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Abstract. Spatiotemporal applications, such as fleet management and
air traffic control, involving continuously moving objects are increasingly
at the focus of research efforts. The representation of the continuously
changing positions of the objects is fundamentally important in these ap-
plications. This paper reports on on-going research in the representation
of the positions of moving-point objects. More specifically, object posi-
tions are sampled using the Global Positioning System, and interpolation
is applied to determine positions in-between the samples. Special atten-
tion is given in the representation to the quantification of the position
uncertainty introduced by the sampling technique and the interpolation.
In addition, the paper considers the use for query processing of the pro-
posed representation in conjunction with indexing. It is demonstrated
how queries involving uncertainty may be answered using the standard
filter-and-refine approach known from spatial query processing.

1 Introduction

A relatively new research area, spatiotemporal databases concerns the man-
agement of objects with spatiotemporal extents, and real-world objects with
continuously changing spatial extents are attracting substantial attention. The
variety of applications suggests that there is not just one prototypical type of
spatiotemporal application.

Spatiotemporal applications may be distinguished based on the data they
manage, which may pertain to the past, the present, and the future, or a com-
bination of these. For example, applications managing past data often conduct
analyses of movements over time, answering queries such as, “What were the
movements of the Vikings in the North Sea between year 1000 and year 1200?”
Applications dealing with present and future data capture the current spatial ex-
tents of objects in the database and typically make predictions about the future
extents of the objects. Sample queries include, “What is the position of flight
SAS 286?” and “Where will flight SAS 286 be in 20 minutes?” Next, a specific
type of application concerns real-world objects that move continuously and dis-
regards the spatial extents of the objects, representing instead their positions
as points. Candidate applications include fleet management, air traffic control,
military command-and-control systems, and people tracking. This paper focuses
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on the representation of the past and present positions of such moving-point
objects.

Fundamental issues in these applications include the acquisition and repre-
sentation of the movements of objects, including the inherent imprecision in the
representation. For example, when representing the positions of vehicles based on
sampling, the sampled positions are inherently imprecise, as are the interpolated
positions in-between the samples. As a result, the record of the movements of
objects as stored in the database differs from the actual movement. The impreci-
sions due to the measurements and caused by the use of sampling are inherently
quite different. It is highly relevant to understand the nature of these impreci-
sions because this makes it possible to decide on their relative importance.

This paper’s contributions are three-fold. First, it offers a proposal for repre-
senting the positions of moving-point objects in databases. Second, it quantifies
the imprecisions in the proposed representation. The representation is modular,
allowing the imprecision to be captured or not, depending on the application
requirements. Third, the paper illustrates how the representation may be used
in conjunction with indices to answer queries involving uncertainty. The two-
step filter-and-refinement process known from spatial query processing is used
together with error information.

Past database research has focussed on spatiotemporal applications where
only the present and future positions of moving-point objects are relevant. In
the context of applications that predict the movements of objects based on their
current positions, speeds, and directions, Wolfson et al. (16) address position
update policies and the imprecision involved in the database-representation of
the positions. Next, Moreira et al. (9) present a data model for moving-point
objects that is based on the decomposition of the trajectories of the objects
into sections. In addition, so-called superset and subset semantics are proposed
that aim to address uncertainty issues. A maximum error occurs when linearly
approximating the movement of an object in-between samples, and this error
is used in the process of query processing. However, this work is not connected
to any specific application or technological context and thus does not cover the
ranges of errors and the relationships between different error measures. The
query processing aspects also do not consider the availability of indices. Güting
et al. (5) present a comprehensive framework of abstract data types for moving
objects. This work, however, does not address representation issues, nor does it
accommodate uncertainty.

The outline of the paper is as follows. Section 2 presents an application sce-
nario and describes a particular technological context for the application, the
Global Positioning System. Section 3 proceeds to describe, quantify, and relate
the measurement and the sampling errors in the context of the application sce-
nario and accommodates also error information in the representation. This sets
the stage for a proposal for a database representation for moving-point objects,
presented in Section 4. Section 5 considers the utilization of this representation in
query processing using indices. Finally, Section 6 concludes and offers directions
for future research.
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2 An Application Scenario—GPS-Based Fleet
Management

This section presents a sample spatiotemporal application scenario, fleet man-
agement, and briefly introduces the Global Positioning System (GPS), the tech-
nology that is assumed used for sampling the positions of moving objects.

2.1 Fleet Management

The optimization of transportation, especially in highly populated areas, is a very
challenging task that may be supported by an information system. An example
fleet management project, conducted by the Department of Transportation of
the State of California, Caltrans (3), aims to design what is termed the Advanced
Transportation System. In this application, vehicles equipped with GPS devices
transmit their positions to a central computer using either radio communication
links or cellular phones. At the central site, the data is processed and utilized.
Example queries occurring in such an application are as follows.

– Which taxi is closest to customer A?
– What is optimal taxi distribution over the area (somewhat related to pickups

per area)?
– Compute the optimal route for a ride, considering road characteristics such

as the actual and theoretical speed limits, congestions, accidents, etc.

