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Abstract. For the majority of spatiotemporal applications, we assume that the
modeled world is precise and bound. This simplification seemscessary
crude for many environments handling spatial and temporal extents, such as
navigational applications. In this work, we explore fuzziness and uncertainty,
which we subsume under the temueterminacy in the spatiotemporalcon-

text. We first show how the fundamental modeling concepspafial objects
attributes relationshipstime pointstime periodsandeventsare influenced by
indeterminacy and then show how these concepts can be combined. Next, we
focus on thechangeof spatial objects according to their geometry over time.
We outline four scenarios, which identify discrete and continuous change, and
we present how to model indeterminate change. We demonstrate the applicabil-
ity of this proposal by describing the uncertainty related to the movement of
point objects, such as the recording of the whereabouts of taxis.

1 Introduction

Spatiotemporal applications received a lot of attention over the past years. Require:
ments analysis [15], models [4], data types [8], and data structures [14] are some O
the main topics in this area. Although considerable research effort and valuable re-
sultsdo exist, all the studies and approaches are based on the assumption that, in th
spatiotemporal mini-world, objects hagdsp boundaries, relationships among them
are preciselydefined, andiccuratemeasurements of positions lead to error-free rep-
resentations.

However, reality is different. Very often boundaries do not strictly separate objects
but, rather, show a transition between them. Consider the example from an environ-
mental system in which the different soil zones, such as desert and prairie, are no
precisely bound. We encounter a transitionfuazinessbetween them. On the other
hand, in navigational systems, the position of a moving vehicle, although precise in
its nature, might not be exactly known, e.g., car A is in New York. We encounter
uncertainty,.e.,lack of knowledger error about its actual location.

In this paper, we deal witfuzziness and uncertainty as related to spatiotemporal
objects More specifically, we start by pointing out the semantic differences between
the two cases that constituspatiotemporalindeterminacy fuzziness,concerning
“blurry” situations, anduncertainty,expressing the “not-exactly-known” reality. We
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clarify these terms in the spatial and temporal domains, as well as the combined ef
fect, i.e., spatiotemporal fuzziness and uncertainty. We show how the basic spatio-
temporal modeling concepts of spatial objects, attributes, relationships, time points,
time periods, events, and change are influenced by indeterminacy. We provide formal
ways to describe this, while an example demonstrates the applicability of this pro-
posal. A more elaborate discussion with the use of fuzzy set and probability theory in
this area can be found in [16].

There are only few works towards spatiotemporal indeterminacy. [18] focuses on
simple, abstract, spatial and temporal uncertainty concepts and integrates them t
describe spatial updates in a GIS database. [13] discusses spatiotemporal indeterm
nacy for moving objects data. It is, however, limited to point objects and it does not
take temporal errors into account. [2] aims at describing the change of fuzzy features
over time using a raster representation. More work exists towards temporal, e.g., [5]
and spatial indeterminacy, e.qg., [1], [3], [7], [17], [19], [20].

The rest of the paper is organized as follows. Section 2 briefly presents the funda-
mental spatial and temporal concepts involved in the spatiotemporal application do-
main. Section 3 explores the semantics and gives the mathematical expression o
indeterminate temporal concepts. Section 4 deals with indeterminate spatial concepts
Section 5 discusses change as the spatiotemporal concept affected by indeterminac
Finally, Sect. 6 concludes with the future research plans.

2 Spatial and Temporal Concepts

To understand spatiotemporal indeterminacy, it is important to realize the fundamen-
tal spatial, temporal, and spatiotemporal concepts.

Spatiotemporal applications can be categorized based on the type of data the
manage: (a) applications dealing witloving objects, such as navigational, e.g., a
moving “car” on a road network, (b) applications involving objects located in space,
whose characteristics and their position, mhgngein time, e.g., in a cadastral in-
formation system, “landparcels” change positions by changing shape, but they do no
“move,” and (c) applications integrating the above two behaviors, e.g, in environ-
mental applications, “pollution” is measured as@ingphenomenon whicbhanges
properties and shape over time. The following modeling concepts are involved in
environments like the aforementioned.

e Spatial Objectsand theirgeometry Spatial objects are objects whose position in
spacematters e.g., a moving “car.” Many timeapt only the actuabbject’sposition
matters, but itgeometrydoes as well. For example, in a cadastral systerexhet
geometryof a “landparcel” is of importance. The geometry of the position of a spatial
object can be (of type) point, line, region or any combination thereof [10].

