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Abstract. For the majority of spatiotemporal applications, we assume that the 
modeled world is precise and bound. This simplification seems unnecessary 
crude for many environments handling spatial and temporal extents, such as 
navigational applications. In this work, we explore fuzziness and uncertainty, 
which we subsume under the term indeterminacy, in the spatiotemporal con-
text. We first show how the fundamental modeling concepts of spatial objects, 
attributes, relationships, time points, time periods, and events are influenced by 
indeterminacy, and then show how these concepts can be combined. Next, we 
focus on the change of spatial objects according to their geometry over time. 
We outline four scenarios, which identify discrete and continuous change, and 
we present how to model indeterminate change. We demonstrate the applicabil-
ity of this proposal by describing the uncertainty related to the movement of 
point objects, such as the recording of the whereabouts of taxis. 

1 Introduction 

Spatiotemporal applications received a lot of attention over the past years. Require-
ments analysis [15], models [4], data types [8], and data structures [14] are some of 
the main topics in this area. Although considerable research effort and valuable re-
sults do exist, all the studies and approaches are based on the assumption that, in the 
spatiotemporal mini-world, objects have crisp boundaries, relationships among them 
are precisely defined, and accurate measurements of positions lead to error-free rep-
resentations. 

However, reality is different. Very often boundaries do not strictly separate objects 
but, rather, show a transition between them. Consider the example from an environ-
mental system in which the different soil zones, such as desert and prairie, are not 
precisely bound. We encounter a transition, or fuzziness, between them. On the other 
hand, in navigational systems, the position of a moving vehicle, although precise in 
its nature, might not be exactly known, e.g., car A is in New York. We encounter 
uncertainty, i.e., lack of knowledge or error about its actual location.  

In this paper, we deal with fuzziness and uncertainty as related to spatiotemporal 
objects. More specifically, we start by pointing out the semantic differences between 
the two cases that constitute spatiotemporal indeterminacy: fuzziness, concerning 
“blurry” situations, and uncertainty, expressing the “not-exactly-known” reality. We 
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clarify these terms in the spatial and temporal domains, as well as the combined ef-
fect, i.e., spatiotemporal fuzziness and uncertainty. We show how the basic spatio-
temporal modeling concepts of spatial objects, attributes, relationships, time points, 
time periods, events, and change are influenced by indeterminacy. We provide formal 
ways to describe this, while an example demonstrates the applicability of this pro-
posal. A more elaborate discussion with the use of fuzzy set and probability theory in 
this area can be found in [16]. 

There are only few works towards spatiotemporal indeterminacy. [18] focuses on 
simple, abstract, spatial and temporal uncertainty concepts and integrates them to 
describe spatial updates in a GIS database. [13] discusses spatiotemporal indetermi-
nacy for moving objects data. It is, however, limited to point objects and it does not 
take temporal errors into account. [2] aims at describing the change of fuzzy features 
over time using a raster representation. More work exists towards temporal, e.g., [5] 
and spatial indeterminacy, e.g., [1], [3], [7], [17], [19], [20].  

The rest of the paper is organized as follows. Section 2 briefly presents the funda-
mental spatial and temporal concepts involved in the spatiotemporal application do-
main. Section 3 explores the semantics and gives the mathematical expression of 
indeterminate temporal concepts. Section 4 deals with indeterminate spatial concepts. 
Section 5 discusses change as the spatiotemporal concept affected by indeterminacy. 
Finally, Sect. 6 concludes with the future research plans.  

2  Spatial and Temporal Concepts  

To understand spatiotemporal indeterminacy, it is important to realize the fundamen-
tal spatial, temporal, and spatiotemporal concepts.  