Taking uncertainty into account, more sophisticated queries may be formulated.

– Which taxis were, with a 50% probability, within 100 meters of the Ritz
hotel at 14.20 on April 22, 1999?

– How likely is it that taxi 1234 had visual contact with (was within 100 meters
of) taxi 4321 between 9.00 and 13.00 on April 22, 1999?

– Which taxis were with 50% probability in Central Park at 10.00 on April
22, 1999.

2.2 Global Positioning System

The Global Positioning System is able to determine exact positions on Earth
anytime, in any weather, and anywhere. The system consists of 24 satellites that
orbit Earth at 20000 km. The satellites transmit signals that can be detected
by GPS receivers, which then are able to determine their locations with great
precision.

The principle behind the GPS is the measurement of the distances between
a receiver and several satellites. A total of four distances, and thus signals from
four satellites, are needed to solve a set of four equations that expresses the
latitude, longitude, height, and time (Magellan Corporation 8). The distance
from the satellite to the receiver can be calculated by multiplying the time it
takes for the signal to arrive by the speed at which it travels–the speed of light.
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Although four visible satellites are enough to compute a position, the more
satellites that are visible, the more precise the computed position becomes.

More information about the GPS can be found in, e.g., Magellan Corporation
(8) and Leick (7).

3 Sampling and Uncertainty

This section covers how to acquire and represent the movement of point objects.
We first give the technical means of how to determine the time-varying positions
of moving point objects, and subsequently give a suitable way to represent the
entire movement. An important part of the representation is the uncertainty
caused by the acquisition process. The section describes the uncertainty caused
by the measurement error and the sampling error, and it concludes with a dis-
cussion of the relative importance of these errors.

3.1 Acquiring Movement—Measuring Position in Time

In order to record the movement of an object, we would have to know the position
at all times, i.e., on a continuous basis. However GPS and telecommunications
technologies only allows us to sample an object’s position, i.e., to obtain the
position at discrete instances of time such as every few seconds.

The solid line in Fig. 1(a) represents the movement of a point object. Space
(x and y axes) and time (t axis) are combined to form one coordinate system.
The dashed line shows the projection of the movement in two-dimensional space
(x and y coordinates).

A first approach to represent the movements of objects would be to store the
position samples. For our database, this would mean we could not answer queries
about the objects’ movements at times in-between sampled positions. Rather,
to obtain the entire movement we have to interpolate. The simplest approach
is to use linear interpolation, as opposed to other methods such as polynomial
splines (Bartels et al. 1). The sampled positions then become the end points of
line segments of polylines, and the movement of an object is represented by an
entire polyline in three-dimensional space. In geometrical terms, the movement
of an object is termed a trajectory (we will use “movement” and “trajectory”
interchangeably).

Fig. 1(b) shows the spatiotemporal space (the cube in solid lines) and several
trajectories (the solid lines). Time moves in the upward direction, and the top of
the cube is the time of the most recent position sample. The wavy-dotted lines
at the top symbolize the growth of the cube with time.

3.2 Quantifying Uncertainty

The research on uncertainty in geospatial information is concerned with all
sources of incorrectness and incompleteness in the measurement, analysis, and
interpretation of digitally-represented, Earth-referenced phenomena (Unwin 13).
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(a) Trajectory of a moving point
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(b) A spatiotemporal space

Fig. 1. Movements and spaces

A representation of moving-point trajectories is inherently imprecise: impre-
cision is introduced by the measurement process used in the sampling of positions
and by the sampling approach itself. A useful representation of moving points
must take these uncertainties into account.

In this paper, we make the following assumptions.

– We will not consider any error connected to the times of measurements. We
assume that we know precisely the time a position sample was taken. This
assumption seems to be justified when using the GPS and its precise clocks
as a measuring device.

– Within one application, we will only consider objects with similar movement
characteristics, such as speed and range. Typical examples of objects with
different characteristics include people, cars, and planes.

A first step in incorporating uncertainty into a representation of trajectories is to
quantify it. We thus proceed to describe the errors introduced by the trajectory
acquisition process.

3.3 Measurement Error

Generally, an error can be introduced by inaccurate measurements (Leick 7).
The accuracy and thus the quality of the measurement depends largely on the
technique used. This paper assumes that the GPS is used for the sampling of
positions.

Two assumptions are generally made when talking about the accuracy of the
GPS. First, the error distribution, i.e., the error in each of the three dimensions
and the error in time, is assumed to be Gaussian. Second, we can assume that
the horizontal error distribution, i.e., the distribution in the x-y plane, is circular
(van Diggelen 14).

The error in a positional GPS measurement can be described by the prob-
ability function in Equation (1). The probability function is composed of two
normal distributions in the two respective spatial dimensions. The mean of the
distribution is the origin of the coordinate system. Fig. 2 visualizes the error
distribution. In addition to the mean, the standard deviation, σ, is a character-
istic parameter of a normal distribution . Within the range of ±σ of the mean,
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in a bivariate normal distribution (2-dimensional), 39.35% of the probability is
concentrated.

