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Abstract

Routing plays an ever-important role in a society that
relies heavily on individual means of transportation. Al-
though efficient algorithmic solutions for navigation exist,
an accurate and reliable weight database that forms the ba-
sis of an acceptable algorithmic solution is missing. This
work defines algorithms and data management techniques
that allow the derivation of dynamic weights from collected
Floating Car Data (FCD). Weights reflect the speed asso-
ciated with a piece of road at a certain time. A collection
of such historical data is used to capture trends in travel
time behavior according to temporal variations. Based on
large amounts of travel time data, edge-based weights in the
form of time-varying characteristic travel times are derived.
Since the available tracking data does not cover the entire
road network, several methods are defined to compensate
for the lack of data and to guarantee complete coverage.
A dynamic weight database, the Dynamic Travel Time Map
(DTTM) is defined and implemented as a spatio-temporal
data warehouse to manage the characteristic travel times
and to compute dynamic weights efficiently. An experimen-
tal evaluation establishes not only the efficiency of the pro-
posed approach but also shows its applicability in a realistic
context, using actual GPS vehicle tracking data for the road
network of Athens, Greece.

1 Introduction

The major limitation in conventional routing and naviga-
tion systems is the unreliable travel time database associated
with the underlying road network. With such a network,
only static weights as derived from road category and speed
limits are used to calculate the fastest or shortest path for a
given trip.

In this work, we propose the Dynamic Travel Time Map
(DTTM) as a means to efficiently supply dynamic weights
that are derived from a collection of relevant historic travel

times by exploiting the causality between historic and cur-
rent traffic conditions.

We use Floating Car Data (FCD) and specifically the
tracking data component as a means to derive travel times
for a road network. FCD is a by-product in fleet manage-
ment applications and given a minimum number and uni-
form distribution of vehicles, this data can be used for accu-
rate traffic assessment and also prediction. Map-matching
the tracking data produces travel time data related to a spe-
cific edge in the road network.

The DTTM that we present is realized by means of a
spatiotemporal data warehouse. The basic fact table con-
tains the collected travel time data. Using a temporal and
a spatial dimension, travel times are aggregated to provide
appropriate dynamic weights for the entire road network.
Redundancy is the key element to achieve a good coverage.
The more tracking data is available (the larger the number of
tracked vehicles at any given time), the better is the overall
coverage and accuracy of the DTTM.

As far as routing data and static weights are concerned,
such data is now available for most places on Earth from
a few vendors (e.g., NAVTEQ© and TeleAtlas©). In
such databases, even though a traversal estimate (link-based
speed types) is associated with all road portions (based on
average speed, itself based on speed limit for such road cat-
egories), such data are static in the sense that they do not
take real traffic conditions into account. In a first attempt to
use FCD in this context, [11] illustrates the use of floating
car data to assess traffic conditions.

The paper is organized as follows. Section 2 gives back-
ground information on routing algorithms and, together
with their limitations, points out the importance of a dy-
namic weight database. Section 3 introduces the concept
of characteristic travel time as derived from historic travel
time collections. Section 4 defines a spatiotemporal data
warehouse that implements the dynamic travel time map.
Section 5 evaluates the performance of the DTTM to com-
pute dynamic weights in terms of accuracy, cost and speed
of computation. Finally, Section 6 gives conclusions and
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directions for future research.

2 Background and Motivation

A major accuracy problem in conventional navigation
systems is due to the unreliable travel time associated with
the underlying road network. A network is made of basic
pieces usually referred to as links. A link is an atomic road
portion such as a piece of road between two intersections or
a ramp onto an highway. With a link is associated a value
that expresses its level in a hierarchy of roads (also known
as arterial level). The link notion is introduced to reflect
the connectivity between roads of possibly different impor-
tance. With a link is then associated a speed, which is, per
default, static. In the following, we outline the basic princi-
ples behind routing algorithms before advocating the use of
dynamic routing algorithms.

2.1 Algorithmic Solutions to Navigation

A road network, is modeled as a directed graph G =
(V, E), whose vertices V represent intersections between
links and edges E represent links. Additionally, a real-
valued weight function w : E → R is given, mapping edges
to weights. In the routing context, such weights typically
correspond to speed types derived from road categories or
based on average speed measurements. However, what is
important is that such weights are static, i.e., once defined
they are rarely changed. Besides, such changes are rather
costly as the size of the underlying database is in the order
of dozens of Gigabytes.

