
Form and Function of U.S. cities1

Abstract2

The relationship between urban form and function is a complex challenge
that can be examined from multiple perspectives. In this study, we propose
a method to characterize the urban function of U.S. metropolitan areas by
analyzing trip patterns extracted from the 2017 National Household Travel
Survey. To characterize urban form, we employ measures that capture road
network topology. We cluster cities based on both form and function and
subsequently compare these clusters. Our analysis of 52 U.S. metropolitan
areas identifies 7 distinct clusters of cities that exhibit similar travel behavior,
suggesting that diverse mobility patterns can be effectively grouped into a
few universal classes. The observed disparity between the urban-function
clustering and the urban-form clustering suggests that travel behavior in the
U.S. is not strongly influenced by the physical infrastructure of the city.
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1. Introduction5

Cities are spatially complex and heterogeneous systems [1, 2]. The complex6

dynamics of city growth have led to non-uniform urban morphologies, often7

characterized by sparse populations and fractal-like geometries [3, 4, 5]. For8

instance, the population growth of cities is driven by asymmetric migratory9

shocks, meaning the population growth of one city is sustained by the loss of10

others [6, 7]. On a more granular level, migration also plays an important11

role in describing the intra-city spatial heterogeneity; population growth in12

core areas of cities is more significantly influenced by inter-city migration13

flows, while population growth in external areas is more heavily impacted by14

intra-city outflows from core areas [8, 9].15

While migration captures long-term mobility, trip chains capture urban16

mobility in a 24-hour time scale [10]. A trip chain is a sequence of trip17

segments beginning and ending at home [10]. Trip chains carried out by18

individuals within a city can be used as a proxy to describe its urban function,19
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a term referring to activities that take place within a city [11]. Urban form, on20

the other hand, is related to the spatial structure of a city, capturing diverse21

aspects, such as landscape, economic structure,transportation, community22

design, and urban design [12].23

There is a complex interplay between urban form and function. Urban24

function follows form, where the built environment shapes mobility and activ-25

ity within a space [13, 14]. At the same time, form follows function, meaning26

the activities within a space are thought to drive the emergence of form in27

urban environments [15]. A well-planned city, one that balances form and28

function, can increase accessibility, reduce congestion, and promote sustain-29

able living by integrating efficient public transportation systems. Conversely,30

poorly planned cities, such as sprawling suburbs, can lead to car dependency,31

increased pollution, and social isolation [16]. Despite the existing literature32

on the relationship between urban form and function [13, 17, 18], limited33

data means that it can be challenging to characterize the function of cities.34

As such, most research in this area has focused on specific case studies or a35

limited number of cities, constraining the generalizability of their findings.36

In this paper, we address this research gap by conducting a systematic37

analysis that explores the relationship between urban function and urban38

form in 52 metropolitan statistical areas (MSAs) in the U.S. Specifically, we39

aim to tackle the following research question: What are the similarities and40

differences between U.S. cities with respect to urban form and function?41

While approaches to describing urban form of cities are well-established, we42

propose a framework that uses the 2017 National Household Travel Survey43

(NHTS) to characterize the urban function of the MSAs [19]. Note that we use44

the terms “city” and “MSA” interchangeably. First, based on travel behaviors45

captured by the NHTS data for each city, we cluster cities by their function,46

where cities within the same cluster have similar mobility patterns. This47

clustering suggests that complex human behaviors driving mobility in U.S.48

cities can be categorized into a few universal classes. Next, using Crucitti’s49

network centrality measures [20], we cluster the cities by their urban form.50

Our findings indicate a lack of a clear correspondence between structural51

and functional clusters, suggesting that the function of these cities is less so52

shaped by the urban environment, and may instead be influenced more by53

cultural and population-specific needs [21].54

The paper is organized as follows: In the next section, we review the55

literature on the interplay between urban form and function. This is followed56

by Section 3, where we detail the datasets utilized to characterize urban57
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form and function, describe our mapping scheme, and explain the centrality58

measures employed. Our findings are then presented in Section 4. We59

conclude the paper by summarizing our key insights, discussing their potential60

generalizability and highlighting future research directions in Section 5.61

2. Related Works62

The study of urban form and function spans multiple disciplines, providing63

diverse insights into the dynamics of urban regions. Network science has64

emerged as a powerful tool for characterizing urban landscapes, with studies65

using network measures to delineate urban regions and quantify traffic flow66

along their streets [22, 23]. In addition, analyses of human mobility often67

elucidated through trip chains and related data – a rich source of information68

for studying mobility patterns in urban environments [24, 25, 26, 10, 27, 28].69

There are two main ways of extracting these chains from a population: via a70

sequence of stay points captured with mobile phone data [24, 25], and via71

origin-destination trip information from travel surveys [26, 10, 27, 28].72

The extraction of chains from mobile phone data, despite offering high-73

resolution temporal and spatial information on individual movements, depends74

on the stay point inference methods, which are used to determine where the75

individuals are at any time of the day [29, 30]. However, travel surveys provide76

broader insights into travel patterns [31] and are available for urban areas in77

many countries [32], including Australia [33], France [34], Great Britain [35],78