P1(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

circular positional error

x

y

probability

Fig. 2. Positional error in the GPS

Example 1. A typical GPS module used in vehicle navigation systems is the
CrossCheck AMPS Cellular from Trimble Navigation Ltd. This GPS/cellular
phone system has an error of 2m (equal to 1 σ) (Trimble Navigation Ltd. 12).
This measure refers to the standard deviation of a bivariate normal distribution
centered at the receiver’s true antenna position.

3.4 Uncertainty in Sampling

We capture the movement of an object by sampling its position using a GPS
receiver at regular time intervals. This introduces uncertainty about the position
of the object in-between the measurements. In this section, we give a model for
the uncertainty introduced by the sampling, based on the sampling rate and the
maximum speed of the object.

Sampling Error The uncertainty of the representation of an object’s movement
is affected by the frequency with which position samples are taken, the sampling
rate. This, in turn, may be set by considering the speed of the object and the
desired maximum distance between consecutive samples. Let us consider the
running example, in which we want to record the movements of taxis.

Example 2. As a requirement to the application, the distance between two con-
secutive samples should be maximally 10 meters. If the maximum speed of a taxi
is 150km/h, this means that we would need to sample the position at least 4.2
times per second. If a taxi moves slower than its maximum speed, the distance
between samples is less than 10 meters.

We proceed to consider how the position samples resemble the true movement of
the object. Consider the three trajectories shown in Fig. 3. Each is possible given
the three measured positions P1 through P3. However, by just “looking” at the
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P PP1 2 3

Fig. 3. Possible trajectories of a moving object

three positions, one would assume that the straight line best resembles the actual
trajectory of the object. Since we did not measure the positions in-between two
consecutive position samples, the best we can do is to limit the possibilities of
where the moving object could have been. We have to constrain the trajectory of
the object by what we know about the object’s actual movement. Considering the
trajectory in a time interval [t1, t2], delimited by consecutive samples, we know
two positions, P1 and P2, as well as the object’s maximum speed, vm; see Fig. 4.
If the object moves at maximum speed vm from P1 and its trajectory is a straight
line, its position at time tx will be on a circle of radius r1 = vm(t1 + tx) around
P1 (the smaller dotted circle in Fig. 4). Thus, the points on the circle represent
the furthest away from P1 the object can gotten at time tx. If the object’s speed
is lower than vm, or its trajectory is not a straight line, the object’s position at
time tx will be somewhere within the area bounded by the circle of radius r1.
Next, we know that the object will be at position P2 at time t2. Thus, applying

��
��
��
��

���
���
���
���

1 2r r

P (x  , y  , t  )2 2 21 1 1 1P (x  , y  , t  ) 2

Fig. 4. Uncertainty between samples

the same assumptions again, the object’s position at time tx is on the circle with
radius r2 = vm(t2 − tx) around P2. If the object moves slower or its trajectory
is not a straight line, it is somewhere within the area bounded by this circle.

The above constraints on the position of the object mean that the object
can be anywhere in the intersection of the two circular areas at time tx. This
intersection is shown by the shaded area in Fig. 4, and we use the term lens



118 Dieter Pfoser and Christian S. Jensen

for this intersection. Since we do not have any further information, we assume a
uniform distribution for the position within the lens.

Thus, the sampling error at time tx for a particular position can be described
by the probability function shown in (2), where r1 and r2 are the two radii
described above, s is the distance between the measured positions P1 and P2,
and A denotes the area of the intersection of the two circles.

P2(x, y) =
{

1
A for x2 + y2 ≤ r2

1 ∧ (x− s)2 + y2 ≤ r2
2

0 otherwise (2)

Substituting vm(t1 + tx) and vm(t2− tx) for the radii r1 and r2, respectively, the
probability function shown in Equation (3) results. Its parameters are described
in Table 1.

P2(x, y) =




1
A for x2 + y2 ≤ (vm(t1 + tx))2∧

(x − s)2 + y2 ≤ (vm(t2 − tx))2

0 otherwise
(3)

For a visualization of a sampling error, refer to Fig. 5(a), in which the two
horizontal axes depict x and y coordinates, and the vertical axis the positional
probability.

Table 1. Parameters of the probability function, P2, describing the sampling
error

vm maximum speed of the moving object
tx time for which the error distribution is computed
t1 time of the first measured position
t2 time of the second measured position
s distance between the two positions, i.e., the length of the line segment
A lens area, i.e., the area of the intersection of the two circles
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Fig. 5. Probability functions for sampling errors

Sampling Error Across Time So far, we have quantified the sampling error
for the position at a single point in time. To determine the error across time, as a
first step, we compute the lens for various tx ∈ [t1; t2] as shown in Figs. 6(a)–(c).
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The circle around the first point, P1, measured at time t1, is initially a point
and grows as time advances, and the circle around the second point, P2, shrinks
with the advancement of time and eventually becomes a point. In the first situa-
tion in Fig. 6(a), the circle around P2 contains the one around P1, meaning that
the constraint on how far away the object can be from P1 at tx is more restrictive
than the constraint on how close it has to be to P2. The area of intersection is
the total circle or radius r1. In the second situation, Fig. 6(b), the two circles
start intersecting, and in Fig. 6(c) they show a clear intersection.