A shortest path from vertex u to v is defined as any path
p with weight w(p) = δ(u, v), i.e., a weight that is mini-
mal [2]. The formal description of the problem as well as
shortest path algorithms are available in the literature.

Assuming that all edge weights in the graph are non neg-
ative, w(u, v) ≥ 0, the basic problem of finding the short-
est path between two vertices u and v (single-pair shortest
path problem) can always be solved by applying a uniform
cost algorithm (also known as greedy or Dijkstra’s algo-
rithm [4]).

Although Dijkstra’s algorithm is complete and optimal
in that it finds the shortest path to any vertex u from a start-
ing vertex s, it is an uninformed search algorithm that can
be improved by exploiting knowledge on the way to reach
the goal. In that context, informed search algorithms (”best-
first search”) were proposed, among them a pure heuristic-
based algorithms and the A∗ algorithm [6], which combines
the uniform cost algorithm and a heuristic-based algorithm.
The A∗ algorithm differs from Dijkstra’s algorithm in that
for the selection of u ∈ V −S, it uses the minimum shortest-
path estimate, i.e., the cost of the path so far, d(u), in com-
bination with the estimated cost to the goal, h(u). For the

latter, a heuristic is needed that estimates this cost. For rout-
ing problems such as the shortest-path, the straight-line dis-
tance, or, Euclidean distance to the goal, is a good heuristic
function (in the sense that it does not overestimate the cost
to reach the goal) and can also easily computed. The esti-
mated cost of the cheapest solution through u, f(u), is as
follows.

f(u) = d(u) + h(u) (1)

With admissible1 h, A∗ is optimal [3], however, it runs
out of memory quickly as it keeps all generated nodes.
Memory-bounded algorithms were introduced, which guar-
antee optimal solutions even though some solutions are
eliminated. Among them we can cite Iterative Deepening
A∗, MA*, Simplified Memory-Bounded A∗ (SMA), IE, or
Tabu Search (see [9] for a comprehensive description of all
these algorithms). Their optimality relies on the size of a
maintained heap and on the pruning strategy. Navigation
systems usually use bi-directional, memory-bounded algo-
rithms based on A∗.

2.2 Dynamically-assigned Weights

Although the various algorithmic solutions cited above
are still subject to further research, the basic place for im-
proving solutions to routing problems is the underlying
weight-based database DB(w(u, v)). Currently, data from
vendors correspond to static weights, or, link-based speed
types, which are derived from the respective road category
(or arterial levels) and its associated speed limit, or a speed
type determined by costly road-side surveys.

Our work aims at making such a weight database fully
dynamic with respect to not only a spatial but also a tempo-
ral argument. The idea is to derive dynamic weights from
historic traffic assessment based on sensor measurements
in the form of floating car data (FCD). Using the causal-
ity between historic and current traffic conditions, weights
- defined based on temporal parameters - will replace static
weights such as the ones currently in use and will induce
impedance in traversing some links.

2.3 Dynamic Weights and Routing

In a typical collection scenario, FCD is available in close
to real time [11]. In connection with a dynamic weight
database, such a live traffic assessment has serious impli-
cations for the implementation of any type of routing al-
gorithm not only (i) by increasing the accuracy of the result
but also (ii) by potentially changing the algorithm itself and,
thus, the way a routing solution is computed.

1A function f is admissible if it does not overestimate the cost to reach
the goal.
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A routing solution has an associated temporal validity,
i.e., start time and estimated time to destination. Using dy-
namic weights based on historic travel times, this weight
database at best is current at the time the routing solution
is computed. Assuming a live FCD collection scenario, any
discrepancy between newly recorded travel times and dy-
namic weights would require a recomputation of the routing
solution.

An existing variant of the A∗ algorithm allows for
changes to the world after the initial routing solution is com-
puted, i.e., . The D∗ (Dynamic A∗) algorithm [12] is in-
tended for use when no complete information, i.e., weights,
is initially available. As shown in a robot path planning con-
text, the D∗ algorithm can be used with incomplete or inac-
curate information [13]. Given an initially course “map”,
the robot detects its precise environment as it moves along.
Translated to the navigation context this means that as a ve-
hicle is presented with an initial routing solution based on
a dynamic weight database, this database gets refined with
now-relevant travel time data collected from vehicle fleets
during the temporal validity of the routing solution. The
more accurate the prediction of actual traffic conditions by
the dynamic weight database, the better will the initial rout-
ing solution be and the fewer changes will be required dur-
ing the execution phase.

