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Abstract

For some spatiotemporal applications, it can be assumed that the modeled world is precise and bounded, and

that also our record of it is precise. While these simplifying assumptions are sufficient in applications like a

land information system, they are unnecessarily crude for many other applications that manage data with

spatial and/or temporal extents, such as navigational applications. This work explores fuzziness and

uncertainty, subsumed under the term indeterminacy, in the spatiotemporal context. To better illustrate the

basic spatiotemporal concepts of change or evolution, it is shown how the fundamental modeling concepts of

spatial objects, attributes, and relationships and time points and periods are influenced by indeterminacy and

how they can be combined. In particular, the focus is on the change of spatial objects and their geometries

across time. Four change scenarios are outlined, which concern discrete versus continuous change and

asynchronous versus synchronous measurement, and it is shown how to model indeterminacy for each. A case

study illustrates the applicability of the paper’s general proposal by describing the uncertainty related to the

management of the movements of point objects, such as the management of vehicle positions in a fleet

management system.

Keywords: spatiotemporal uncertainty, spatiotemporal indeterminacy, spatiotemporal fuzziness, moving

objects, spatiotemporal data, trajectories

1. Introduction

Spatiotemporal applications have received substantial attention over the last years in

both the research- and the application-oriented communities. Requirements analysis [27],

[36], models [11], [38], data types [17], and data structures [23], [24], [29], [31], [32],

[37] are important topics in this area. Although considerable research effort and valuable

results do exist, many studies and proposed approaches are based on the assumption that,
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in the spatiotemporal mini-world, objects have crisp boundaries, relationships among

them are precisely defined; and accurate measurements of positions are assumed that

lead to error-free representations.

However, reality differs; very often boundaries do not strictly separate objects but,

rather, show a transition between them. Consider the example from an environmental

system in which different climate zones, such as desert and prairie, are not precisely

bounded. We encounter a transition, or fuzziness, between them. As another example, in

a navigational system, the position of a moving vehicle, although considered as precise

in nature, might not be known exactly, e.g., the GPS position of car A as of two minutes

ago is known, but the precise, current position is not. This example is characterized by

uncertainty (i.e., lack of knowledge or error) about its actual (current) position.

In this paper, we deal with fuzziness and uncertainty as related to spatiotemporal

objects. More specifically, we start by pointing out the semantic differences between the

two cases that constitute spatiotemporal indeterminacy: fuzziness, concerning Bblurry^
situations, and uncertainty, expressing the Bnot-exactly-known^ reality. Our goal is to

clarify these terms, observe their occurrence, study their impact on the spatial and

temporal domains (i.e., spatial versus temporal fuzziness and uncertainty), as well as the

combined effect, i.e., spatiotemporal fuzziness and uncertainty. We discuss how the

basic spatiotemporal modeling concepts, such as spatial objects, attributes, relationships,

time points, and time periods are influenced by indeterminacy. The approach of Dyreson

et al. [13], [14] on indeterminacy in the temporal domain is used as a vehicle to explore

fuzziness and uncertainty in spatial, temporal, and spatiotemporal applications, as well as

to point out their differences and similarities.

The contribution of this work is as follows. First, we integrate spatial and temporal

indeterminacy in the spatiotemporal context, and, second, we show how both can be

expressed by using any of the two mathematical theories: fuzzy set theory and

probability theory. Third, we discuss the nature of spatiotemporal indeterminacy and

offer a mathematical description of it. Fourth, the applicability of the indeterminacy

proposal is illustrated by examining the moving point object example scenario. Here, we

examine the contributing factors, the measurement error, and the sampling error more

closely. This work is based on previous work on the capture of the fuzziness and

uncertainty of spatiotemporal objects, and on the representation of moving point objects

and the related uncertainty [28], [30].

There are only few works on spatiotemporal indeterminacy. Work by Shibasaki

[35] focuses on simple spatial and temporal uncertainty concepts and integrates them to

describe spatial updates in a GIS database. However, the presented concepts are rather

abstract and cannot immediately be applied. Moreira et al. [26] presents a data model

for moving-point objects that is based on the decomposition of the trajectories of the

objects into sections. In addition, so-called superset and subset semantics are proposed

that aim to address uncertainty issues. A maximum error occurs when linearly ap-

proximating the position of an object in-between samples of its position, and this

error is used in the process of query processing. However, this work is not connected

to any specific application or technological context and thus does not cover the

ranges of errors and the relationships between different error measures. Cheng and
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Molenaar [8] present an approach that aims at describing the change of fuzzy features

over time using a raster representation. Hornsby and Egenhofer [20] consider the

reasoning about the uncertainty of spatiotemporal positions at varying level of detail.

They adjust the level of detail, or granularity, of the data according to a specific task or

application context.

More work exists that concerns indeterminate temporal and spatial information indi-

vidually. Dyreson and Snodgrass [13] take a probabilistic approach in handling

indeterminacy of temporal information. On the other hand, research in the geography

and surveying domain provides ways to describe and handle spatial indeterminacy. The

concept of epsilon distances is introduced by Chrisman [9], to quantify the cartographic

error related to map production. Burrough et al. [6], [7] study spatial uncertainty as

related to soil boundaries. This work uses fuzzy set theory for soil classification.

Worboys [40], [41] has considered spatial indeterminacy as it relates to resolution,

Further, Vazirgiannis [39] uses fuzzy measures to better describe spatial relationships

among determinate spatial objects. Schneider [33], [34] takes a more pragmatic approach

in that he models the spatial world in terms of spatial data types and expresses fuzziness

as related to the data types and the operations on them. Bloch, e.g., [3], focuses on fuzzy

distance measures and functions in the image processing context. Finally, Goodchild and

Gopal [16] offers further readings on works on spatial indeterminacy beyond the

exemplary ones presented here.