We observe that the intersection points of the two circles over time, i.e., for
the cases the circles do actually intersect, lie on an error ellipse with positions P1

and P2 as its foci (cf. Fig. 7). The length of the semi-major axis is 2a = r1 + r2.
This is not surprising if we consider the definition of an ellipse. An ellipse is

(a) (b) (c)

Fig. 6. Evolving sampling error
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Fig. 7. Error ellipse

a curve consisting of all points in the plane whose sum of distances, r1 and r2,
from two fixed points, P1 and P2 (the foci) separated by a distance of 2c, is a
given constant, 2a. The measure 2c can be interpreted as the observed distance
between P1 and P2, whereas 2a is the maximum distance the object can travel.
The “thickness” of the ellipse, 2b, is determined by the equation b2 = a2 − c2.
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This means that the smaller the difference between the observed distance, 2c,
and the maximum distance, 2a, the “thinner” the ellipse. In the extreme case,
the ellipse degrades to a line segment. In the worst case, where the object does
not move between consecutive position samples, the ellipse becomes a circle.

Sampling Rate Having derived the general principle behind the sampling error,
we give an example of how an increased sampling rate affects the error size. To
illustrate the underlying principle, we use the error ellipse given in Fig. 7 as a
measure for the size of the sampling error per line segment.

Example 3. In Fig. 8, we show the actual trajectory of a moving object as a
bold line. As a first step, we sample the movement of the object at position P1

and P2. The time in-between the samples is 10 seconds. The shortest distance
from P1 to P2 is 300 meters. Thus, to the best of our knowledge the object
travels at a speed v of 30m/s. If we further know the maximum speed of the
object to be 42m/s, we can draw an error ellipse around the line approximating
the movement. The error ellipse has an eccentricity 2c = 300m, a major axis
2a = vmax ·∆t = 42m/s×10s = 420m, and a minor axis 2b =

√
(2a)2 − (2c)2 =√

4202 − 3002 = 294m. This rather large error ellipse means that the position of
the object in-between samples is quite uncertain. Quadrupling the sampling rate,
i.e., sampling the position every 2.5 seconds, leads to an error ellipse that has
an eccentricity 2c = 80m, a major axis 2a = vmax ·∆t = 42m/s× 2.5s = 105m,
and a minor axis 2b =

√
(2a)2 − (2c)2 =

√
1052 − 802 = 68m.

sampling rate: r

sampling rate: 4 x rP3

1P
4

P

PP

5

2

Fig. 8. Varying sampling rate

If we increase the sampling rate, the sample positions better approximate the
movement, and the error introduced by sampling is decrease.

Maximum Speed Challenged An underlying assumptions so far has been that the
maximum speed of a moving object is fixed at vmax. However, the more we know
about the object in question, the further we can narrow down vmax and thus
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reduce the uncertainty. For example, if we know that a taxi can reach 200km/h,
but regulations of the company set 120km/h as the upper limit, we may decide to
assume that vmax is 150km/h. Further examples of such additional information
are local speed limits and road conditions; thus the maximum speed can vary
depending on the area the taxi is in. Traffic volumes, which are time dependent,
may also be taken into account. Further, there might be individual speed limits
for drivers and cars. Generally, the more information we have about an object,
the better we can adjust the sampling rate, reduce the error, and, consequently,
minimize the uncertainty attached to its polyline trajectory.

Worst-Case Sampling Error Previously we identified the size and extent
of the sampling error for a particular line segment and time. However, for use
in Section 5, we also need an error measure in the situation where an object
does not move between consecutive samples. In this case, the sampling error is
determined by a circle of radius, r, equal to half the sampling interval multiplied
by the maximum speed.

Example 4. Consider again the taxi from Example 3, whose position is sampled
every 2.5 seconds. If the taxi is stopped, the eccentricity is 2c = 0 (the foci
coincide) and the error ellipse degrades to a circle. The major axis, 2a = vmax ·
∆t = 42m/s · 2.5s = 105m, is equal to the minor axis. The radius of the circle
then is 52.5 meters.

If we have no further information about the position of the object, all positions
within the circle have the same possibility, yielding a circular uniform, worst-
case error distribution, for which the probability function is given below, where
r is the radius.

P3(x, y) =
{

1/(r2π) for
√

x2 + y2 ≤ r
0 otherwise

(4)

For a visualization of the worst-case sampling error, refer to Fig. 5(b), in which
the two horizontal axes depict x and y coordinates and the vertical axis the
positional probability.