Spatiotemporal applications can be categorized based on the type of data they 
manage: (a) applications dealing with moving objects, such as navigational, e.g., a 
moving “car” on a road network, (b) applications involving objects located in space, 
whose characteristics and their position, may change in time, e.g., in a cadastral in-
formation system, “landparcels” change positions by changing shape, but they do not 
“move,” and (c) applications integrating the above two behaviors, e.g, in environ-
mental applications, “pollution” is measured as a moving phenomenon which changes 
properties and shape over time. The following modeling concepts are involved in 
environments like the aforementioned.  
• Spatial Objects and their geometry. Spatial objects are objects whose position in 
space matters, e.g., a moving “car.” Many times, not only the actual object’s position 
matters, but its geometry does as well. For example, in a cadastral system the exact 
geometry of a “landparcel” is of importance. The geometry of the position of a spatial 
object can be (of type) point, line, region or any combination thereof [10]. 
• Spatial Relationships. Spatial relationships relate spatial objects, or more precisely, 
the positions of the objects, e.g., two landparcels share common borders.  
• Spatial Attributes and their geometry. Spatial objects have, apart from descriptive 
attributes, also spatial attributes, e.g., the “vegetation” of a “landparcel.” Values of 
spatial attributes depend on the referenced position and not on the object itself.  
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where [ ]P x i=  is the probability that the time point is located during chronon i. In 
our example, assuming uniform distribution, 2[ 6] 0.25P I = = , the probability outside 
the range lower support–upper support is 0. Also, all indeterminate time points are 
considered to be independent, i.e.,  

 [ ] [ ] [ ]P x i y j P x i P y j= ∧ = = = × =  (2) 

We can state that all probability distributions are fuzzy sets [16]. By using the prob-
ability mass function as basis we obtain the following membership function 

 ( ) ( )x xi p iµ λ=  (3) 

where λ is an arbitrary scale factor relating the membership grade to the probability. 

3.2    Indeterminate Time Periods 

A time period is a subset of the time line bound by two time points. Depending on 
whether the bounding points are determinate or indeterminate, we term the time pe-
riod accordingly. In Fig. 2b, I1 and I2 denote the indeterminate start and end point of 
the period. Possible periods can range from chronon 1 to chronon 8 (max), but at least 
have to range from 3 to 6 (min). 

The time period presented in Fig. 1b can also be perceived as having a fuzzy 
boundary. Next, we derive a membership function,( )T

xµ , returning the degree to 
which an arbitrary chronon x is part of the time period T. From Fig. 1b, we can de-
duce that chronons 4 and 5 are definitely part of the time period T, whereas other 
chronons might be. Assuming a uniform distribution of the chronons within the time 
points I1 and I2, we can see that if chronon 2 is within the period so has to be chronon 
3. Further, if chronon 1 is within, so have to be chronons 2 and 3. The same is true for 
chronons 6, 7, and 8 of I2. Thus, in three cases chronon 3, in two cases chronon 2, and 
in one case chronon 1 is within period T. The probability mass function of I1 and I2 as 
shown in Fig. 1b gives the probability for a chronon to be in T. In summing up the 
probability from “the outside to the inside,” we obtain a step function, the probability 
density function. 

To derive the membership function, ( )T
xµ , we have to split the time period T into 

three parts; (1) the “core” (chronons 4 and 5), (2) the intervals I1 and I2 , and (3) the 
outside world. A membership grade of 1 and 0 indicate definite and no membership 

chronons 

 1      2      3      4      5      6      7      8 

I 1 2 I 

 chronons 

 1      2      3     4     5     6      7      8 

I 1 I 2 

max 
min 

 
(a) (b) 

Fig. 1. (a) Determinate (I1) and indeterminate (I2) time points, (b) indeterminate time period, 
probabilities of bounding time points (solid line-probability density function, dashed line-
probability mass function) 
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in the time period, respectively. All chronons in the core have a grade of 1. The grade 
of the chronons in the intervals is equal to the value of the probability density func-
tion. Formula 4 summarizes the membership function. 

 
21

   1        in core
( ) ( )

   0       otherwise
T

y
x p x y I Iµ = ∈ ∨




∑  (4) 

4    Spatial Indeterminacy 

In the spatial indeterminacy area, [9] states that fuzziness is a property of a geo-
graphic entity. Fuzziness concerns objects that cannot be precisely defined otherwise 
[6]. On the other hand, uncertainty results from limitations of the observation, i.e., the 
measurement process [9]. 