the Netherlands [36], Norway [37], Switzerland [38], Austria [39], Canada [40]79

and the U.S. In the U.S., the National Household Travel Survey [19], provides80

insights into the travel behavior the U.S. population. Respondents of the81

survey are asked to report their activities in a 24-hour time window, and it82

includes daily non-commercial travel by all modes [19].83

The analyses of human mobility data can give insights into urban function.84

Urban function is shaped by the set of activities occurring within the city [41],85

and travel patterns can serve as an indirect but meaningful proxy for urban86

function because they capture the complexity and structure of how individuals87

interact with the urban environment [13]. This view is also supported by Hu88

et al. in [42], where they state that “Human activities reveal urban functions89

more directly. People carry out distinct activities in different urban functional90

regions, and such activities reshape a location’s usage (i.e., urban functions).”91

Human mobility data has revealed that human trajectories have a high degree92

of regularity, meaning that people tend to visit their preferred locations more93
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often [43]. This regularity in daily mobility patterns has also been captured94

in network analyses, which showed that more than 90% of trip chains are95

well described by only 17 unique motifs [44]. Short trip chains, such as96

home-work-home, home-education-home, and home-religious activity-home,97

are the most frequent chains [45]. Indeed, the statistical structure of trip98

chains and the prevalence of popular trip chains are well captured by Zipf’s99

law [45], indicating that complex human behavior can be summarized by a100

simple power law structure.101

Urban form refers to various spatial organization and structure within cities102

and is characterized by different analytical frameworks [41, 46]. Barthelemy103

[47] discusses how road networks are foundational elements of urban infras-104

tructure, directly influencing urban growth patterns and the functionality of105

a city. Similarly, Jiang and Claramunt [48] argue that the topological char-106

acteristics of urban street networks are critical to understanding the spatial107

organization of cities, further emphasizing that road networks are not just108

components of infrastructure but are deeply intertwined with the very fabric109

of urban form. Road networks can be analyzed as networks of roads (edges)110

connecting intersections (nodes), a representation that has been approached111

in various ways [49, 48, 50]. For example, Crucitti et al. [20] characterizes112

urban form using a set of centrality measures obtained from a spatial network113

representing its road network infrastructure. Centrality is a key concept in114

complex network analysis, identifying the importance or influence of a node115

within a network. The characterization of urban form by using road networks116

is less data and computationally intensive than counterparts, such as remote117

sensing-based analysis [51, 52, 53].118

The idea of “form follows function” implies that a city’s physical layout and119

structure should be shaped by its intended purpose and activities [54, 55]. For120

example, typical residential neighborhoods are designed with considerations121

for housing density, green spaces, and proximity to schools and amenities,122

serving more livable and accessible environments for families. Conversely,123

commercial districts have higher building densities, accessible transportation124

networks, and infrastructure that supports economic activities.125

At the same time, urban form enables and shapes activities within such126

areas. For example, the configuration streets, the placement of public trans-127

portation, and the distribution of amenities can determine travel patterns,128

social interactions, and economic activities. Polycentric cities, which have129

multiple centers of activity, can increase both economic productivity and130

environmental sustainability by reducing the need for long commutes and131
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promoting diverse land use patterns [17]. As cities grow, they tend to transi-132

tion from monocentric to polycentric once congestion reaches an upper limit133

dictated by the city’s population and road network infrastructure [56]. The134

form of cities has been measured using the spatial distribution of impervious135

surfaces — areas covered by materials such as concrete, asphalt, and buildings136

that prevent water infiltration into the soil [18]. This approach captures the137

intricate patterns of built and non-built areas, providing critical insights into138

the urban landscape.139

Many studies exist that discuss urban form and function. However,140

comparatively few examine the complex connection between the two. The141

main reason here is the sheer number of aspects and metrics of cities that could142

be incorporated into the assessment of their physical structure and functional143

patterns [57]. In some successful examples, metrics to characterize cities based144

on their urban form are used to predict land use as a proxy for function for145

cities such as the Brussels Capital Region, Belgium [57], and Dublin, Ireland146

[18]. Form and function of cities has also been assessed by investigating147

how people define urban space through their activities [58]. Crowdsourced148

data from social media, GPS devices, and other sources provide real-time149

insights into how people interact with urban spaces, revealing patterns of150

urban mobility and urban usage that traditional data sources might miss [58].151

3. Data and Methods152

We propose a framework for characterizing the urban function of U.S.153

cities based on mobility patterns captured by the NHTS. This characterization154

allows us to cluster cities into 7 functional classes, revealing cities with similar155

mobility patterns. We also characterize cities in terms of their urban form156

using the framework proposed by Crucitti et al. [20], where the structure of157

cities is captured by a set of four road network centrality measures. While158

there are different ways to measure urban form, Crucitti’s et al. [20] framework159

leveraging road networks offers a practical and reliable proxy that can be160

uniformly applied across different cities, ensuring the scalability and robustness161

of our analysis. Figure 1 provides an overview of the analysis we conduct162

here while the following subsections highlight the datasets and methods used163

in the analysis.164
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Figure 1: Schematic representation of our analysis. First, we characterize the
urban function of cities using information extracted from the NHTS data. Second, we
characterize the urban form of cities by extracting network measures from spatial networks
that capture road infrastructure. Finally, we compare the different clusters of cities based
on urban form and function.