3.5 Comparison of Error Sources

With current GPS technology, a moving object’s position can be determined
instantaneously with an accuracy of 2m (cf. Example 1), and this error will
be reduced further with the advancement of GPS technology. How frequently
position samples are taken depends on the particular application. In fleet man-
agement, determining the position every 2.5 seconds leads to a worst-case error
of roughly 50m. This is the radius of a circular distribution assuming that the
maximum speed of the objects is 150km/h, cf. Example 4). In practice the sam-
pling rates will be much lower, thus allowing for worst-case errors of 200m or
more.

It follows that the measurement error is small compared to the sampling error
in fleet management. Therefore, we will consider only the uncertainty that stems
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from the sampling, and disregard the uncertainty caused by the measurement
technique, in the remainder of the paper.

4 A Representation for Moving Point Objects

Section 3 proposed a technique for capturing the movement of point objects
that utilized polylines, and the section characterized the error introduced by
this technique, this way also revealing the uncertainty inherent to the polyline
representation. This section’s objective is to provide a format for representing
the history of the positions of continuously moving point objects, along with the
uncertainty associated with our records of their positions. For this, we propose
a relational database schema that incorporates all the spatiotemporal and error
information previously presented in this paper.

Specifically, the schema in Table 2 defines relations for objects, for the line
segments constituting the trajectories of the objects, and for the error informa-
tion associated with the recorded trajectories. Relation Object has attributes

Table 2. Relational schema for capturing moving-point objects, their trajecto-
ries, and associated error information

Object < object id, max speed, etc. >
Line segment < line id, object id, t1, t2, x1, x2, y1, y2, error id >
Error < error id, error type, param1, param2 >

object id, which is the key attribute, and max speed, which determines the
maximum speed at which the object can move. In addition this relation may
include any number of attributes unrelated to the objects’ spatial extents. Re-
lation Line segment captures the line segments that compose the trajectories
of the objects. Attribute line id is the key attribute; object id is a foreign key
referencing relation Object; and t1 and t2 are the times when the two positions,
(x1, y1) and (x2, y2), constituting the line segment, were measured. Finally, re-
lation Error contains the error information associated with the line segments.
Attribute error id is the key; error type specifies the type of error that a tuple
refers to, and thus specifies how parameters param1 and param2 are to be in-
terpreted. In the current schema, there is only one type of error. However, if we
consider more error sources in our application, additional types of errors may
occur.

The domains of the attributes are as follows. Define dom(x) to be a function
that returns the domain of its argument attribute x. Then dom(object id) =
dom((line id) = dom(error id) = dom(max speed) = dom(t1) = dom(t2) = N ,
where N is the natural numbers, dom(param1) = dom(param2) = N ∪ NIL,
dom(x1) = dom(x2) = dom(y1) = dom(y2) = Z, where Z is the integers, and
dom(error type) = {worst-case sampling}.

The following example illustrates how the above schema can be put to use.
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Example 5. Our taxi company operates a number of taxis in a city. The database
in Fig. 9 captures the movement of the taxis together with the associated errors.

This database permits the company to reconstruct the trajectories of its
taxis and to compute the associated error information. All taxis are recorded
in relation Object, and their trajectories are kept in Line segment and are
referenced through the foreign key object id.

Object
object id max speed

1234 120
4321 150
1235 140

...
(a)

Line segment
line id object id error id t1 t2 x1 x2 y1 y2

1 1234 1 . . .
2 1234 1 . . .
3 4321 1 . . .

...
(b)

Error
error id error type param1 param2

1 worst-case sampling 25 NIL

(c)

Fig. 9. An example database containing positional and error information con-
nected to a fleet management application of a taxi company

To utilize the error information, the parameters for the various probability
functions are recorded. The parameter of the worst-case sampling error, P3, is
the radius r, which in our database is stored as the param1 attribute value (25)
of the only tuple in relation Error.

The parameters of the sampling error, P2, as shown in Table 1, are the
distance s, which is computed from the attribute values for x1, x2, y1, and y2

in relation Line segment, together with the times t1, and t2. The maximum
speed vm is stored in relation Object. Finally, tx is not a static parameter that
can be stored in a relation, but is an input parameter from a query. Thus, the
intersection area A, which is different for each position in time contained in a
particular line segment, can also only be computed once tx is known.

5 Query Processing and Indexing

The objective of this section is to explore the use of error information when using
indices for processing queries involving the positions of moving objects. The
section first sets the context within spatiotemporal indexing for its contribution.
Subsequently, it shows how a moving-point index may be put to use in the
processing of spatiotemporal range queries involving positional uncertainty. A
discussion of what types of queries that can be answered in the given framework
is given. The section ends with a summary of the section’s proposed approach.
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5.1 Context

The purpose of spatiotemporal indexing is to efficiently support the retrieval
of those objects, from a large set of objects, with spatiotemporal extents that
satisfy a specified query predicate. The most commonly considered predicate is
intersection with a specified region.