4.1    Indeterminate Spatial Objects, Relationships, and Attributes 

In the following, we point out the differences between spatial fuzziness and spatial 
uncertainty more prominently. Consider the example of the different soil zones, e.g., 
desert and prairie. Each zone is not precisely bound, but, rather, a blurry situation 
exists around their common boundaries. We can identify a location for which we are 
sure it is within the desert or the prairie, and we can find a location that is in-between. 
Consequently, the boundary between the two soil zones is fuzzy. However, for a forest 
divided into separate landparcels, we can clearly say what tree belongs to what land-
parcel. The boundaries between the land parcels are crisp and thus certain.  

In contrast, let us consider the position of a moving vehicle whose location is not 
exactly known, e.g., a car is in New York. This example is characterized by a lack of 
knowledge about the car’s location. The fact that the car is somewhere is precise. 
However, the lack of knowledge we have about its position introduces uncertainty. 
Without further knowledge, we can only give the probable area the car is in. 

These examples indicate that the distinguishing element between fuzzy and non-
fuzzy facts is a crisp boundary, i.e., when we cannot clearly say what belongs to 
what. The concept of boundary introduces the interior/exterior notion, i.e., what is 
within the boundary and what is outside. Spatial fuzziness occurs (a) in the relation-
ships among spatial objects and (b) in spatial attributes.  

On the other hand, the distinguishing element between uncertain and certain facts 
is the lack of, or the error in our knowledge, i.e., not sufficient knowledge about an 
otherwise precise fact. As a result, spatial uncertainty can refer to the degree of 
knowledge we have about an object’s position. Uncertainty about an object's position 
leads to uncertainty about the spatial relationship among this object and its neighbors, 
e.g., if the exact boundary of a land parcel is not known, then, the exact relationships 
with its neighboring land parcels are not known either. Furthermore, uncertainty can 
exist for spatial attributes, when knowledge about them is limited.  
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Above, the assumption is that the transition between the soil zones is linear. How-
ever, the effect of other transitions on the membership function would change the 
formula describing the membership grade for positions outside the core.  

5    Spatiotemporal Indeterminacy 

After showing the nature of spatial and temporal indeterminacy as well as the way to 
model it, we describe the combined phenomenon, spatiotemporal indeterminacy. 
Consider the example of a moving vehicle, it is reasonable to assume that its extent 
does not matter in a given application, and, thus, can be reduced to point. To record 
its movement, we sample the object’s position. We cannot answer queries about an 
object’s movement at times in-between position samples unless we interpolate the 
positions, e.g., linear interpolation. 

For areal objects, the change of position includes the change of their centroid and 
shape, which has to be interpolated as well. Consider the indeterminate region exam-
ple of an island. Tides have (a) a short-term effect on its coastline, whereas (b) over a 
longer period of time a general drift can be observed as well. If one is only interested 
in the general drift, the tidal effect can be modeled as a fuzzy boundary that changes 
over time.  

5.1    Spatiotemporal Scenarios and Indeterminate Change 

Change, or evolution, is the most important concept in the spatiotemporal context, 
and will in the following serve as the basis to evaluate spatiotemporal indeterminacy. 
As stated in literature [4], [8], [15], change (a) can either occur on a discrete or on a 
continuous basis and (b) can be recorded in time points or in time periods.  

Table 1 illustrates the four change scenarios encountered in the spatiotemporal 
context by using a 3-dimensional representation of the temporal change of geometry. 
Space (x- and y-coordinates in the horizontal plane) and time (time-coordinate in the 
vertical direction) are combined to form a three dimensional coordinate system. In the 
change scenarios, the elements that can be indeterminate (with respect to an object) 
are geometry, time point, and time interval. We use a point geometry to keep the illus-
trations simple. However, the same change scenarios apply to other geometries. A 
discrete change of geometry from iG  to 1iG +  is indicated by using an arrow in the 
spatial plane as opposed to a line in case of a continuous change. In the following, we 
examine each scenario with respect to indeterminacy. 

The first case, Scenario 1 in Table 1, is the discrete change of a geometry recorded 
in time points. Geometry stays constant for some time and then changes instantly. It is 
sampled at constant time intervals dt. The geometry and/or the time point can be 
indeterminate.  