» Spatial RelationshipsSpatial relationships relate spatial objects, or more precisely,
the positions of the objects, e.g., two landparcels share common borders.

e Spatial Attributesand theirgeometry Spatial objects have, apart from descriptive
attributes, also spatial attributes, e.g., the “vegetation” of a “landparcel.” Values of
spatial attributes depend on the referenced position and not on the object itself.
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Spatial attributes are also related to geometries in space, as they split space in parts
in whose extents the values of the spatial attributes remain the same; each part of
space has (like, the objects’ positions) geometry (of type) point, line, region or any
combination thereof. For example, the attribute “vegetation” creates partitions of
space with constant vegetation values in each partition, such as “forest”, and
“bushes.” There are two types of spatial attributes, (a) those representing functions
with continuous range, e.g., “temperature.” Here the geometry of the partitions is
point. (b) Those representing functions with discrete range, e.g., “vegetation” is rep-
resented as a set of regions. Not all spatial objects have spatial attributes. For exam-
ple, no spatial attribute is usually assigned to a moving “car,” while various ones, e.g.,
“soil type,” may be assigned to a “landparcel.”

e Time. Many different models of time exist. Some authors even propose taxonomies
of time. In our work we assume a linear ordered time line, isomorphic to a finite sub-
set of the natural numbers. The elements of this set are termed chronons.

® Time points vs. Time periods. Two basic models of time are used to record facts
and information of a database: time point and time period. A time point ¢, is located
during a chronon, while a time period [7, ¢,], with #,, ¢, time points and k < m has a
duration and is defined as a set of chronons.

e FEvents and States. An event occurs at an exact time point, i.e., an event has no
duration. For example a “car crash.”” A state is defined for each chronon in a time
point. It has duration, e.g., a “meeting” takes place from 9 am until 11am.

3 Temporal Indeterminacy

In temporal applications we are interested in events and their occurrence time. How-
ever, sometimes we only know approximately when an event occurred, e.g., a traffic
accident happened between “2 pm and 4 pm.” Next, we present models to represent
indeterminacy in the temporal domain by adapting the model presented in [5].

3.1 Indeterminate Time Points

A time point is determinate if it is known during which chronon it is located. Fig la
shows the determinate point /,, based on the approach that a chronon is longer than a
time point. A time point is indeterminate if it is not known exactly when, but ap-
proximately during which series of chronons it is located. An indeterminate time
point is described by a lower support, an upper support, and a probability function
[5]. The supports are chronons that delimit the location of the time point, e.g., for
time point /, in Fig. 1a, the lower support is 5 and the upper support is 8; the probabil-
ity function shows the likelihood where the time point is located within the range,
e.g., in uniform distribution, it is equally likely for the time point to be located at
chronons 5 to 8.

In the following, we use probability and fuzzy set theory to quantify indetermi-
nacy. The probability mass function, p_, for the indeterminate point x is

p.(i)=P[x=i]:ieN )
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Fig. 1. (a) Determinatel() and indeterminatel j time points, (b) indeterminate time period,
probabilities of bounding time points (solid line-probability density function, dashed line-
probability mass function)

where P[x=i] is the probability that the time point is located during chroindn

our example, assuming uniform distributio®],1, =6] =0.25, the probability outside

the range lower support—upper support is 0. Also, all indeterminate time points are
considered to be independent, i.e.,

Pix=i0y= [=Hx=1xRy=] @)

We can state that all probability distributions are fuzzy sets [16]. By using the prob-
ability mass function as basis we obtain the following membership function

p (1) = Ap, (i) 3)
whereA is an arbitrary scale factor relating the membership grade to the probability.

3.2 Indeterminate Time Periods

A time period is a subset of the time line bound by two time points. Depending on
whether the bounding points are determinate or indeterminate, we term the time pe-
riod accordingly. In Fig. 2hl, andl, denote the indeterminate start and end point of
the period. Possible periods can range from chronon 1 to chronon 8 (max), but at leas
have to range from 3 to 6 (min).