Substantial research is currently ongoing in spatiotemporal indexing, and a
number of spatiotemporal indices have already been proposed; see Theodoridis
et al. (11) for an overview. Although an index well suited for indexing the tra-
jectories of the kinds of moving-point objects considered here still does not exist,
it is expected that such an index will be invented.

In terms of the representation proposed in this paper, this means that we
can expect to be able to index the polyline segments that represent trajecto-
ries. However, taking the uncertainty of the trajectories into consideration cor-
responds to the indexing of (non-point) objects with spatial extents, and the
envisioned moving-point indices are no longer readily applicable.

Based on the assumption that it will be substantially more attractive to index
the trajectories of moving-point objects than to index the trajectories of objects
with spatial extents, which are more complex, this section offers an approach to
using moving-point trajectory indices while taking into account the uncertainty
of the trajectories and also taking into account query predicates relating to the
uncertainty.

The approach employs the fundamental technique from spatial indexing of
using approximations for the spatial extents to be indexed (Güting 4). For in-
stance, R-trees generally use minimum bounding boxes. This use leads to a filter-
and-refine strategy for query processing. First, based on the approximations, a
filtering step is executed that returns a superset of the objects fulfilling the query
predicate. Second, in the refinement step, the exact extents of the objects re-
sulting from the first step are checked against the query predicate (Brinkhoff et
al. 2).

5.2 Processing Uncertainty Queries

The goal here is to be able to use a moving-point index to answer queries such as
“Retrieve the positions of taxis that were inside area A (specified as a rectangle)
between times B and C with a probability of at least 30%?”

The first step is to specify the meaning of an object’s position being within
an area A with a probability of 30%. An object’s position is described by means
of a probability function centered around the positional mean (e.g., recall the
probability function of the worst-case sampling error in Fig. 5(b)).

If all of an object’s positional probability is within an area A, we say that
the object is within area A for certain. We can determine if this is the case by
integrating over the probability function with area A as the limit. If the result
is 1, this is the case.

If the object is within area A with a probability of at least 30%, at least 30%
positional probability has be concentrated within area A. This case is shown in
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Fig. 10, where the circle represents the probability function of the worst-case
sampling error, the rectangular shape is the query rectangle, and the shaded
region represents the probability in the query window. The result of integrating
over the probability function with rectangle A = ([xmin, xmax], [ymin, ymax]) as
the limit thus has to be 0.3 or higher. Further, if the positional error is rota-

measure
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maxy

expansion

worst-case error

query window

mean

x maxx min

Fig. 10. Summing up the probability

tionally symmetric around the positional mean, as is the case for the worst-case
sampling error, we can determine the maximum distance of the query window
to the positional mean such that the probability of the position to be within the
query window is 30% or higher. We term this computed distance the expansion
measure. In Fig. 10 this distance is indicated by the arrow from the edge of the
query window to the center of the probability function (the mean). The expan-
sion measure can be interpreted as the measure by which the query window has
to be expanded to contain the positional mean (the dotted query window in the
figure).

Note that we are assuming that the query window is longer and wider than
2r, the diameter of the error distribution; later in this section, we will revisit this
assumption. However, for now, we proceed to show how the expansion measure
can be used in the filter step.

The Filter Step We record the positions in time of the moving objects by
means of line segments. The points on these segments are the mean values of
the positional probability functions Our objective for the filter step is to retrieve
those line segments that contain positions in time qualifying for the query result,
i.e., those positions that, with the probability specified in the query, are in the
query window. To retrieve these line segments, we intersect the expanded query
window with the indexed line segments. Expanding the query window means
that all positions with a probability higher or equal the one specified in the
query (the one used to compute expansion measure) are contained in the query
window.
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For the filter step, the error measure used to determine the expansion measure
can be coarse, but has to be universal so that it applies for all positions in the
database. This is true for the worst-case sampling error described in Section 3.4.

As we shall see next, this method can only be applied if the probability
specified in the query is less than 50%.

Consider again the above query, but with a probability of 60%. Using the
worst-case sampling error leads to a negative query expansion measure (cf.
Fig. 11(b)). If we use this smaller query window, we would retrieve a subset
rather than a superset of the qualifying objects, since, e.g., positions that have
no error (or a small error) and lie on (or close within) the borders of the query
window would be disregarded. An example here is position P that has no error
associated in Fig. 11(b). Shrinking the query window by the size of the nega-
tive expansion measure would eliminate this position from our set of candidate
solutions.

This problem is solved by simply using the original query window with no
expansion (shrinking) for probabilities higher than 50%. This means that we
retrieve a superset of the qualifying objects.

measure
- expansion

worst-case error

query window

mean

P

Fig. 11. Query window expansion: high probability

The Refinement Step To determine the final result, we have to evaluate the
query predicate on all objects identified during the filtering step. In our case we
have identified line segments that intersect with the transformed query region.
As the final answer, we would like to have a set of positions, and so the refinement
step extracts those parts of the line segments that qualify for this set.