Another domain in which dynamic weights can prove
their usefulness is dynamic vehicle routing in the context of
managing the distribution of vehicle fleets and goods. Tra-
ditionally, the only dynamic aspect were customer orders.
Recent literature however mentions also the traffic condi-
tion and thus travel times as such an aspect [5].

3 Travel Time

Travel times are obtained by relating tracking data to
edges in a road network. The approach to do so and what
it takes to achieve a good travel time coverage for the entire
road network are detailed in the following section.

3.1 Vehicle Tracking Data

Floating car data (FCD) refers to using data generated by
one vehicle as a sample to assess to overall traffic conditions
(“cork swimming in the river”). Typically these data com-
prise basic vehicle telemetry such as speed direction and
most importantly the position of the vehicle in the form of
vehicle tracking data. Having large amounts of vehicles
collecting such data for a given spatial area such as a city
(e.g., taxis, public transport, utility vehicles, private vehi-
cles) will create an accurate picture of the traffic condition
in time and space [11].

Matching the tracking data to a road network, we obtain
travel times. Since FCD is typically obtained using GPS

positioning, the associated measurement error in connec-
tion with the sampling rate require us apply specific map-
matching algorithms to perform this task. The algorithm we
used in the experimental evaluation of Section 5 is reported
in [1].

The travel times are finally recorded as sets of time in-
tervals associated with edges in the road network.

3.2 Travel Time Derivation

The collection of historical travel time data provides a
strong basis for the derivation of dynamic weights provided
that one can establish the causality of travel time with re-
spect to time (time of the day) and space (portion of the
road network).

Temporal causality establishes that for a given path, al-
though the travel time varies with time, it exhibits a recur-
rent behavior. An example of temporal causality is shown in
Figure 1(a). For the same path, two travel time profiles, i.e.,
the travel time varying with the time of the day, are recorded
for different weekdays. Although similar during nighttime
and most daytime hours, the travel times differ significantly
during the period of 16h to 22h. Here, on one of the days
the shops surrounding this specific path were open from 17h
to 21h in the afternoon.
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(a) Temporal causality

0 4 8 12 16 20 24
150

200

250

300

350

400

450

500

550

600

DAY HOUR

S
E

C
O

N
D

S

Path 1
Path 2

(b) Spatial causality

(c) Travel time example

Figure 1. Relating travel times

Spatial causality establishes that travel times of different
edges are similar over time. An example is given in Fig-
ure 1(b). Given two different paths, their travel time profiles
are similar. Being in the same shopping area, their travel
time profile is governed by the same traffic pattners, e.g.,
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increased traffic frequency and thus increased travel times
from 6h to 20h, with peaks at 8h and around noon. Fig-
ure 1(c) gives an overall example, illustrating travel time
fluctuations in a road network.

Overall, discovering such temporal and spatial causality,
affords hypothesis testing and data mining on historic data
sets. The outcome is a set of rules that relate (cluster) travel
times based on parts of the road network and the time in
question. A valid hypothesis is needed that selects historic
travel time values to compute meaningful weights.

In this work, for the purpose of defining and evaluat-
ing a tool that allows for the fast computation of dynamic
weights, we adopt a simple hypothesis with respect to spa-
tial causality that relates travel times (i) based on spatial
proximity and (ii) road category. This is based on the obser-
vation that roads of the same category, e.g., neighborhood
roads that are close to each other, exhibit similar travel time
patterns. The specific road categories used in this work are
described in Section 3.4.

3.3 Characteristic Travel Time

A problem observed in the example of Figure 1(b) is that
travel times, even if causality is established, are not readily
comparable. Instead of considering absolute travel times
that relate to specific distances, the notion of relative travel
time ρ is introduced, which for edge e is defined as follows,

ρ(e) =
τ(e)
l(e)

(2)

with τ(e) and l(e) being the recorded travel time and edge
length, respectively. 2

Given a set of relative travel times P (e) related to a
specific network edge e and assuming that these times are
piecewise independent, the characteristic travel time χ(P )
is defined by the triplet cardinality, statistical mean, and
variation as follows,

χ(P ) = {|P |, E[P ], V [P ]} (3)

E[P ] =
∑

ρ∈P

ρ

|P | (4)

V [P ] =
∑

ρ∈P

(ρ − E[P ])2

|P | (5)

The critical aspect for the computation of P (e) is the set
of relative travel times selected for the edge e in question
based on temporal and spatial inclusion criteria IT (e) and
IS(e), respectively.