The rest of the paper is organized as follows. Section 2 covers a motivating example.

Section 3 proceeds to briefly present the spatial and temporal concepts involved in the

spatiotemporal application domain, explores the semantics, and offers mathematical

formulations of indeterminate temporal and spatial concepts. Next, Section 4 discusses

the spatiotemporal indeterminacy concepts, and Section 5 elaborates on the motivating

example, the moving point objects case, to better illustrate and also to assess the

feasibility of the indeterminacy concepts. Finally, Section 6 concludes with the future

research plans.

2. Motivating exampleVmoving object tracking

We can identify real-world entities whose extents and shapes are not relevant in a given

application context, and, thus, can be modeled as point objects. As an application, con-

sider the tracking of the continuous movements of cars, planes, people, etc. An applica-

tion scenario is the optimization of transportation, especially in densely populated areas.

An example fleet management project [4], conducted by Emphasis Telematics and the

Research and Academic Computer Technology Institute, Greece, aims at designing

what is termed an BIntelligent Fleet Management System.^ In this application, vehicles

equipped with GPS devices transmit their positions to a central computer using either

radio communication links or cellular phones. At the central site, the data is processed

and utilized using data mining techniques.

To precisely capture the movement of such an object, we have to know its position at

all times, i.e., on a continuous basis. However, GPS and telecommunications technol-

INDETERMINACY AND SPATIOTEMPORAL DATA 213



ogies only allow us to sample an object’s position, i.e., to obtain the position at discrete

instances of time, such as every few seconds. A first approach to representing the

movements of objects would be to store the position samples. This would imply that we

could not answer queries about the objects’ movements at times in-between sampled

positions. Rather, to obtain the entire movement, we have to interpolate the positions.

The simplest approach is to use linear interpolation, as opposed to other methods such as

polynomial splines [2]. In case we are dealing with point objects, the sampled positions

then become the end points of line segments, which in turn constitute polylines. The

movement of an object can be represented by a polyline in three-dimensional space (two

spatial dimensions and one temporal dimension). In geometrical terms, the movement of

an object is termed a trajectory (we will use Bmovement^ and Btrajectory^ interchange-

ably) (cf. Figure 1(a)). Figure 1(b) shows the spatiotemporal space (the cube in solid

lines) and several trajectories (the solid lines). The top of the cube represents the time of

the most recent position sample. The wavy-dotted lines at the top symbolize the growth

of the cube with time.

The trajectory data is affected by two sources of indeterminacy, (i) the measurement

error and (ii) the sampling error. The accuracy and thus the quality of a measurement

depends largely on the technique usedVwe will generally assume that GPS is used for

position measurement. The movement is captured by position sampling at regular time

periods. This introduces uncertainty about the position of the object in-between the

measurements. So the accuracy of the representation of an object’s movement is affected

by the frequency with which position samples are taken, the sampling rate. This, in turn,

may be set by considering the speed of the object and the desired maximum distance

between consecutive samples.

Figure 2 illustrates how the movement is sampled at discrete time points (t1 through

t9), approximated by using linear interpolation and how the measurement and the

sampling error affect the representation.

In the following, we will develop a general framework for spatiotemporal indeter-

minacy that allows us to quantify and handle the above uncertainties. We first discuss the

Figure 1. Movements and space.
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temporal and spatial uncertainty, to derive spatiotemporal uncertainty concepts, and then

we finally relate them to the above example.

3. Temporal and spatial concepts and indeterminacy

Several basic spatial and temporal concepts exist that are important in geo-referenced

time-varying application environments. In the following, we briefly introduce these

concepts and discuss how they are affected by indeterminacy and how this can be

expressed mathematically. An introduction to the mathematical concepts used in the

following can be found in Appendix A.

Categorizing spatiotemporal applications based on the type of data they manage

reveals an interplay of temporal and spatial concepts. It is helpful to consider the

following three categories.

(a) Applications dealing with moving objects, such as navigational applications; in

these, objects are capable of continuously changing their positions across time. An

example is a moving Bcar^ on a road network.

(b) Applications involving objects located in space whose characteristics, as well as

their location, may change across time. For example, in a land information system,

Blandparcels^ change their locations by changing their shapes, but they do not Bmove.^
(c) Applications dealing with objects that integrate the above two behaviors; for ex-

ample, in enviromnental applications, Bpollution^ is measured as a moving phenom-

enon with properties and shape that change across time.

Based on these three types of applications, the following sections identify the relevant

temporal and spatial modeling concepts and show how they are affected by inde-

terminacy. Based on these temporal and spatial concepts, spatiotemporal indeterminacy

will be defined in Section 4.

3.1. Temporal concepts

The literature reports on many different models of time. Some authors even propose

taxonomies of time. In our work, we assume a linear ordered time line, isomorphic to a

Figure 2. Overview of the error measures introduced by sampling movement.
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finite subset of the natural numbers. The elements of this set are termed chronons. Based

on this fundamental definition, two basic time constructs are used to record facts and

information of a database, namely time points and time periods. A time point t is located

during a chronon, while a time period ½tk, tm�, with tk, tm being time points and tk e tm has

duration and is defined as the chronons from the chronon during which tk is located to the

chronon during which tm is located.