In the filter step the intersection of line segments with the query window was
determined with the help of the worst-case sampling error. To evaluate positions
in time in the refinement step we will use the sampling error, unique for every
position. A very straightforward way to achieve this is to apply the brute-force
method of computing the probability functions in turn for all positions in time
contained in a line segment (cf. Section 3.4) and check whether at least 30%
probability is concentrated within area A. Fig. 12 shows two positions in time,
P1 and P2, and their respective sampling errors (depicted by dotted lines). For
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each of the positions, the probability concentrated within the query window
is depicted by a shaded area. The set of solutions after the refinement step

P

P

1

2

query window

Fig. 12. Refinement step

comprises all positions in time whose positional probability within a given query
window is at least as high as specified in the query.

On the Size of Query Windows Some query types deserve special attention
within the presented framework. Point queries such as “Which taxis were in
location A (point) at time B with 50% probability?” cannot be answered within
this framework, since we cannot compute how much probability is concentrated
within a point.

However, some “point” queries actually might be translated into window
queries, e.g., location A might refer to a road crossing or a waiting area for
taxis. In this case we are confronted with a small-window query.

Consider the above query where the query window of location A has an extent
of, e.g., a taxi stand. If the sampling rate of the taxis’ positions was very coarse,
the positions have a high degree of uncertainty, and the sampling error is very
large. To find an answer to our query, we have to determine the positions for
which at least 50% of the probability is concentrated within the query window.
If the query window is too small with respect to the error measure, no positions
will qualify, e.g., consider query window QW1 in Fig. 13.

On Non-Empty Query Results To derive a first minimum size of a query window
for which the result is not guaranteed to be empty, we assume the worst case
for both error and query. The largest possible error is the worst-case sampling
error. The worst case of a query is to specify 100% probability, e.g., “Which
taxis were in location A (point) at time B with 100% probability?” The smallest
square query window we can consider has side length 2r, the diameter of the
worst-case sampling error, e.g., QW2 shown in Fig. 13. If the query window is
smaller, the probability of the worst-case sampling error cannot by contained
entirely within the query window any more, i.e., less than 100% probability is
concentrated within the query window, and the result is guaranteed to be empty.
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Fig. 13. Small-window query

However, this only depicts the worst-case scenario. For query windows with
side length larger than 2r, queries specifying varying degrees of uncertainty may
have non-empty answers. If the query window is smaller and the query specifies
100% probability, certain positions are eliminated because their associated error
is too large for them to be for certain (100%) in the query window. Although
this seems only to eliminate solutions, it has significant consequences for the
use of the worst-case error with the query window in the filter step, as will be
explained next.

The Filtering Step Revisited In the case the query window is smaller than 2r,
the filtering as outlined earlier might eliminate positions that satisfy the query
predicate. Consider the example shown in Fig. 14(a). First, we determine the
expansion measure for a probability of 30% and the query window (the rectan-
gle). The shaded area symbolizes the intersection of the error measure and the
query window. The size of the area corresponds to the positional probability
concentrated within the query window.

Using this expansion measure, however, would exclude qualifying positions,
e.g., position P would be discarded in the filter step, although 30% or more
of its actual positional probability (dotted lens shape of the sampling error) is
concentrated within the query window.

To avoid the elimination of qualifying positions, we will initially expand the
sides of small query windows that are smaller than 2r to be of size 2r and
then use the resulting window to determine the expansion measure as describe
earlier in this section. This is illustrated in Fig. 14(b), where the probability
concentrated in the window of height 2r is symbolized by shading, and where
the expansion measure is symbolized by the longer arrow. With this measure,
position P will be in the set of candidate solutions. To recap, small window
queries are addressed as follows. A query window can be arbitrarily small. In
connection with databases considering spatial uncertainty, the size of the query
window is also determined by the uncertainty specified in the query. Further,
the “extent” of a spatial position stored in the database is determined by the
associated error measure. Consequently, when specifying a query, one has to keep
all these measures in mind not to retrieve an unwantingly small result.
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Fig. 14. Query window expansion: small query window

5.3 Summary of Approach

Or goal for this section was to give a method of how to use a moving point-index
to process queries of the form “Retrieve the moving-object positions that were
inside query rectangle A at some time between times B and C with a probability
of at least X%.” The trajectories are indexed using a moving point index that
supports range queries. A superset of the qualifying positions are retrieved in a
filtering step, in which we expand the query window to retrieve all line segments
containing positions that are in the query window with probability at least X%.
The expansion is determined using probability X and the worst-case sampling
error, stored in the database.

In the refinement step, the positions contained in the retrieved line segments
that actually are within query rectangle A with probability at least X% are
identified. Here we use the sampling error, which is distinct for all positions. The
following pseudo-algorithm summarizes the full retrieval procedure. We assume
that the diameter of the worst-case sampling error is 2r.