The time period presented in Fig. 1b can also be perceived as having a fuzzy
boundary. Next, we derive a membership functigrfx), returning the degree to
which an arbitrary chrononr is part of the time period. From Fig. 1b, we can de-
duce that chronons 4 and 5 are definitely part of the time pdtiothereas other
chronons might be. Assuming a uniform distribution of the chronons within the time
pointsl, andl,, we can see that if chronon 2 is within the period so has to be chronon
3. Further, if chronon 1 is within, so have to be chronons 2 and 3. The same is true fol
chronons 6, 7, and 8 &f Thus, in three cases chronon 3, in two cases chronon 2, and
in one case chronon 1 is within periddThe probability mass function dfandl, as
shown in Fig. 1b gives the probability for a chronon to b&.iln summing up the
probability from “the outside to the inside,” we obtain a step function, the probability
density function.

To derive the membership functiop, (X) , we have to split the time periddinto
three parts; (1) the “core” (chronons 4 and 5), (2) the intetyalsdl,, and (3) the
outside world. A membership grade of 1 and 0 indicate definite and no membership
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in the time period, respectively. All chronons in the core have a grade of 1. The grade
of the chronons in the intervals is equal to the value of the probability density func-
tion. Formula 4 summarizes the membership function.

1 y incore
p()=0) p(x¥  yo 1 0Ol 4
0 otherwise

4  Spatial Indeterminacy

In the spatial indeterminacy area, [9] states that fuzziness is a property of a geo-
graphic entity. Fuzziness concerns objects that cannot be precisely defined otherwise
[6]. On the other hand, uncertainty results from limitations of the observation, i.e., the
measurement process [9].

4.1 Indeterminate Spatial Objects, Relationships, and Attributes

In the following, we point out the differences between spatial fuzziness and spatial
uncertainty more prominently. Consider the example of the different soil zones, e.g.,
desert and prairie. Each zone is not precisely bound, but, rath&urra situation

exists around their common boundaries. We can identify a location for which we are
sure it is within the desert or the prairie, and we can find a location that is in-between.
Consequently, the boundary between the two soil zorfagag However, for a forest
divided into separate landparcels, we can clearly say what tree belongs to what land
parcel. The boundaries between the land parcelsriageand thusertain

In contrast, let us consider the position of a moving vehicle whose location is not
exactly known, e.g., a car is in New York. This example is characterizedaloik af
knowledgeabout the car’s location. The fact that the car is somewhere is precise.
However, the lack of knowledge we have about its position introdueesrtainty
Without further knowledge, we can only give the probable area the car is in.

These examples indicate that the distinguishing element between fuzzy and non-
fuzzy facts is acrisp boundary i.e., when we cannot clearly say what belongs to
what. The concept of boundary introduces itlterior/exterior notion, i.e., what is
within the boundary and what is outside. Spatial fuzziness occurs (a) in the relation-
ships among spatial objects and (b) in spatial attributes.

On the other hand, the distinguishing element between uncertain and certain fact:
is the lack of, or the error in our knowledgiee., not sufficient knowledge about an
otherwise precise fact. As a result, spatial uncertainty can refer to the degree of
knowledge we have about an object’s position. Uncertainty about an object's position
leads to uncertainty about the spatial relationship among this object and its neighbors
e.g., if the exact boundary of a land parcel is not known, then, the exact relationships
with its neighboring land parcels are not known either. Furthermore, uncertainty can
exist for spatial attributes, when knowledge about them is limited.
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4.2 Indeterminate Geometry

In this section, we examine in what ways fuzziness and uncertainty affect the concept
of geometry. This is essential in defining spatial objects and spatial attributes; spatial
relationships are defined in terms of the geometry of spatial objects.

Points and regions are the most commonly met geometries in spatial applications,
while line, is a special case of a region. Here, we only consider simple geometries,
i.e., points and regions with no holes and no disconnected parts. The following cases
exist: (a) Uncertain point. A point can be crisp and uncertain, e.g., we know the ap-
proximate position of a car and can give probabilities for its location. (b) Fuzzy point.
This case is not applicable, since the concepts of boundary and interior/exterior do not
exist here. (c) Uncertain region. Consider the example of a landparcel with “not-
exactly-known” (missing data) boundaries. (d) Fuzzy region. Since a region is deter-
mined by its boundaries (something is inside/outside, or left/right), a region can be
fuzzy, e.g., consider soil zones, whose boundaries are not crisp, but transitional.

