigaux, & Scholl, 1999).
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