IF query window A has either height or width less than 2r THEN
Increase the smaller side(s) to be of size 2r;

IF X < 50% THEN
Apply query window expansion to A;

Let S contain the result of searching the index with A;
Apply refinement to the line segments in S and return the resulting points;

6 Conclusions and Future Research

The paper investigates the representation of moving-point objects in databases.
First, a set of queries derived from requirements to an application managing
moving-point objects is presented. The Global Positioning System is the tech-
nology used for obtaining samples of the positions of these objects.

The paper proposes a method for acquiring and representing the movements
of point objects. The positions of objects are sampled at selected points in time,
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and the positions in-between these points in time are obtained using interpola-
tion, thus capturing the complete movement.

The representation of movements is inherently imprecise, and the paper con-
siders two types of errors, the measurement error and the sampling error. Two
measures were derived for the sampling error, one pertaining to each position in
time, and a global worst-case error. It is further shown that the measurement
error can be ignored in the application context considered.

A database schema is proposed that incorporates both the polyline represen-
tation of movements as well as the parameters of the various error distributions
associated with the polyline representation. The schema is illustrated by an ex-
ample database suited for the taxi management application.

Finally, the paper shows how to use this database to answer spatiotemporal
queries derived from the example application. The error information is used
in connection with an arbitrary moving-point index to answer spatiotemporal
queries using the standard filter-and-refinement process.

This work points to several directions for future research. First, for the repre-
sentation of the movement, we chose to linearly interpolate in-between measured
positions. More advanced techniques may be used for this purpose as well, e.g.,
polynomial splines. Second, two types of error measures were considered, namely
the measurement error and the sampling error. Additionally manipulating the
measured positions before storing them in the database introduces another error
that needs to be considered. Thus, generalizing the approach to an arbitrary
number of error measures poses an interesting challenge. Third, in our work
we only consider uncertainty in the spatial dimensions (cf. Section 3.2). This
is partly because of the high precision with respect to time of the positional
measurement device, GPS, we use. Using motion sensors or other techniques
instead poses the question of quantifying uncertainty with respect to time as
well. Fourth, one of the underlying assumptions in our work is that objects are
not restricted in their movements through space. In reality, the space considered
will typically contain roads, railroad tracks, walls, floors, mountains, lakes, or
other “infrastructure” that facilitate or inhibit movement. This infrastructure
may be taken into account to yield a reduced overall uncertainty and error in
the database, as well as other benefits.
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Güting, R.H., Böhlen, M., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider, M.,
and Vazirgiannis, M.: A Foundation for Representing and Querying Moving Ob-
jects. Technical Report, Informatik-Bericht 238, FernUniversität Hagen, Germany,
1998.

Greenwalt, C. R. and Shultz, M. E.: Principals of Error Theory and Cartographic
Applications. Technical Report, ACIC Technical Report No. 96, Aeronautical Chart
and Information Center, St. Louis, MO, 1962.

Leick, A.: GPS Satellite Surveying. John Wiley & Sons, Inc., 1995.
Magellan Corporation, The : About Global Positioning - the Basics of GPS and

GLONASS. URL: <http://www.ashtech.com/Pages/gpsndx.html>.
Moreira, J., Ribeiro, C., and Saglio, J.: Representation and Manipulation of Mov-

ing Points: An Extended Data Model for Location Estimation. Cartography and
Geographical Information Systems, to appear.

Nascimento, M. A., Silva, J. R. O., and Theodoridis, Y.: Access Structures for Moving
Points. Technical Report TR-33, TIMECENTER, Aalborg University, Denmark,
1998.

Theodoridis, Y., Sellis, T., Papadopoulos, A., and Manolopoulos, Y.: Specifications
for Efficient Indexing in Spatiotemporal Databases. In Proceedings of the 10th
International Conference on Scientific and Statistical Database Management, 1998.

Trimble Navigation Ltd.: CrossCheck AMPS Cellular. Product Datasheet, 1998.
Unwin, D. J.: Geographical Information Systems and the Problem of Error and Un-

certainty. In Progress in Human Geography 19, 549–558, 1995.
van Diggelen, F.: GPS Accuracy: Lies, Damn Lies, and Statistics. In GPS World, 5(8),

1998.
Wolfram, S.: The Mathematica Book. Cambridge University Press, 1996.
Wolfson, O., Chamberlain, S., Dao, S., Jiang, L., and Mendez, G.: Cost and Imprecision

in Modeling the Position of Moving Objects. In Proceedings of the Fourteenth
International Conference on Data Engineering, 1998.


	Introduction
	An Application Scenario---GPS-Based Fleet Management
	Fleet Management
	Global Positioning System

	Sampling and Uncertainty
	Acquiring Movement---Measuring Position in Time
	Quantifying Uncertainty
	Measurement Error
	Uncertainty in Sampling
	Comparison of Error Sources

	A Representation for Moving Point Objects
	Query Processing and Indexing
	Context
	Processing Uncertainty Queries
	Summary of Approach

	Conclusions and Future Research