The second case, Scenario 2 in Table 1, is the continuous change of a geometry re-
corded in time points. We sample a constantly changing geometry at time intervals dt. 
Knowing a geometry only at time points has two implications, (i) recording geome-
tries at points means assessing a momentary situation without inferring anything 
about the geometry prior or past the time point. Consequently, (ii) time and space are 
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independent; not knowing the exact extent of the geometry does not affect the time 
interval and vice versa.  

In contrast, Scenarios 3 and 4 in Table 2, suggest that a change function of the 
form :  x xC t G→  exists that determines a geometry xG for a time point xt  in an 
interval spatially bound by the two geometries iG and 1iG +  and temporally bound by 
the time interval 1[ , ]i i iT t t += . The change function C can be different for every time 
interval.  

The third case, Scenario 3 in Table 1, is the discrete change of a geometry re-
corded in time intervals. The objective is to “begin” a new interval when a spatial 
change occurs, i.e., new time intervals start at the time points t0 through t4. The geome-
try is constant within a time interval. Spatial and temporal indeterminacy affect each 
other. Dealing with indeterminate spatial extents, e.g., uncertainty induced by meas-
urement errors, implies that the time point at which a change occurs cannot be de-
tected precisely. On the other hand, having an indeterminate temporal event, e.g., 
clock errors, introduces spatial indeterminacy. 

The last and most complex case, Scenario 4 in Table 1, is the continuous change 
of a geometry recorded in time intervals. This case is based on the fact that for a 

Table 1. Four spatiotemporal change scenarios 

Change 
Time 

Discrete Continuous 

Point 

1) Geometry is recorded at a time point. 
It may or may not differ from the previ-
ously recorded one. We do not know 
when the change occurred. 

2) Geometry is sampled at time points. 
In between time points we have no 
knowledge about the geometry. 

 
  

Period 

3) Geometry is valid for a given time 
period. After a change, a new time pe-
riod starts. 

4) Geometry is sampled at time points, 
the starting and end points of the time 
period. A time period is assigned a 
“change” function that models the 
positional change within the period. 
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given time interval 1[ , ]i i iT t t += , there exists a change function that models the trans-
formation from geometry iG to 1iG + . Each of these factors, i.e., (i) the time interval, 
(ii) the geometry, and (iii) the change function, can be subject to indeterminacy. 

In the simplest case, the geometry iG and 1iG +  and the time interval iT  are deter-
minate, and the change function returns a determine geometry xG  for a given time 
point x it T∈ . Here, we assume that the change function returns the geometry coincid-
ing with the actual movement. Is this not the case, the change function interpolates in 
between the geometries iG to 1iG +  and returns an indeterminate geometry. An exam-
ple is to use linear interpolation, i.e., the two geometries iG to 1iG +  are considered to 
be the endpoints of a line. Section 5.2 gives an elaborate example of a change func-
tion for this case. 

If we further allow iG and 1iG +  to be indeterminate, our change function would in 
any case return an indeterminate xG . In the following, we use the “~” symbol on top 
of the parameter to denote indeterminacy. This means that if a geometry is described 
by a probability or membership function, this very function is subject to change in the 
time interval iT .  

Following the idea from before, we would have a change function that returns a 
probability or membership function for a given xt  (cf. Table 2(a)). However, by inte-
grating the temporal component, we obtain a spatiotemporal probability or member-
ship function, i.e., a function that changes with time (cf. Table 2(b)). 

Until now, we always considered time to be determinate. We use time points to de-
termine the start and the end of the current time interval iT , and to denote the time 
point in question, xt . In case it  and 1it +  are indeterminate, we cannot state the begin-
ning and the end of the time interval precisely. Thus, the association of a geometry 
(indeterminate or not) to a time point becomes indeterminate. However, this affects 
mainly the change function and can be considered in adapting its form. In considering 
an indeterminate time interval, we cannot, for any time point in the time interval, give 

Table 2. Change scenarios without temporal indeterminacy 

Geometry (Gi, Gi+1) Time (ti, ti+1) Change 

Determinate Determinate 
:

x x
C t G→ , where 

x
G , depending on the change 

function, is determinate or indeterminate (
x

G� ) 