P (e) = {ρ(e∗, t) : e∗ ∈ IS(e) ∧ t ∈ IT (e)} (6)

2An alternative perception of ρ is that of inverse speed.

IS(e), a set of edges, contains typically the edge e itself
but can be enlarged as we will see in the next section to
include further edges as established by an existing spatial
causality between the respective edges. IT (e), a set of time
periods, is derived by existing temporal causality. Respec-
tive parameter choices are discussed in Section 3.5.

The characteristic travel time essentially represents a dy-
namic weight, since depending on a temporal inclusion cri-
terion (e.g., time of the day, day of the week, month, etc.),
its value varies.

3.4 Road Network

FCD and thus travel times are not uniformly distributed
over the entire road network, e.g., taxis prefer certain routes
through the city. To provide a dynamic weight database for
the entire road network, a considerable amount of FCD is
needed on a per edge basis, i.e., the more available data, the
more reliable will be the characteristic travel time.

Availability of data is directly related to the road cate-
gory. In this work, we adopt a simplistic model of major
and minor roads, with major roads comprising highways
and major urban streets and minor roads including smaller
roads and alleys. Orthogonally, the amount of available
FCD groups the edges into sets of frequently traversed and
non-frequently traversed edges3. An empirical study estab-
lished that for our specific data set (cf. Section 5.1), 99% of
all frequently traversed edges belong to major roads. Fig-
ure 2 depicts the road network of Athens, Greece with the
frequently traversed edges shown in black and dark gray.

3.5 Travel Time Computation Methods

While it is possible to compute the characteristic travel
times for frequently traversed edges only based on data re-
lated to the edge in question, for the non-frequently tra-
versed edges, with their typical lack of data, complementary
methods are needed. The simplest approach is to substitute
travel times by static link-based speed types as supplied by
map vendors. However, following the causality principles
as outlined in Section 3.2, the following three prototypical
methods can be defined. The various approaches differ in
terms of the chosen spatial inclusion criterion IS(e), with
each method supplying its own approach.

Simple Method. Only the travel times collected for a spe-
cific edge are considered. IS(e) = {e}.

Neighborhood Method. Exploiting spatial causality, i.e.,
the same traffic situations affecting an entire area, we use a
simple neighborhood approach by considering travel times
of edges that are (i) contained in an enlarged minimum
bounding rectangle (MBR) around the edge in question and

3The threshold for categorizing edges as frequently traversed was set to
250 traversals.
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Figure 2. Road network and frequently tra-
versed edges.

(ii) belong to the same road category. Figure 3(a) shows
a network edge (bold line) and an enclosing MBR (small
dashed rectangle) that is enlarged by a distance d to cover
the set of edges considered for travel time computation
(thicker gray lines). IS(e) = {e∗ : e∗ contained in d-
expanded MBR(e) ∧ L(e∗) = L(e)}, with L(e) being a
function that returns the road category of edge e.

Tiling Method. Generalizing the neighborhood method,
a fixed tiling approach for the network is used to catego-
rize edges into neighborhoods. It effectively subdivides
the space occupied by the road network into equal sized
tiles. All travel times of edges belonging to the same tile
and road category as the edge in question are used for the
computation of the characteristic travel time. Figure 3(b)
shows a road network and a grid. For the edge in question
(bold line) all edges belonging to the same tile (thicker gray
lines) are used for the characteristic travel time computa-
tion. IS(e) = {e∗ : e∗ ∈ T ile(e)∧ L(e∗) = L(e)}

Both, the Neighborhood and the Tiling Method, are ef-
fective means to compensate for missing data when com-
puting characteristic travel times. Increasing the d in the
Neighborhood Method, increases the number of edges and
thus the potential number of relative travel times consid-
ered. To achieve this with the Tiling Method, the tile sizes
have to be increased. As we will see in the experimen-
tal evaluation (Section 5), both parameters have to be used
with caution not to compute inaccurate characteristic travel
times.