3.1.1. Indeterminate time points. A time point is determinate if it is known during

which chronon it is located. Figure 3(a) shows a determinate point I1 located during

chronon 2.1 A time point is indeterminate if we do not know exactly during which

chronon among a sequence of chronons it is located. An indeterminate time point is

described by a lower support, an upper support, and a probability function [13]. The

supports are chronons that delimit the location of the time point, e.g., for time point I2 in

Figure 3(b), the lower support is chronon 2 and the upper support is chronon 5, whereas

the probability function tells us about where the time point is located within the range,

e.g., a uniform distribution tells us that it is equally likely for the time point to be located

during each of chronons 2 to 5.

The probability mass function, pt, for the indeterminate time point t is defined for all

chronons i:

pt ið Þ ¼ P t ¼ i½ � : i 2 N� Nf g ð1Þ

Here, P½t = i� is the probability that time point t is located during chronon i. In our

example that assumes a uniform distribution, e.g., P ½I2 = 3� = 0.25, the probabilities for

Figure 3. (a) Determinate (I1) and (b) indeterminate (I2) time points.

Figure 4. (a) Indeterminate time period, (b) probabilities of bounding time points.
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chronons outside the lower support-upper support range are 0. Also, all indeterminate

time points are considered to be independent, i.e.,

P t1 ¼ i ^ t2 ¼ j½ � ¼ P t1 ¼ i½ � � P t2 ¼ j½ � ð2Þ

Given that all probability distributions are fuzzy sets (cf. Appendix A), in using the

probability mass function as basis, we obtain the following membership function:

�t ið Þ ¼ �pt ið Þ ð3Þ

In this formula, � is an arbitrary scale factor that relates the membership grade to the

probability of a point.

3.1.2. Indeterminate time periods. A time period is a subset of the time line bounded

by two time points. Depending on whether the bounding points are determinate or

indeterminate, we term the time period accordingly. In Figure 4(a), I1 and I2 are time

periods that denote the indeterminate start and end point of an indeterminate time period.

Possible periods can range from chronon 1 to chronon 8 (max), but have to range from at

least 3 to at least 6 (min).

The indeterminate time period in Figure 4(a) can also be perceived as having a fuzzy

boundary. In the following, we thus derive a membership function, �T (x), returning the

degree to which an arbitrary chronon x is part of an indeterminate time period T. In

Figure 4(a), it is obvious that at least chronons 3 through 6 are definitely part of time

period T. Considering the time periods I1 and I2, if chronon 2 is within period I1, so is

chronon 3; and if chronon 1 is within, so are chronons 2 and 3. The same holds for

chronons 6, 7, and 8 of I2. Figure 4(b) gives the probability mass functions of I1 and

I2, i.e., the probability for a chronon to be in T. Summing up the probability from Bthe

outside to the inside^ produces the probability density functions.

To derive the membership function �T (t), the time period T has to be split into

three parts; (1) the Bcore^ (chronons 4 and 5), (2) the periods I1 and I2, and (3)

the outside world. A membership grade of 1 and 0 indicate definite and no member-

ship in the time period, respectively. All chronons in the core have a grade of 1. The

Figure 5. Spatial objects, space-depending attributes, and geometries in space.
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grade of the chronons in the periods is equal to the value of the probability density

function. The following formula summarizes the membership function.

�T tð Þ ¼
1 y in coreP
p tð Þ y 2 I1 [ I2

0 otherwise

8
<

:
ð4Þ

For the case of arbitrarily small chronons, the probability density function for a given

subset A � T is computed as Q Að Þ ¼
R

A

p tð Þdt.

3.2. Spatial concepts

Physical objects have spatial locations. In specific application environments, the objects’

position in space matter and then, these objects are called spatial objects, e.g., a moving

Bcar^ in a navigational system is a spatial object. The position is represented in terms of

a geometry, which can be (of type) point, line, region, or any combination thereof [19].

The geometry of the position of a spatial object varies not only with the different type of

physical object, but also with the application context, e.g., a city can be represented as

region but also as a point.

Spatial objects can be related to one another based on their positions in space. A

spatial relationship is a relationship among spatial objects, or more precisely, a rela-

tionship among the position of the objects involved. For example, two landparcels are

neighbors, i.e., they have common borders.

Objects have attributes that characterize them. A spatial object may have, apart from

descriptive attributes and its position, also spatial attributes, e.g., the Bvegetation^ of a

Blandparcel.^ Values of spatial attributes are determined by the object’s position and the

underlying physical space, not on the object itself. If the spatial object Blandparcel^
changes position, then the value of Bvegetation^ will change. Spatial attributes are also

related to geometries in space, as they split space into parts within which the values of

the spatial attributes remain the same; each part of space has (like, the objects’ positions)

geometry (of type) point, line, region, or a combination thereof. Figure 5 shows a spatial

object, two spatial attributes, and related geometries. Note that not all spatial objects

have spatial attributes. This depends on the application requirements. For example,

typically no spatial attribute is assigned to a moving car, while many (e.g., Bvegetation,^
Bsoil type^) are assigned to a landparcel. In geographic information systems, spatial

attributes are also commonly referred to as layers.

3.2.1. Indeterminacy and space. The nature of spatial indeterminacy, i.e., spatial

fuzziness and uncertainty, is an important issue in geography and spatial information

science. Fuzziness is a property of a geographic entity [18]. Furthermore, fuzziness con-

cerns objects that cannot be precisely defined otherwise [15]. On the other hand, uncer-

tainty results from limitations in the observation, i.e., the measurement process [18].

To illustrate the concept of indeterminacy as related to the above concepts, consider

the example of different climate zones, e.g., desert and prairie. Zones do not have precise
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bounds, but, rather, blurry situations exist around the boundaries between zones. We can

identify a location for which there is no precise knowledge whether it is in the desert or

on the prairie, and we can find a location that is in-between. Consequently, the boundary

between the two climate zones is fuzzy. However, for a forest partitioned into land

parcels, we can clearly state which tree belongs to which land parcel. The boundaries

between the land parcels are crisp and, thus, certain.