Indeterminate Determinate 

(a) :
x xC t G→ � , where 

xG�  represents a prob-
ability, ( )

xP i , or a membership function, ( )
x iµ  

(b) ( , )
x i tµ or ( , )

xP i t  

Table 3. Change scenarios incorporating temporal indeterminacy 

Geometry (Gi, Gi+1) Time (ti, ti+1) Change 

Determinate Indeterminate :
x xC t G→ ��  

Indeterminate Indeterminate 

(c) :
x xC t G→ �� , where 

xG�  is either a prob-
ability, ( )

xP i , or a membership function, ( )
x iµ  

(d) ( , )
x i tµ � or ( , )

xP i t�  
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a geometry as it would be unaffected by determinate time, but the indeterminate time 
contributes some additional indeterminacy. Table 3 adapts the approach shown in 
Table 2 to cover this case. 

The central element of spatiotemporal indeterminacy is the change function ma-
nipulating geometries. This function can be seen similar to a morphing algorithm 
between different instances of geometries, i.e., point, line, or region. Next, we give an 
example illustrating the aforementioned concepts. 

5.2 An Example of Use – Tracking Vehicles 

Consider the application scenario in which we track the continuous movement of 
taxis equipped with GPS devices that transmit their positions to a central computer 
using either radio communication links or cellular phones.  

Acquiring Movement – Sampling Moving Objects. To record the movement of an 
object, we would have to know the position on a continuous basis. However, 
practically we can only sample an object’s position, i.e., obtaining the position at 
discrete instances of time such as every few seconds.  

The solid line in Fig. 3a represents the movement of a point object. Space (x- and 
y-axes) and time (t-axis) are combined to form one coordinate system. The dashed 
line shows the projection of the movement onto two-dimensional space (x and y co-
ordinates). A first approach to represent the movements of objects would be to store 
the position samples and interpolate the in-between positions. The simplest approach 
is to use linear interpolation. The sampled positions become the end points of line 
segments of polylines. The movement of an object is represented by an entire polyline 
in three-dimensional space. In geometrical terms, the movement of an object is 
termed a trajectory (we will use “movement” and “trajectory” interchangeably). 
Fig. 3b shows a spatiotemporal space (the cube in solid lines) and several trajectories 
(the solid lines). The top of the cube represents the time of the most recent position 
sample. The wavy-dotted lines symbolize the growth of the cube with time. 

  
(a) (b) 

Fig. 3. Movements and space 
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Measurement Error. An error can be introduced by inaccurate measurements. Using 
GPS measurements in sampling, the error can be described by a probability function, 
in our case, a bivariate normal distribution P1. 

 

2 2

22
1 2

1
( , )  

2

x y

P x y e σ

πσ

+
−

=  (9) 

where σ is the standard deviation. For details on this error measure refer to [13]. 

Which Scenario? In Table 1 of Sect. 5.1, the sampling approach to assess the move-
ment of objects is characterized by scenario 4. Tables 2 and 3 establish a foundation 
for giving a change function in between sampled position. Table 3 gives function 
templates in case the times of sampling are not known precisely. However, GPS al-
lows for precise timing and, thus, we neglect the effects of time. In Table 2, Scenario 
1 (determinate geometry) gives a function template in case the sampled positions are 
known precisely. GPS measurements are accurate but not precise. Scenario 2 (inde-
terminate geometry) seems to be a match for our problem. Next we show how to 
establish a change function to determine the position of the moving object in-between 
sampling. We initially assume precise position samples. 

Sampling Uncertainty. Capturing the position using a GPS receiver at regular time 
intervals introduces uncertainty about the position of the object for the in-between the 
measurements. In this section, we give a model for the uncertainty introduced by the 
sampling, based on the sampling rate and the maximum speed of the object. 

The uncertainty of the representation of an object’s movement is affected by the 
sampling rate. This, in turn, may be set by considering the speed of the object and the 
desired maximum distance between consecutive samples. Let us consider the example 
of recording taxi movements. As a requirement, the distance between two consecutive 
samples should be maximally 10m. Given the maximum speed of a taxi as 150km/h, 
we would need to sample the position at least 4.2 times per second. If a taxi moves 
slower than its maximum speed, the distance between samples is less than 10m.  