The Neighborhood method is expected to be computa-

(a) Neighborhood Method

(b) Tiling Method

Figure 3. Characteristic travel time computa-
tion methods

tionally expensive since the computation of a character-
istic travel time requires the retrieval of respective travel
times for all the edges contained in an edge neighborhood
(cf. Figure 3(a)) by using expensive ad-hoc spatial range
queries. The Tiling Method as a simplified version of the
Neighborhood method is expected to overcome this limi-
tation by using pre-computed tiles and, thus, less expen-
sive database queries. The question that remains to be
answered is whether characteristic travel times and, thus,
dynamic weights can be as efficiently computed as static
weights. The following section proposes a data manage-
ment approach based on data warehousing, which should
have a competitive performance as will be established in
Section 5.

4 Dynamic Travel Time Map

Manipulating large amounts of travel time data in rela-
tion to a road network and routing algorithms requires ef-
ficient data management techniques. For this purpose, the
Dynamic Travel Time Map (DTTM), a spatiotemporal data
warehouse for travel time data is introduced.

4.1 Requirements

The basic requirement to the DTTM is the efficient re-
trieval of characteristic travel times on a per-edge basis.
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Based on the choice of the various inclusion criteria, Sec-
tion 3.5 defines three computation methods. The DTTM
needs to support each method in kind.

Sketching the query processing of the various computa-
tion methods should help in deriving the requirements to a
DTTM. The Simple Method retrieves relative travel times
relating to the edge in question. In case of the Neighbor-
hood Method, the spatial inclusion criterion is interpreted
as range query to identify the neighboring edges. For each
such edge, relative travel times have to be retrieved. The
Tiling Method uses as a spatial inclusion criterion a regular
subdivision of space. For each edge that is within the same
tile as the edge in question, relative travel times have to
be retrieved to compute the respective characteristic travel
time.

Our computation methods use arbitrary temporal and
spatial inclusion criteria. This suggests the use of a data
warehouse with relative travel times as a data warehouse
fact and space and time as the respective dimensions. Fur-
ther, since the tiling method proposes regular subdivisions
of space, one has to account for a potential lack of travel
time data in a tile by considering several subdivisions of
varying sizes. The following section details the resulting
data model.

4.2 Data Warehouse Design

The multidimensional data model of our data warehouse
implementing the DTTM is based on a star schema. Fig-
ure 4 shows the schema comprising five fact tables and two
data warehouse dimensions.

4.2.1 Dimensions

The two data warehouse dimensions relate to time,
TIME DIM, and to space, LOC DIM, implementing the re-
spective granularities as described in the following.

Spatial subdivisions of varying size can be seen as sub-
divisions of varying granularity that form a dimensional hi-
erarchy. We adopt a simple spatial hierarchy with quadratic
tiles of side length 200, 400, 800, and 1600 meters respec-
tively, i.e., four tiles of xm side length are contained in
the corresponding greater tile of 2xm side length. Conse-
quently, the spatial dimension is structured according to the
hierarchy edge, area 200, area 400, area 800, area 1600, .

Should little travel time data be available at one level in
the hierarchy, one can consider a higher level, e.g., area 400
instead of area 200. Section 5.3 will show how the accuracy
of the characteristic travel time is affected by this aggrega-
tion.

Obtaining characteristics travel times means to relate in-
dividual relative travel times. In this work, the underlying
temporal granularity of one hour is used, i.e., all relative

travel times that were recorded for a specific edge during
the same hour are assigned the same timestamp.

The temporal dimension is structured according to a sim-
ple hierarchy formed by the hour of the day, 1 to 24, with,
e.g., 1 representing the time from 0am to 1am, the day of the
week, 1 (Monday) to 7(Sunday), week, the calendar week, 1
to 52, month, 1 (January) to 12 (December), and year, 2000
- 2003, the years for which tracking data was available to
us.

4.2.2 Facts

The measure that is stored in the fact tables is the character-
istic travel time χ in terms of the triplet {|P |, E[P ], V [P ]}
(cf. Section 3.2).

The fact tables comprise a base fact table EDGE TT and
four derived fact tables, AREA 200 TT, AREA 400 TT,
AREA 800 TT, and AREA 1600 TT, which are aggrega-
tions of EDGE TT implementing the spatial dimension hi-
erarchy. Essentially, the derived fact tables contain the char-
acteristic travel time as computed by the Tiling Method for
the various extents.