In contrast, let us consider the position of a moving vehicle whose position is not

exactly known. This example is characterized by a lack of knowledge about the car’s

position. The car has a precise positionVit is our lack of knowledge about the position

that introduces uncertainty. Without further knowledge, we can only give the probable

location of the car.

The above-mentioned examples indicate that the characteristic that distinguishes fuzzy

and non-fuzzy locations is whether or not there is a crisp boundary. The concept of

boundary introduces the interior/exterior notion, i.e., what is within the boundary and

what is outside. Spatial fuzziness occurs (a) in the relationships among spatial objects

and (b) in spatial attributes.

On the other hand, the characteristic that distinguishes uncertain and certain facts is

whether or not there is a lack of, or errors in our knowledge, i.e., we do not have

accurate knowledge about an otherwise precise location. As a result, spatial uncertainty

can refer to the degree of knowledge we have about an object’s position. Uncertainty

about an object’s position leads to uncertainty about the spatial relationship between this

object and its neighbors, e.g., if the exact boundary of a land parcel is not known then the

exact spatial relationships with its neighboring land parcels are not known either.

Furthermore, uncertainty can exist for spatial attributes when knowledge about them is

limited. Table 1 summarizes these results.

3.2.2. Indeterminate geometries. Geometry is essential in defining the concepts of

spatial object and spatial attribute. Further, spatial relationships are defined in terms of

the positions and thus the geometries of spatial objects.

Points, lines, and regions are the most commonly used simple geometries in spatial

applications. For the rest of the paper, we only consider points and regions with no holes

and no disconnected parts, and we regard lines as a special case of regions.

Fuzziness is not applicable to points, since the concept of boundary and consequently

of interior/exterior does not exist here. However, a point can be crisp or uncertain.

Because a region is established by its boundaries (something is inside/outside, or

left/right), a region can be fuzzy, e.g., consider climate zones, whose boundaries are not

Table 1. Spatial concepts and indeterminacy.

Spatial concepts/indeterminacy Fuzziness Uncertainty

Object’s position Y ¾

Relationship among objects ¾ ¾

Spatial attribute ¾ ¾
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crisp, but transitional. Regions can be uncertain. Consider the example of a land parcel

with Bnot-exactly-known^ (missing data) boundaries.

The following two sections focus on the mathematical treatment of the above concepts.

Indeterminate points. We perceive Space as a set of points, homeomorphic to N2: The

position of a point object (i.e., an object with geometry point) is determinate, if it can be

given as a single point p 2 N2: The position is indeterminate if it can only be expressed

as a set of points, i.e., the exact position is unknown. A probability function describes the

likelihood for each point to be the true position, e.g., a uniform distribution tells us that

there is an equal chance for each point. The probability mass function, px, for an

indeterminate point object x is:

px ið Þ ¼ P x ¼ i½ � : i 2 N� Nf g ð5Þ

Here, P½x = i� is the probability that position x is mapped to point i, with i being a

Cartesian coordinate.

As in the case of the time period, the probability that the position is outside the point

set is 0. Further, all indeterminate positions are considered to be independent (cf. Section

3.1.1).

What applies to time points as shown in Section 3.1.1 can be applied to indeterminate

points in the spatial context as well; probability distributions describing positional

indeterminacy can be interpreted as fuzziness.

Indeterminate regions. A region is a part of space bounded by a connected set of

points, the boundary. A region can be determinate if the boundary points are determinate.

Consequently, indeterminate points bound an indeterminate area. This definition is

analogous to Section 3.1.2, which presented the concept of an indeterminate time period.

The following example illustrates this.

Consider a map made up of two discrete regions, A and B, which share a common

boundary. Repeated digitization of the map introduces errors such that we obtain a set of

boundary points that lie more or less close to the actual boundary line. The distribution

of the boundary points might take the form of a normal distribution. In Figure 6(a), we

Figure 6. Boundary point probability.
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show the normal distribution of a particular boundary point. In the continuous case, the

probability function will look as shown in Figure 6(b).

Analogously, an uncertain region can be described using a membership function. The

membership function can be determined using an approach similar to the one for

the temporal case (cf. Section 3.1.2). We split the underlying space into three parts, (i)

the core of the area, (ii) the boundary region, and (iii) the outside. Consequently, a

membership function for area A can be specified as follows.

�A ið Þ ¼
1 i 2 A ^ i =2CP
p xð Þ i 2 A \ C

0 otherwise

8
<

:
ð6Þ

In the above formula, area C stands for the outside of area A and p(x) is the probability

mass function for a point being in area A. The argument of the membership function is a

point and it returns a grade for the membership of this point in area A. The grade is 1 if

the point is a definite member of the area and 0 if it is definitely not a member of the

area. Otherwise the grade ranges between 1 and 0 (cf. Figure 7(a)).

Often a positional probability function is unknown or complex, e.g., there does not

exist a unique probability function that describes the distribution of all points in the

boundary, or we do not have Bany information at all^ about the boundary of a region.

Consider here the transition between soil zones as described in Section 3.2.1. The

boundary reflects the very nature of a phenomenon not being crisp and, thus, to give a

probability function describing it is not possible. This illustrates the critical case for

which fuzziness relieves uncertainty. We can still derive a valid membership function in

assuming a smooth and steady transition from one zone to the other. A membership

function for soil zones, as shown in Figure 7(b), could be characterized by the following

formula [33],

�A x; yð Þ ¼ 1�
1 if x; yð Þ 2 A
da

da þ db

if x; yð Þ =2A ^ x; yð Þ =2B

0 otherwise

8
><

>:
ð7Þ

where da and db are the distances from a point (x, y) to the core area of the soil zones A

and B.