Indeterminate Points. We model Space as a set of points, homeomorphic toIN *. The
exact position of an object with geometry point is determinate, if it can be mapped
onto a single point p € IN*. The position is indeterminate, if it can only be mapped to
a set of points, i.e., the exact position is unknown. A probability function describes
the likelihood for each point to be the position, e.g., uniform distribution tells us that
there is an equal chance for each point. The probability mass function, p_, for the
indeterminate point x is

p, (i) =Plx =i]:ie {INxIN} S)

where P[x =i]is the probability that the position is mapped to point i, with i being a
Cartesian coordinate. The probability that the position is outside the point set is O.
Further, all indeterminate positions are considered to be independent.

What applies to time points, can also be applied to indeterminate points in the spa-
tial context; probability distributions describing positional indeterminacy can always
be interpreted as fuzziness.

Indeterminate Regions. Indeterminate regions comprise uncertain and fuzzy regions.
A region is a part of space bound by a connected set of points, the boundary. It can be
determinate if the boundary points are determinate. Consequently, indeterminate
points bound an indeterminate area. The following example illustrates this point.

Uncertain Regions. Consider a map made up of two discrete regions, A and B, shar-
ing a common boundary. If we repeatedly digitize the map, assuming that our process
introduces errors, we obtain a set of points that lies close to the actual boundary line.
However, there will be more points closer to the actual location of the line than fur-
ther away from it. Due to lack of knowledge, this distribution might take the form of
a normal distribution whose mean is centered at the “true” location of the line. In
Fig. 2a, we show the normal distribution of a particular boundary point. Fig. 2b
shows the probability function in the continuous case.

Analogously, we can describe this uncertain region using a membership function.
To determine this function that returns the grade to which an arbitrary point in space
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Fig. 2. Boundary point probability

belongs to an area, we split the underlying space into three parts: (a) the core of the
area, (b) the boundary region, and (¢) the outside. Consequently, a membership func-
tion for arca A can be specified as follows.

1 ie AAnieB
w,=1Y p(x) ic AnB ©)
0 otherwise

Area B stands for the outside of area A and p(x) is the probability mass function of
a point for being in area A. The argument of the membership function is a point and it
returns a grade for the membership of this point in arca A. The grade is 1 if the point
is a definite member of the arca and O if it is definitely not a member of the arca.
Otherwise the grade is between 1 and O (cf. Fig. 2a).

Fuzzy Regions. The above approach is only feasible when the probability function is
known and simple, i.c., there is one probability function describing the distribution of
all points in the boundary. If there were many probability functions, the membership
function would become too complex to be useful. On the other hand, in some cases,
we do not have “any information at all” about the boundary of a region. Consider
again the transition between soil zones. The boundary exists because of the very na-
ture of a phenomenon that is not crisp and, thus, to give a probability function de-
scribing it is not possible, or does not make sense. This illustrates the critical case for
which fuzziness relieves uncertainty. We can still derive a valid membership function
in assuming a smooth and steady transition from one zone to the other. A membership
function for soil zones, as shown in Fig. 2b, could be characterized by the following
formula (cf. [17]),

1 if (x,y)e A
p (e =41-d,/(d, +d,) if(x,y)e Ar (x,7)¢ B 7
0 otherwise

where d, and d, are the distances from a point (x,y) to the core area of the soil zones
A and B. A formula for a distance d from an arbitrary point given by its coordinates
(x,y) to an area A with the boundary B, is as follows

d((x.y).B,)=min{dist((x.y).(m.n))1 (m.n)e B,} )

where dist(p,q) is the Euclidean distance between two points p,geR”.
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Above, the assumption is that the transition between the soil zones is linear. How-
ever, the effect of other transitions on the membership function would change the
formula describing the membership grade for positions outside the core.

5  Spatiotemporal Indeterminacy

After showing the nature of spatial and temporal indeterminacy as well as the way to
model it, we describe the combined phenomerspatiotemporal indeterminacy
Consider the example of a moving vehicle, it is reasonable to assume that its exten
does not matter in a given application, and, thus, can be reduced to point. To recorc
its movement, we sample the object’s position. We cannot answer queries about ar
object’'s movement at times in-between position samples unless we interpolate the
positions, e.g., linear interpolation.

For areal objects, the change of position includes the change of their centroid anc
shape, which has to be interpolated as well. Consider the indeterminate region exam
ple of an island. Tides have (a) a short-term effect on its coastline, whereas (b) over ¢
longer period of time a general drift can be observed as well. If one is only interested
in the general drift, the tidal effect can be modeled as a fuzzy boundary that change:
over time.