Figure 4. Data Warehouse Schema

4.3 Aggregation

While it is rather straightforward of how to com-
pute characteristic travel times for the base fact table
(EDGE TT) based on relative travel times, aggregating
characteristic travel times along the spatial and temporal di-
mensions needs some explanation.

In order to illustrate formally how aggregation can be
performed, let P be a set of n relative travel times, P =
{ρ1, ρ2, . . . , ρn}, that are stored outside the data warehouse.
Also, assume a set of k subsets of P , S = {S1, S2, . . . , Sk},
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Si ⊆ P , 1 ≤ i ≤ k, with the property S1 ∩S2 ∩ . . .∩Sk =
∅. For each subset Si we only store the characteristic travel
time triplet {|Si|, E[Si], V [Si]}.

In the data warehousing context, the formulation of the
Si subsets and their description through three aggregated
measures constitutes a level of summarization. Now, as-
sume that we summarize one level further. Let I =
{1, 2, . . . k}, and assume m disjoint subsets of I , Ji ⊆ I ,
1 ≤ i ≤ m, J1 ∩ J2 ∩ . . . ∩ Jm = ∅. Sets Ji help
us to define the next level of summarization. Let C =
{C1, C2, . . . , Cm}, Ci ⊆ S, 1 ≤ i ≤ m, be a set of subsets
of S such that Ci =

⋃
j∈Ji

Sj . It is clear that the property
C1 ∩ C2 ∩ . . . ∩ Cm = ∅ holds. Set C expresses a higher
level of summarization.

The characteristic travel time χ(C) =
{|Ci|, E[Ci], V [Ci]} for a given level of summariza-
tion can be computed based on the respective characteristic
travel times of a lower level, χ(Sj), without using the
initial set of characteristic travel times P as follows.

|Ci| =
∑

Sj∈Ci

|Sj | (7)

E[Ci] =

∑
Sj∈Ci

|Sj | · E[Sj ]

|Ci| (8)

V [Ci] =

∑
Sj∈Ci

|Sj | (V (Sj) + E[Sj ])

|Ci| − E2[Ci] (9)

While the derivation of cardinality |Ci| and mean E[Ci]
follow from basic statistics, deriving the formula for vari-
ance V [Ci] is more involved and shown in the following.

Using V (Y ) = E(Y 2) − E(Y )2, V [Ci] can be written
as

V [Ci] = E[C2
i ] − E2[Ci] (10)

=

∑
Sj∈Ci

∑
xl∈Sj

x2
l∑

Sj∈Ci
|Sj | − E[Ci]2 (11)

To derive Equation 9 the x2
l term in Equation 11 needs to be

substituted by known values.

V [Sj ] = E[S2
j ] − E2[Sj ] (12)

=

∑
xl∈Sj

x2
l

|Sj | − E2[Sj ] (13)
∑

xl∈Sj

x2
l = |Sj |

(
V [Sj ] + E2[Sj ]

)
(14)

In the context of our specific data warehouse de-
sign, Equations 7, 8, and 9 can be used to populate
the tables AREA 200 TT, AREA 400 TT, AREA 800 TT
and AREA 1600 TT by aggregating over EDGE TT,
AREA 200 TT, AREA 400 TT and AREA 800 TT, re-
spectively. This property is critical for our data warehouse

design of a DTTM since we need to compute aggregated
characteristic travel times along the various temporal and
spatial dimensions.

5 Experimental Evaluation

The objective of this section is to establish, one, the ac-
curacy of the three travel time computation methods, two,
the respective computation costs, and, three, the computa-
tion speed of static vs. dynamic weights.

5.1 Data and Experimental Setup

The data used in the experiments comprises ca. 26000
trajectories that in turn consist of 11 million segments. The
data was collected using GPS vehicle tracking through the
years 2000 to 2003 in Athens, Greece. A positional sam-
pling rate of 30 seconds was used. 4

By using the Incremental map-matching technique as de-
scribed in [1], this trajectory data was mapped onto a vec-
tor road map of Athens comprising 108,000 vertices and
150,000 edges.

To evaluate our approach experimentally, we imple-
mented the DTTM using an Oracle 9i installation. The
database block size was set to 6KB and the database cache
to 192MB. We used [10, 7] as guides for data warehouse
implementation and performance issues.

5.2 Edges and Paths

Three paths of varying length and composition (fre-
quently vs. non-frequently traversed edges) were selected
to conduct the experiments in this section. Table 1 gives
their characteristics in terms of length and percentage of
frequently-traversed edges.