Since we did not have positional measures for the in-between position samples (cf. 
Fig. 4a, the object could be anywhere in between position samples), the best is to limit 
the possibilities of where the moving object could have been. Considering the trajec-
tory in a time interval [t1, t2], delimited by consecutive samples, we know two posi-
tions, P1 and P2, as well as the object’s maximum speed, vm (cf. Fig. 4b). If the object 
moves at maximum speed vm from P1 and its trajectory is a straight line, its position at 
time tx will be on a circle of radius 1 1( )m xr v t t= +  around P1 (the smaller dotted circle 
in Fig. 4b). Thus, the points on the circle represent the maximum distance of the ob-
ject from P1 at time tx. If the object’s speed is lower than vm, or its trajectory is not a 
straight line, the object’s position at time tx will be somewhere within the area bound 
by the circle of radius r1.  

Similar assumptions can be made on the position of the moving object with respect 
to P2 and t2 to obtain a second circle of radius r2. The constraints on the position of the 
moving object mean that the object can be anywhere within the intersection of the 
two circular areas at time tx. This intersection is shown by the shaded area in Fig. 4b. 
We use the term lens for this area of intersection. We assume a uniform distribution 
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for the position within the lens, i.e., the object is equally likely anywhere within this 
lens shape.  

The sampling error at time tx for a particular position can be described by the prob-
ability function of Equation 10, where r1 and r2 are the two radii described above, s is 
the distance between the measured positions P1 and P2, and A denotes the area of the 
intersection of the two circles. 

 { 2 2 2 2 2 2

1 2
2

 1/ for ( )( , )
0 otherwise 

A x y r x s y rP x y + ≤ ∧ − + ≤=  (10) 

To eliminate the radii in favor of the max speed and times, we can substitute 

1( )m xv t t+  and 2( )m xv t t−  for the r1 and r2, respectively. This function describes the 
position of the moving object in between position samples. Thus, this function is an 
instance of the function template as described in Scenario 1 of Table 2. 

Combining Error Sources – a Global Change Function. Table 2 gives a template 
of a change function that incorporates indeterminate positions. Using our example, 
this translates to adapting Equation 10 such that the values for x and y are not precise 
but affected by the measurement error. A mathematical framework suitable for this 
problem is Kalman filtering [11], which combines various error prone measurements 
about the same fact into a single measurement resulting in a smaller error. This 
mathematical framework stipulates a method to combine uncertainty to reduce the 
overall error. Examples of applying Kalman filtering to the domain of vehicle naviga-
tion are the integration of three independent positioning systems such as dead reckon-
ing, map matching, and GPS, to determine the precise position of vehicles [12]. 

6   Conclusions and Future Work 

The work presented in this paper concerns the spatial, temporal, and spatiotemporal 
indeterminacy, i.e., fuzzy and uncertain phenomena. We first show how the funda-
mental modeling concepts of spatial objects, attributes, relationships, time points, 
time periods, and events are influenced by indeterminacy. Next, we focus on the 
change of spatial objects and their geometry in time. We argue that change can occur 

 

 
(a) (b) 

Fig. 4. (a) Possible trajectories of a moving object, (b) uncertainty between samples 
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on a discrete and on a continuous basis, as well as it can be recorded in time points 
and time periods. By combining these concepts, we present four different change 
scenarios, which are affected by indeterminacy to a various degree. The indetermi-
nacy of change is formalized and combines the spatial and temporal concepts. Finally, 
the rather general concepts are applied to existing application areas. We discuss un-
certainty existing in the context of moving-point-object applications. We give a 
change function to describe the position of moving objects in time, based on posi-
tional samples. The change function is influenced by measurement errors and sam-
pling uncertainty. 

Although mentioned, the paper does not discuss, directly, indeterminacy as related 
to relationships among spatial, temporal, or spatiotemporal objects. An extension of 
this work towards this direction is essential. Also, the mathematical models we pre-
sented are concrete enough to describe and motivate indeterminacy related to the 
temporal, spatial, and spatiotemporal domain. However, to actually implement these 
concepts, more detailed mathematical formulas are needed. Finally, in a more general 
framework, this work points towards the development of spatiotemporal data types 
and data structures incorporating indeterminacy.  
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