5.1 Spatiotemporal Scenarios and Indeterminate Change

Change, or evolution, is the most important concept in the spatiotemporal context,
and will in the following serve as the basis to evaluate spatiotemporal indeterminacy.
As stated in literature [4], [8], [15], change (a) can either occur on a discrete or on a
continuous basis and (b) can be recorded in time points or in time periods.

Table 1 illustrates the fouthangescenarios encountered in the spatiotemporal
context by using a 3-dimensional representation of the temporal change of geometry
Space %- andy-coordinates in the horizontal plane) and time (time-coordinate in the
vertical direction) are combined to form a three dimensional coordinate system. In the
change scenarios, the elements that can be indeterminate (with respect to an objec
aregeometrytime point,andtime interval We use a point geometry to keep the illus-
trations simple. However, the same change scenarios apply to other geometries. /
discrete change of geometry fro® to G,, is indicated by using an arrow in the
spatial plane as opposed to a line in case of a continuous change. In the following, we
examine each scenario with respect to indeterminacy.

The first caseScenario lin Table 1, is theliscretechange of a geometry recorded
in time points Geometry stays constant for some time and then changes instantly. It is
sampled at constant time intervals The geometry and/or the time point can be
indeterminate.

The second cas&cenario An Table 1, is theontinuouschange of a geometry re-
corded in time pointd/e sample a constantly changing geometry at time integzals
Knowing a geometry only at time points has two implications, (i) recording geome-
tries at points means assessing a momentary situation without inferring anything
about the geometry prior or past the time point. Consequently, (ii) time and space are
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Table 1.Four spatiotemporal change scenarios

Ch_ange Discrete Continuous

Time
1) Geometry is recorded at a time pojr) Geometry is sampled &me points

Point It may or may not differ from the preyiln between time points we have |no
ously recorded one. We do not knpknowledge about the geometry.
when the change occurred.

—
time
¥ de Gy n a:\_\ P
X

Gy

3) Geometry is valid for a givetime|4) Geometry is sampled at time points,
period After a change, a new time péhe starting and end points of the time
Period |riod starts. period. A time period is assigned| a
“change” function that models th
positional change within the period.

14

time o
P 5 b "
" t b G s G,
G
to L= Gy to 1 !
Gy 0

independent; not knowing the exact extent of the geometry does not affect the time
interval and vice versa.

In contrast,Scenarios 3and4 in Table 2, suggest thatchange functiorof the
form C: t - G, exists that determines a geometByfor a time pointt, in an
interval spatially bound by the two geometriésand G,, and temporally bound by
the time intervalT, =[t,t.,] . The change functio@ can be different for every time
interval.

The third caseScenario 3in Table 1, is thaliscretechange of a geometme-
corded in time intervalsThe objective is to “begin” a new interval when a spatial
change occurs, i.e., new time intervals start at the time ggiimtsught,. The geome-
try is constant within a time interval. Spatial and temporal indeterminacy affect each
other. Dealing with indeterminate spatial extents, e.g., uncertainty induced by meas-
urement errors, implies that the time point at which a change occurs cannot be de
tected precisely. On the other hand, having an indeterminate temporal event, e.qg.
clock errors, introduces spatial indeterminacy.

The last and most complex caSeenario 4in Table 1, is theontinuouschange
of a geometryrecorded in time intervalsThis case is based on the fact that for a
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Table 2. Change scenarios without temporal indeterminacy

Geometry G, G,,) Time (t, t,,) Change

C:t - G,, whereG_, depending on the change

Determinate Determinate < . . :
function, is determinate or indeterminafg ()

@ C:t - éx, Whereéx represents a prob-
Indeterminate Determinate ability, P.(i) , or a membership functiory (i)

(b) 1, (i,t)or P(i,t)

given time intervalT, =[t,t,,], there exists a change function that models the trans-
formation from geometnG to G,,. Each of these factors, i.e., (i) the time interval,
(ii) the geometry, and (iii) the change function, can be subject to indeterminacy.

In the simplest case, the geomeyand G,, and the time interval, aredeter-
minate and the change function returns a determine geon@frfor a given time
point t, OT, . Here, we assume that the change function returns the geometry coincid-
ing with the actual movement. Is this not the case, the change fuimtéquolatesin
between the geometrigS to G, and returns an indeterminate geometry. An exam-
ple is to use linear interpolation, i.e., the two geometBg® G,, are considered to
be the endpoints of a line. Section 5.2 gives an elaborate example of a change func
tion for this case.