Length (km) FT %
Path 1 2.0 50
Path 2 4.5 42
Path 3 2.2 13

Table 1. Paths used in experimental evalua-
tion

Similar to aggregation, the characteristic travel time for
a path δ, χ(δ), is computed based on the characteristic
travel times χ(li) of all edges li that comprise the path
δ = {l1, . . . , ln} as follows5.

4The vehicle tracking data was supplied by Emphasis Telematics, a co-
operating telematics company and fleet management service provider.

5Do note that cardinality has no meaning in the path context
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χ(δ) = {∅, E[δ], V [δ]} (15)

E[δ] =
∑

li∈δ

E[li] (16)

V [δ] =
1

E[δ]

∑

li∈δ

V [li] · E[li] (17)

The parameter setting with respect to inclusion criteria is
as follows. The temporal inclusion criterion IT is the given
hour of the day and considering all weekdays, e.g., all travel
times collected between 8am and 9am from Monday to Fri-
day. Relating to the DTTM of Section 4, the chosen tempo-
ral granularity of the data is the hour of the day, for days 1 to
5, of all months and years. The chosen spatial inclusion cri-
terion IS depends on the method that is used to compute the
characteristic travel time. For frequently traversed edges,
the Simple Method is used and only travel times relating
to the edge itself are considered. For non-frequently tra-
versed edges either the Tiling Method with respective tile
sizes, or the Neighborhood Method is used. In the latter
case, the expansion measure d = 100m creates a “neigh-
borhood” around the edge that approximately corresponds
to the smallest tile size of the Tiling Method.

5.3 Accuracy

The accuracy of the three travel time computation meth-
ods is evaluated using the three example paths. Figure 5
and Figure 6 show the resulting travel time mean values and
standard deviation (instead of variation).

With the Simple Method expected to produce the most
accurate result, Figure 6 confirms this by showing the low-
est standard deviation for this method. The Tiling Method
produces the result with the second highest accuracy with
a tile size of 200m × 200m (area 200). Interestingly,
the neighborhood method has the lowest accuracy (highest
standard deviation) of all methods. The travel time mean
value plots of Figure 5 reveal that the Simple Method and
the Tiling Method - AREA200 produce similar values with
slightly different accuracy. With the Tiling Method be-
ing able to compensate for missing data and increase the
availability of travel time information, Figure 5 shows that
with the Simple Method, travel times are available until
2pm, 3pm and 5pm, whereas by using the Tiling Method,
they are available until 5pm, 5pm and 7pm for the three
paths, respectively. The path with the smallest percentage
of frequently-traversed edges (Path 3 in Figure 5(c)) has the
biggest advantage in terms of data availability when using
the Tiling Method.

Regardless of the computation method used, both, the
values for mean and standard deviation exhibit similar
trends. A “smoothing effect” is obvious for the Tiling

Method when using large tiles (area 800 and area 1600)
due to the large amount of travel time data available in these
cases. Accordingly, the standard deviation increases.
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dard deviation

5.4 Computation Cost

It is expected that the travel time computation cost varies
heavily with the respective method. To conduct the experi-
ments, the following database queries are used. References
to tables refer to the DTTM schema of Section 4.2.

Simple method. One query involving the base fact table
is sufficient (EDGE TT).

Neighborhood method. A spatial range query is used
to identify neighboring edges. This query is issued to a
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Figure 7. Computation cost - I/O operations

simple table that is not described in the schema of Sec-
tion 4.2 containing only the geometries of the edges and
the EDGE ID. For each such edge, one query to the base
fact table (EDGE TT) is performed.

Tiling Method. The first query is used to identify the tile
the edge belongs to. This relationship is kept in a simple
table implementing the relationship AREA ID, EDGE ID.
Subsequently, for each tile the corresponding fact table
(AREA [200|400|800|1600] TT) is queried.

Figure 7 shows for each example path the computation
cost in terms of number of I/O operations. We also mea-
sured CPU time, but omitted the charts since they showed
the same relative results. As expected, the Neighborhood
Method is the most expensive method. Although supported
by a spatial index, a spatial range query to discover neigh-
boring edges has to be executed for each edge in the path.