Figure 7. Boundary point probability.
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A formula for a distance d from an arbitrary point given by its coordinates (x, y) to an

area A with the boundary BA is as follows

d x; yð Þ;BAð Þ ¼ min dist x; yð Þ; m; nð Þð Þ m; nð Þ 2 BAjf g ð8Þ

where dist( p, q) is the Euclidean distance between two points p, q 2 R2:
The underlying assumption above is that the transition between the climate zones

is linear. The effects of other transitions on the membership function can be handled

by changing the formula describing the membership grade for positions outside the

core.

Other examples in this case are the boundary problem as experienced in the context of

soil profiles, soil maps, and land evaluation classification [5], [6].

4. Spatiotemporal indeterminacy

Having covered spatial and temporal indeterminacy, we consider the combination,

spatiotemporal indeterminacy. First we use examples and to then focus on the concept

that is fundamental to spatiotemporal scenarios, namely change. Again, probability and

fuzzy set theory are used to model indeterminate change.

To illustrate spatiotemporal indeterminacy, consider the application context of track-

ing the movement of vehicles, e.g., fleet management. The movement of such objects

can be assessed using a sampling approach, i.e., we measure positions as discrete points

in time. A representation that interpolates in-between the position samples is uncertain.

For objects with extent, the change of location includes changes of their shapes, which

have to be interpolated as well. Consider here the example of a coastline that bounds

an island. Two processes influencing the coastline make an island an indeterminate

region. The tides have (i) short-term effects, whereas (ii) over a longer period of time,

a general drift affects the shoreline as well. If one is only interested in the general drift,

the tidal effect can be modeled as a fuzzy boundary that changes with time (general

drift).

Spatiotemporal indeterminacy can have more than one source, i.e., it can be the result

of the combined effects of temporal and spatial indeterminacy. We proceed to consider

possible scenarios for the context of spatiotemporal data.

In spatiotemporal applications, we are interested in spatial objects, relationships,

and attributes over time; we are interested in recording their evolution, or change,

in time. Thus, change is the most important concept in the spatiotemporal context, and

will, in the following, serve as the basis for evaluating spatiotemporal indeterminacy.

As stated in the literature [10], [17], [30], change (i) can either occur on a discrete

or a continuous basis, and (ii) can be recorded in time points or in time periods.

Table 2 illustrates the various change scenarios we can encounter in the spatiotemporal

context.
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4.1. Change scenarios

The four scenarios in Table 2 are illustrated by using a 3-dimensional representation of

the temporal change of geometry. Space (x- and y-coordinates in the horizontal plane)

and time (time-coordinate in the vertical direction) are combined to form a three dimen-

sional coordinate system. We use point geometry to keep the illustrations simple. How-

ever, the same four change scenarios apply to other geometries. To distinguish discrete

from continuous changes, a continuous change of geometry from Gi to Gi + 1 is indicated

by using an arrow in the spatial plane as opposed to a line in case of a discrete change.

In the change scenarios, the elements that can be indeterminate are geometry, time

point, and time period. We consider each of the four change scenarios in Table 2 in turn.

Scenario 1Vdiscrete change of a geometry recorded in time points.

Here, geometry stays constant for some time and then changes instantly. The geometry

is sampled at constant time periods dt. The geometry and/or the time point can be

indeterminate.

Scenario 2Vcontinuous change of a geometry recorded in time points.

Here, we sample a constantly changing geometry at time periods dt. Knowing a geometry

only at discrete time points has two implications, (i) recording geometries at time points

means assessing a momentary situation without inferring anything about the geometry

prior to or after the time point. Consequently, (ii) time and space are independent; not

knowing the exact extent of the geometry does not affect the time period and vice versa.

In contrast, Scenarios 3 and 4 in Table 2 suggest that a change function of the form

C: tx Y Gx exists that determines a geometry Gx for a time point tx for a given time

period Ti = ½ti, ti + 1� with the respective, known geometries Gi and Gi + 1. The change

function C may be different for every time period.

Scenario 3Vdiscrete change of a geometry recorded in time periods.

The objective is to Bbegin^ a new time period when a spatial change occurs, i.e., a new

time periods start at the time points t0 through t4 in Scenario 3. The geometry is constant

within a time period. In this case, spatial and temporal indeterminacy affect each other.

Dealing with indeterminate spatial extents, e.g., measurement errors, implies that the

time point at which a change occurs cannot be detected precisely. On the other hand,

having an indeterminate temporal aspect, e.g., clock errors, introduces spatial

indeterminacy.

Scenario 4Vcontinuous change of a geometry recorded in time periods.

This case is based on the fact that for a given time period Ti = ½ti, ti + 1�, there exists a

change function that models the transformation from geometry Gi to geometry Gi + 1.

Each of these factors, i.e., (i) the time period, (ii) the geometry, and (iii) the change

function, can be subject to indeterminacy.

In the simplest case, the geometries Gi and Gi + 1 and the time period Ti are deter-

minate, and the change function returns a determine geometry Gx for a given time point

tx 2 Ti. Here, we assume that the change function returns the geometry coinciding with

the actual movement. Is this not the case, the change function interpolates in-between
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the geometries Gi and Gi + 1 and returns an indeterminate geometry. An example is to use

linear interpolation, i.e., the two geometries Gi and Gi + 1 are considered to be the

endpoints of a line.