If we further allowG; and G,,, to beindeterminateour change function would in
any case return an indetermind® . In the following, we use the “~" symbol on top
of the parameter to denote indeterminacy. This means that if a geometry is describe
by a probability or membership function, this very function is subject to change in the
time interval T, .

Following the idea from before, we would have a change function that returns a
probability or membership function for a givép (cf. Table 2(a)). However, by inte-
grating the temporal component, we obtain a spatiotemporal probability or member-
ship function, i.e., a function that changes with time (cf. Table 2(b)).

Until now, we always considered time to be determinate. We use time points to de-
termine the start and the end of the current time intefvabnd to denote the time
point in questiont, . In caset;, andt;,; are indeterminate, we cannot state the begin-
ning and the end of the time interval precisely. Thus, the association of a geometry
(indeterminate or not) to a time point becomes indeterminate. However, this affects
mainly the change function and can be considered in adapting its form. In considering
an indeterminate time interval, we cannot, for any time point in the time interval, give

Table 3.Change scenarios incorporating temporal indeterminacy

Geometry G, G,,) Time (t, t,,) Change

Determinate Indeterminate C:t - éx

(c) C: fx - éx, Where(_:-;X is either a prob-
Indeterminate Indeterminate ability, P, (i) , or a membership functior, (i)

) p(i,t)or P(i,t)
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Fig. 3. Movements and space

movement

a geometry as it would be unaffected by determinate time, but the indeterminate time
contributes some additional indeterminacy. Table 3 adapts the approach shown ir
Table 2 to cover this case.

The central element of spatiotemporal indeterminacy is the change function ma-
nipulating geometries. This function can be seen similar to a morphing algorithm
between different instances of geometries, i.e., point, line, or region. Next, we give an
example illustrating the aforementioned concepts.

5.2 An Example of Use — Tracking Vehicles

Consider the application scenario in which we track the continuous movement of
taxis equipped with GPS devices that transmit their positions to a central computer
using either radio communication links or cellular phones.

Acquiring Movement — Sampling Moving Objects.To record the movement of an
object, we would have to know the position on a continuous basis. However,
practically we can only sample an object’s position, i.e., obtaining the position at
discrete instances of time such as every few seconds.

The solid line in Fig. 3a represents the movement of a point object. Space (x- and
y-axes) and time (t-axis) are combined to form one coordinate system. The dashec
line shows the projection of the movement onto two-dimensional space (x and y co-
ordinates). A first approach to represent the movements of objects would be to store
the position samples and interpolate the in-between positions. The simplest approacl
is to use linear interpolation. The sampled positions become the end points of line
segments of polylines. The movement of an object is represented by an entire polyline
in three-dimensional space. In geometrical terms, the movement of an object is
termed atrajectory (we will use “movement” and “trajectory” interchangeably).
Fig. 3b shows a spatiotemporal space (the cube in solid lines) and several trajectorie
(the solid lines). The top of the cube represents the time of the most recent positior
sample. The wavy-dotted lines symbolize the growth of the cube with time.
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Measurement Error. An error can be introduced by inaccurate measurements. Using
GPS measurements in sampling, the error can be described by a probability function
in our case, a bivariate normal distributi®n
1 _%+f
R(xy) = e 9)
2no

whereo is the standard deviation. For details on this error measure refer to [13].

Which Scenario?In Table 1 of Sect. 5.1, the sampling approach to assess the move-
ment of objects is characterized by scenario 4. Tables 2 and 3 establish a foundatio
for giving a change function in between sampled position. Table 3 gives function

templates in case the times of sampling are not known precisely. However, GPS al-
lows for precise timing and, thus, we neglect the effects of time. In Table 2, Scenario
1 (determinate geometry) gives a function template in case the sampled positions ar
known precisely. GPS measurements are accurate but not precise. Scenario 2 (ind¢
terminate geometry) seems to be a match for our problem. Next we show how to
establish a change function to determine the position of the moving object in-between
sampling. We initially assume precise position samples.

Sampling Uncertainty. Capturing the position using a GPS receiver at regular time
intervals introducesincertainty about the positiarf the object for the in-between the
measurements. In this section, we give a model for the uncertainty introduced by the
sampling, based on the sampling rate and the maximum speed of the object.