The performance of the Simple Method and the Tiling
method are comparable. The Tiling Method performs
best with large tiles. For a path with a small number of
frequently-traversed edges, the Tiling method outperforms
the Simple Method. The Simple Method needs only one
query to the data warehouse, while the Tiling Method per-
forms an additional query to determine the tile the edge
belongs to. However, the dominant factor that greatly af-
fects performance is the query to the fact tables. The Tiling
Method uses fact tables that are aggregations of the base
fact table. Consequently they contain fewer rows (cf. Ta-
ble 2) and this results in an improved performance. Given a
small number of frequently-traversed edges in the path, this
advantage becomes more evident.

5.5 Dynamic vs. Static Speed Types

Section 5.3 established that several computation meth-
ods produce accurate travel times. Considering also their

Fact Table Rows
EDGE TT 5465682
AREA 200 TT 1045765
AREA 400 TT 631212
AREA 800 TT 344196
AREA 1600 TT 171401

Table 2. Fact table sizes

cost, the Tiling Method using a tile size of 400m × 400m
(area 400) turned out to be the best compromise.

To evaluate the feasibility of computing dynamic
weights, the following experiment compares the com-
putation speed of dynamic to static weights. The ex-
periment utilizes a simple schema consisting of only
one relation to compute the static weights. The ta-
ble STATIC TT(EDGE ID, TT) contains random-generated
static weights covering the entire road network (150k en-
tries). Creating an index on EDGE ID allows for an effi-
cient retrieval. In contrast, dynamic weights are retrieved
by means of the DTTM using the Tiling Method and gran-
ularity area 400. The query result comprises the character-
istic travel time for this edge. Using a query load of 1000
queries, edges are randomly selected to compute the static
and dynamic weights. A temporal inclusion criterion was
chosen to only consider weekdays and to select the time of
the day randomly.

CPU (secs) I/O
STATIC 0.002 4.5
DYNAMIC 0.018 32.7

Table 3. Performance measures for speed
type computation

The results in Table 3 show that static weights can be
computed nine times faster than dynamic weights. Still, in
absolute terms, roughly 50 dynamic weights can be com-
puted per second. Moreover, if we consider that for rout-
ing purposes edges are processed in succession, the Tiling
Method allows us in most cases to reuse already computed
values. This makes the costs shown in Table 3 a worst-case
measure. In a practical setting, they will be much lower.

6 Summary and Research Directions

The availability of an accurate weight database is of
crucial importance in the context of routing and naviga-
tion applications. This work proposes and develops a new
data management technique, the Dynamic Travel Time Map
(DTTM), to derive dynamic - in terms of time and space
- weights based on collections of large amounts of vehicle
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tracking data. The DTTM is essentially a spatio-temporal
data warehouse that allows for an arbitrary aggregation of
travel times based on spatial and temporal criteria to effi-
ciently compute characteristic travel times for a road net-
work. Such on-the-fly computed travel times correspond to
dynamic weights. Given that historic travel time informa-
tion is not uniformly available for the entire road network,
we devise two methods, namely the Neighborhood Method
and the Tiling Method, which compensate for this lack of
data such that the DTTM can provide dynamic travel times
for the entire network. An experimental evaluation estab-
lishes the accuracy of travel times computed by the various
methods as well as the cost of computation in terms of num-
ber of I/O operations. Finally, the Tiling Method, which
gives the best compromise between accuracy and computa-
tion cost, is compared to an approach for computing static
weights in terms of computations per second.

Our ongoing and future work are as follows. The dy-
namic speed types need to be delivered to the users requir-
ing routing and navigation solutions. The DTTM we have
proposed serves as underlying structure for any routing al-
gorithm, such as a double-sided memory bounded A∗ as it
is in use now. We are currently investigating an adaptation
of a variant of the A∗ method that uses dynamic weight-
ing [8] in conjunction with a weighted sum of g + h. Fur-
ther, as the D∗ algorithm has only been used in a robot path
planning context, we are adapting this algorithm to be used
for adaptive vehicle routing. The strategy for fetching and
caching data plays a crucial role there. The distinction be-
tween short-distance and long-distance routing then needs
to be taken into account. In this context, the distinction be-
tween on-line and off-line information delivery also needs
to be distinguished and addressed with different techniques.
An essential aspect for providing accurate dynamic weights
is the appropriate selection of historic travel times. To pro-
vide and evaluate such hypothesis, extensive data analysis
is needed possibly in connection with field studies.
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