If we further allow Gi and Gi + 1 to be indeterminate, our change function would in

any case return an indeterminate Gx. In the following, we use the Bõ^ symbol on

top of the parameter to denote indeterminacy. This means that if geometry is described

by a probability or membership function, this very function is subject to change in the

time period Ti. Following the idea from before, we would have a change function that

returns a probability or membership function for a given tx (cf. Table 3(a)). However, by

integrating the temporal component, we obtain a spatiotemporal probability or member-

ship function, i.e., a function that changes with time. Table 3 summarizes this approach.

So far we always considered time to be determinate. We use time points to determine

the start and the end of the current time period Ti, and to denote the time point tx in

question. In case ti and ti + 1 are indeterminate, we cannot state the precise beginning and

end of the time period. Thus, the association of a geometry (indeterminate or not) to a

time point becomes indeterminate. However, this affects mainly the change function and

can be considered in adapting its form. The indeterminate time contributes some

additional indeterminacy as to the determination of Gx for a given tx. Table 4 adapts the

approach shown in Table 3 to accommodate this aspect.

4.2. Summary

The following observations apply to the four spatiotemporal change scenarios of Table 2.

Change recorded in time points versus time periods differs in that in case of the

former, we do not make any assumptions about the position of the geometry in-between

Table 4. Change scenarios incorporating temporal indeterminacy.

Geometry (Gi, Gi + 1) Time (ti, ti + 1) Change

Determinate Indeterminate C : etx ! eGx

Indeterminate Indeterminate (c) C : etx ! eGx, where eGx is either a probability function,

Px(i), or a membership function, �x(i)

(d) �x i; et Þð or Px i; et Þð

Table 3. Change scenarios without temporal indeterminacy.

Geometry (Gi, Gi + 1 ) Time (ti , ti + 1 ) Change

Determinate Determinate C: tx Y Gx, where Gx, depending on the change function,

is determinate or indeterminate eGx

� �

Indeterminate Determinate (a) C : tx ! eGx; where eGx represents either a probability

function, Px(i), or a membership function, �x(i)

(b) �x(i, t) or Px(i, t)
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recordings. For the latter case, additional knowledge is available that allows for an in-

terpolation of the position samples in between measurements.

Recording change in time periods versus time points can be also referred to as

synchronous versus asynchronous positional sampling. Considering the moving object

context, in the synchronous case, the object transmits a new position only in case the old

position and the respective change function do not allow us to derive the current position

of the object, i.e., the moving object changed its speed, it turned, etc. Asynchronous

sampling translates to measuring the object’s position at fixed time intervals, e.g., every

30 seconds. Synchronous sampling, in contrast to asynchronous sampling, requires some

object intelligence to determine when to measure the position.

The central element of spatiotemporal indeterminacy is the change function that

manipulates geometries. Since the geometry of a location can be of type point, line, or

region, the change function can be seen as a morphing algorithm that maps between

different instances of geometries. The following section illustrates this approach for a

particular case. We describe how to represent the movements of vehicles and how to

quantify the errors associated with the chosen representation.

5. A spatiotemporal indeterminacy scenarioVthe moving point

object case continued

Continuing the moving object case from Section 2, the following sections give details on

how to quantify and describe the measurement and the sampling errors.

5.1. Measurement error

An error can be introduced by inaccurate measurements. The accuracy and thus the

quality of the measurement depends largely on the technique used. This work assumes

that GPS is used for the measurement of positions.

Two assumptions are generally made when talking about GPS measurement accuracy.

First, the error distribution, i.e., the error in each of the three dimensions and the error in

time, is assumed to be Gaussian. Second, we can assume that the horizontal error dis-

tribution, i.e., the distribution in the x-y plane, is circular [25].

The error in a positional GPS measurement can be described by the probability

function of Equation (9). The probability function is composed of two normal distri-

butions in the two respective spatial dimensions. The mean of the distribution is the

origin of the coordinate system. Figure 8 visualizes the error distribution. In addition to

the mean, the standard deviation, s, is a characteristic parameter of a normal distribution.

Within the range of Ts of the mean, in a bivariate normal distribution (2-dimensional),

39.35% of the probability is concentrated.

P1 x; yð Þ ¼ 1

2��2
e

x 2 þ y 2

2�2 ð9Þ
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A typical GPS receiver used in vehicle navigation systems has an error of 2 m (equal to

1s). This measure refers to the standard deviation of a bivariate normal distribution

centered at the receiver’s true antenna position.

5.1.1. Which case? In the schema of Section 4, the sampling approach to capture the

movement of an object is characterized by Scenario 4. Tables 3 and 4 establish a

foundation for obtaining a change function in-between measured positions. Table 4 gives

function templates in case the times of sampling are not known precisely. However, GPS

allows for highly precise timing and, thus, we neglect the effect of time. In Table 3, Case

1 gives a function template that applies when the sampled positions are known precisely.

As we just saw, GPS measurements are accurate, but not precise. Thus, Case 2 of this

table matches our problem. The following section shows how to establish a change

function to determine the position of the moving object in-between sampling. We

initially assume precise position samples.

5.2. Sampling error

The movement is captured by measuring the object’s position using a GPS receiver at

regular time periods. Interpolating the movement in-between samples introduces an

additional error in the representation of the movement. This section gives a model for the

uncertainty introduced by this sampling error based on the sampling rate and the

maximum speed of the object.

The uncertainty of the representation of an object’s movement is affected by the

frequency with which position measurements are made, the sampling rate. This, in turn,

may be set by considering the speed of the object and the desired maximum distance

between consecutive measurements. Let us consider an example that records the move-

ments of school buses.2

5.2.1. Example 1. As a requirement to the application, the distance between two

consecutive samples should be maximally 10 m. If the maximum speed of a bus is

120 km/h, this means that the position needs to be sampled at least 3.3 times per second.