The uncertainty of the representation of an object’s movement is affected by the
sampling rate This, in turn, may be set by considering the speed of the object and the
desired maximum distance between consecutive samples. Let us consider the examp
of recording taxi movementés a requirement, the distance between two consecutive
samples should be maximally m0Given themaximum speedf a taxi as 15arh,
we would need to sample the position at least 4.2 times per second. If a taxi move:
slower than its maximum speed, the distance between samples is lesaithan 10

Since we did not have positional measures for the in-between position samples (cf
Fig. 4a, the object could be anywhere in between position samples), the béstits to
the possibilities of where the moving object could have.l@ensidering the trajec-
tory in a time intervalt], t], delimited by consecutive samples, we know two posi-
tions, P, andP,, as well as the object’'s maximum speed(cf. Fig. 4b). If the object
moves at maximum speed from P, and its trajectory is a straight line, its position at
timet_will be on a circle of radius, =v,,(t, +t,) aroundP, (the smaller dotted circle
in Fig. 4b). Thus, the points on the circle represent the maximum distance of the ob-
ject fromP, at timet . If the object’'s speed is lower thap or its trajectory is not a
straight line, the object’s position at tirjewill be somewhere within the area bound
by the circle of radius,.

Similar assumptions can be made on the position of the moving object with respect
to P, andt, to obtain a second circle of radiysThe constraints on the position of the
moving object mean that the object can be anywhere within the intersection of the
two circular areas at time This intersection is shown by the shaded area in Fig. 4b.
We use the terntensfor this area of intersection. We assume a uniform distribution
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Fig. 4. (a) Possible trajectories of a moving object, (b) uncertainty between samples

for the position within the lens, i.e., the object is equally likely anywhere within this
lens shape.

The sampling error at timgfor a particular position can be described by the prob-
ability function of Equation 10, where andr, are the two radii described aboggs
the distance between the measured positigremdP,, andA denotes the area of the
intersection of the two circles.

UA fork+y<?0(x-9°+ ¥< 1

10
0 otherwise (10)

R(xy) ={
To eliminate the radii in favor of the max speed and times, we can substitute
v, (t +t) and v, (t,—t,) for ther, andr, respectively. This function describes the
position of the moving object in between position samples. Thus, this function is an
instance of the function template as described in Scenario 1 of Table 2.

Combining Error Sources — a Global Change FunctionTable 2 gives a template

of a change function that incorporates indeterminate positions. Using our example,
this translates to adapting Equation 10 such that the valugsfaty are not precise

but affected by the measurement error. A mathematical framework suitable for this
problem isKalman filtering[11], which combines various error prone measurements
about the same fact into a single measurement resulting in a smaller error. This
mathematical framework stipulates a method to combine uncertainty to reduce the
overall error. Examples of applying Kalman filtering to the domain of vehicle naviga-
tion are the integration of three independent positioning systems such as dead reckor
ing, map matching, and GPS, to determine the precise position of vehicles [12].

6 Conclusions and Future Work

The work presented in this paper concerns the spatial, temporal, and spatiotempore
indeterminacy, i.e., fuzzy and uncertain phenomena. We first show how the funda-
mental modeling concepts apatial objects attributes relationships time points

time periods and eventsare influenced byndeterminacy Next, we focus on the
change of spatial objects and their geometry in time. We argue that change can occu



Capturing Fuzziness and Uncertainty of Spatiotemporal Objects 125

on a discrete and on a continuous basis, as well as it can be recorded in time point
and time periods. By combining these concepts, we present four different change
scenarios, which are affected by indeterminacy to a various degree. The indetermi-
nacy of change is formalized and combines the spatial and temporal concepts. Finally
the rather general concepts are applied to existing application areas. We discuss ur
certainty existing in the context of moving-point-object applications. We give a
change function to describe the position of moving objects in time, based on posi-
tional samples. The change function is influenced by measurement errors and sam
pling uncertainty.

Although mentioned, the paper does not discuss, directly, indeterminacy as relatec
to relationships among spatial, temporal, or spatiotemporal objects. An extension of
this work towards this direction is essential. Also, the mathematical models we pre-
sented are concrete enough to describe and motivate indeterminacy related to th
temporal, spatial, and spatiotemporal domain. However, to actually implement these
concepts, more detailed mathematical formulas are needed. Finally, in a more gener:
framework, this work points towards the development of spatiotemporal data types
and data structures incorporating indeterminacy.
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