Figure 8. Positional error in the GPS.
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If a bus moves slower than its maximum speed, the distance between samples is less

than 10 m. How do the position samples resemble the true movement of the object?

Consider the three trajectories shown in Figure 9(a). Each is possible given the three

measured positions P1 through P3. However, by just Blooking^ at the three positions, one

would assume that the straight line best resembles the actual trajectory of the object.

Since we did not have measurements in-between position samples, the best we can

do is to limit the possibilities of where the moving object could have been. We constrain

the trajectory of the object by what we know about the object’s actual movement. Con-

sidering the trajectory in a time period ½t1, t2�, delimited by consecutive samples, we know

two positions, P1 and P2, as well as the object’s maximum speed, vm (cf. Figure 9(b)). If

the object moves at maximum speed vm from P1 and its trajectory is a straight line,

its position at time tx will be on a circle of radius r1 = vm (tx j t1) around P1 (the

smaller dotted circle in Figure 9(b)). Thus, the points on the circle represent the furthest

away from P1 the object can get at time tx. If the object’s speed is lower than vm, or its

trajectory is not a straight line, the object’s position at time tx will be somewhere within

the area bounded by the circle of radius r1. Similar assumptions can be made on the position

of the moving object with respect to P2 and t2 to obtain a second circle of radius r2.

These constraints on the position of the moving object mean that the object can be

anywhere within the intersection of the two circular areas at time tx. This intersection

is shown by the shaded area in Figure 9(b). We use the term lens for this area of

intersection. Since we do not have any further information, we assume a uniform dis-

tribution for the position within the lens, i.e., the object is equally likely anywhere within

this lens shape.

Thus, the sampling error at time tx for a particular position can be described by the

probability function shown in Equation (10), where r1 and r2 are the two radii described

above, s is the distance between the measured positions P1 and P2, and A denotes the

area of the intersection of the two circles.

P2 x; yð Þ ¼
1

A
for x2 þ y2 � r 2

1 ^ x� sð Þ2 þ y2 � r 2
2

0 otherwise

(

ð10Þ

Figure 9. Position samples: (a) possible trajectories and (b) associated uncertainty.
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Substituting vm(t1 + tx) and vm(t2 j tx) for the radii r1 and r2, respectively, the probability

function shown in Equation (11) results. Its parameters are described in Table 5.

P2 x; yð Þ ¼
1

A
for x2 þ y2 � vm t1 þ txð Þð Þ2 ^ x� sð Þ2 þ y2 � vm t2 � txð Þð Þ2

0 otherwise

(

ð11Þ

5.2.2. Which case? Equations (10) and (11) describe the position of the moving

object in-between position samples. Thus, this function is an instance of the function

template as described in Case 1 of Table 3.

5.3. Combination of error sourcesVa global change function

Table 3 gives a framework for change functions that incorporates indeterminate

positions. In the context of this example, this translates to adapting Equation (10) such

that the values for x and y are not precise, but are affected by the measurement error as

described in Section 5.1. Although it seems trivial at first, this requires some heavy

mathematical manipulation that is beyond the scope of this work.

A general mathematical framework suitable for this problem is Kalman filtering [21],

which is a method for combining various error-prone measurements about the same fact

into a single measurement with a smaller error. This mathematical framework stipulates

a method of how to combine uncertainties to reduce the overall error. Assuming the

measurements refer to position samples of a continuous movement in time, we can use

Kalman smoothing to determine the positions at times that are in between the measured

ones [1].

Examples of applying Kalman filtering to the domain of vehicle navigation include the

integration of three independent positioning systems such as dead reckoning, map

matching, and GPS, to determine the precise positions of moving vehicles [22].

6. Conclusions and future work

The work presented in this paper concerns spatial, temporal, and spatiotemporal inde-

terminacy. The term indeterminacy subsumes fuzziness that captures inherent impreci-

Table 5. Parameters of the probability function, P2, describing the sampling error.

vm maximum speed of the moving object

tx time for which the error distribution is computed

t1 time of the first measured position

t2 time of the second measured position

s distance between the two positions, i.e., the length of the line segment

A lens area, i.e., the area of the intersection of the two circles
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sion and uncertainty that captures the lack of precise information. Fuzziness and un-

certainty are first explored in the temporal context, where examples and definitions are

given for indeterminate time points and time periods. The relationship between fuzzy set

theory and probability theory is described in the temporal context, while both concepts

are used to describe temporal indeterminacy. Next, spatial objects, relationships, and

attributes are considered. In particular, this work explores indeterminacy in relation

to geometric types, namely point and region, that are inherent to spatial objects and

attributes. Again, the mathematical concepts of fuzzy set theory and probability theory

are used to describe these phenomena; their differences and similarities are explored in

the spatial context. Furthermore, the concept of change is introduced as the key spatio-

temporal concept. Change can occur in discrete steps and on a continuous basis, and it can

be recorded using regular sampling or in a change-driven fashion. Combining these

concepts leads to four different change scenarios, which are affected by indeterminacy

differently. The indeterminacy of change is formalized and combines the spatial and

temporal concepts.

Finally, the rather general concepts are applied to an existing application area. We

discuss uncertainty in the context of applications that involve moving-point objects. We

give a change function that describes the positions of moving objects over time based on

position samples. The change function is influenced by measurement and sampling errors.

The framework put forward in this paper is currently being applied in an extension to

an existing fleet management system that will support spatiotemporal data analysis,

including the study of certain operations on indeterminate data.

Future research plans include indeterminacy with respect to relationships among spa-

tial, temporal, or spatiotemporal objects. Next, while the mathematical models presented

are concrete enough to express the indeterminacy related to the temporal, spatial, and

spatiotemporal domain, more detailed mathematical formulas are needed for specific

applications. Finally, this work may be seen as a step towards the development of a more

general framework of spatiotemporal data types and data structures that incorporate

indeterminacy.
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Appendix A: An introduction to inderterminacy measures

This section introduces the mathematical background to be able to express fuzziness and

uncertainty in spatial, temporal, and spatiotemporal concepts. More specifically, fuzzy set

theory and probability theory are covered.
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A.1 Fuzzy set theory

Fuzzy set theory [42] is an extension and generalization to Boolean set theory. Let X be a

classical (crisp) set of objects, called the universe. Membership in a classical subset A of

X can be described by the characteristic function �A: X Y {0, 1} such that for all x 2 X

the following holds.

�A xð Þ ¼ 1 x 2 A

0 x =2A

�

ð12Þ

This function discriminates sharply between the members and non-members of set A.

We can generalize this function by mapping the elements of set X not to the set {0, 1},

but rather to the real interval ½0, 1�. Now, elements have no strict membership, but rather

have a degree of membership in the set in question. Larger values indicate higher grades

of membership. With X as the universe, the membership function

� ~AA : X ! 0; 1½ � ð13Þ

returns for a given element of X the degree to which it belongs to the fuzzy set. ~AA

~AA ¼ x; � ~AA xð Þ
� �

x 2 Xj
� �

ð14Þ

All elements of X are evaluated towards a membership in ~AA: Those elements that do

Bnot at all^ belong to the set have as degree of membership � ~AA xð Þ ¼ 0; whereas the

elements that Btotally^ belong to the set have as degree of membership � ~AA xð Þ ¼ 1:
Although fuzzy set theory seems sound and simple, it is difficult to actually apply it. A

key problem is how to choose an appropriate membership function.

A.2 Probability theory

With X again being the universe, the probability measure P is a mapping 2X Y [0, 1] that

assigns a number P(A) to each subset A of X, and satisfies the Kolmogorov axioms [12]:

P Xð Þ ¼ 1; P ;ð Þ ¼ 0

P A [ Bð Þ ¼ P Að Þ þ P Bð Þ; iff A \ B ¼;;
ð15Þ

Here, P(A) is the probability that an ill-known single-valued variable y ranging on X hits

the fixed well-known set A. Given the case where the underlying domain of the universe

X is discrete, the probability mass function p(x) = P({x}) returns the probability for the

single element x 2 X. The probability density function returns the probability

Q Að Þ ¼
R

A

p xð Þdx for a given subset A 2 X.
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A.3 Differences between fuzzy set and probability theory

Very often, fuzzy values are misunderstood to be probabilities, or fuzzy set theory is

misunderstood as a new way to handle probabilities. These are misconceptions, since

additivity is a minimum requirement of probabilities, i.e., all probabilities for al-

ternative events have to sum up to one. This is not the case for membership grades.

In mathematical terms, the membership function � ~AA xð Þ is similar to P({x}) = p(x),

except for the above condition,
P

x2X p xð Þ ¼ 1 must hold, while this is not true for

� ~AA:
Further, a membership grade is defined only for the individual elements of a set, not

for subsets. Probabilities can be given for any subset, i.e., also one element. However, all

probability distributions are fuzzy sets. As fuzzy sets and logic generalize Boolean sets

and logic, they also generalize probabilities.

In revisiting the indeterminate time point (cf. Figure 3), we can see that to describe the

membership grade of a chronon with respect to a particular point, with 1 representing a

certain membership, each of the chronons would have a membership grade of 1/4, which

is equal to the probability that each of the chronons is the actual time point. Since the

membership grade is equal to the probability, they add up to 1. However, in the case of

a time period bound by indeterminate time points, we have regions that have a mem-

bership grade of 1 as well, i.e., they do not add up to 1. In this case, the membership

function is not the Bsame^ as the probability function, but the latter is used to derive

the former.

Probability functions are used to describe uncertain positions. Consider here an

unknown position, whose positional probability is scattered over a region, i.e., a set of

points. If we state that the position is at one of the points of the region, then this

statement is true, since all the probabilities scattered over the region add up to one. In

other words, probability can also be defined for a set of points as opposed to only one

point. On the other hand, if we, instead of giving a probability for a point, devise a

membership grade, the sum of all membership grades over all the points in the region

has no clear meaning. It is merely an arbitrary number. The membership grade of a

point tells us about Bthe belief ’’ that a point belongs to a particular set, e.g., the soil

type desert.

Probabilistic concepts are related to what is the most likely position, i.e., where is

the border for what is in and what is out. Fuzzy concepts are related to what belongs

to what extent to a given set, i.e., what is Bin^ and what is Bout.^ Fuzzy concepts refer

to relative aspects whereas probabilistic concepts refer to absolute aspects of a spatial

scenario.

Notes

1. Dyreson and Snodgrass [14] state that we could either assume that chronons are the same size as time points,

or that chronons are much bigger than time points, i.e., every chronon contains a large (possibly infinite)

number of points. Assuming that chronons and time points are the same, we have to adopt the discrete model
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of time. If the model of time were then continuous or dense, we would be left with an infinite number of

chronons. Since the model of time can possibly be continuous, we have to assume that chronons are much

bigger than time points.

2. This scenario is currently under investigation in collaboration with a company providing fleet management

solutions.
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