3.1. Urban function165

Input Data166

The 2017 NHTS [19] provides open-access data on the travel behavior of167

the U.S. population. Records include all daily trips by all household members168

aged five or older [19]. The NHTS defines a “trip” as movement from one169

location (an origin) to another location (a destination) for a specific purpose170

on a respondent’s travel day. We consider the set of 52 metropolitan areas171

reported in the NHTS, which includes all areas with more than 1 million172

inhabitants in 2017, totaling over 181 million people (about 56% of the entire173

U.S. population at the time). Trip chains were extracted from the trip details174

of more than 116K respondents (about 0.06% of the population in our sample),175

distributed across approximately 56K households. Detailed information at176

the metro area level can be found in the appendix (Table .3). There are 20177

different trip purpose categories captured by the survey including “work”,178
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2017 NHTS Purpose-Based Categories Activity-Based Categories
Reg. Home Activities Home

Work from Home (Paid) Home
Work Work

Work related/Trip Work
Volunteer activities (Not Paid) Community

Drop-off/pickup someone In Transit
Change type of Transportation In Transit
Attend school as a student Education

Attend child care Care
Attend adult care Care

Buy Goods (groceries, clothes, appliances, gas) Commercial
Buy services (dry cleaners, banking, service a car, pet care) Commercial

Buy meals (Go out for a meal, snack, carry-out) Meal
Other general errands (post office, library) Other

Recreational Activities (visit parks, movies, bars, museums) Recreational
Exercise (go for a jog, walk, walk the dog, go to the gym) Recreational

Visit Friends and Relatives Social
Health care visit (medical, dental, therapy) Care
Religious or other community activities Community

Something else Other

Table 1: Activity mapping. The 20 purpose-based categories reported in the 2017
National Household Travel Survey were mapped into 11 activity-based categories according
to similarity and mobility.

“attend school as a student”, “buy goods” etc. (Table 1). Here, we distinguish179

a single “trip” from a trip chain. We consider a trip chain as a set of trip180

segments that begins and ends at home during a 24-hour period [10]. The trip181

chains that we analyze also include trips to and from workplaces, commonly182

referred to as work-based trip chains, thus capturing the bimodal nature of183

human mobility [59].184

Knowledge extraction185

Following [60], we first aggregate the 20 NHTS purpose-based categories to186

11 aggregated activity-based categories (see Table 1). This reduces the number187

of overall trip categories for analysis and provides more robust samples of less188

popular trips. For example, “Home” and “Work from Home” are aggregated189

into the new category “Home” due to the lack of travel involved, meaning there190

is no trip. In other cases, NHTS purpose-based categories that are similar191

are combined into one activity-based category to be used in our analysis. For192

example, we aggregate the original purpose-based categories “Attend child193

care” and “Attend adult care” into our new activity-based category “Care.”194

Across all cities, “home” is the most popular destination, making up about195
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35% of all trips (Figure 2 A). The high prevalence of trips to “home” suggests196

that the home is an activity hub, a central stay point in long trip chains. Trips197

to commercial places (e.g., shopping) are the second most popular, making198

up about 17% of all trips. Not surprisingly, trips to work are the third most199

popular accounting for about 14% of all trips. The frequency distribution200

of trips (Figure 2 A) can be considered a proxy for the different needs of201

individuals in a city. A higher frequency of trips to commercial places might202

indicate a service-centered economy while high visits to “care” might indicate203

populations are dependent on others.204

Recall that sequences of trips form a trip chain. Across all cities, short205

activity chains are the most predominant. About 30% of the chains are206

composed of only 2 trips (Figure 2 B); For example, from home to some207

activity (trip 1) and then from that activity back to home (trip 2). The208

most common two-trip chain, accounting for nearly 12% of all recorded trip209

chains, is the “home-work-home” sequence. This chain is about three times210

more common than the second most popular one, “home-education-home”.211

Surprisingly, chains with 4 trips are also popular. These chains capture travel212

to a meal during lunch break (home-work-meal-work-home) or home-centered213

chains (home-work-home-commercial-home). The probability of finding a trip214

chain decreases as the length of the chain increases. As such, it is unlikely to215

find large trip chains (more than 16 trips). The disparity in the frequency of216

different trip chains is also illustrated by the rank plot (Figure 2 D), showing217

that the ranking of trip chains closely follows Zipf’s law, confirming the218

asymmetric distribution of different trip chains and a preferential behavior219

towards some types of activities [45]. The adherence to Zipf’s law is found220

in both the original travel survey data and our trip category aggregated221

data, suggesting that we were able to maintain the structure of data after222

aggregation.223

For the purpose of our analysis, we extract the trip chains that start and224

end at home for each city and decompose each chain into its set of trips [10].225

Next, for each city, we construct a 11× 11 O-D matrix where each element of226

this matrix captures the frequency of trips from one activity to another.227

The matrix for each city can be visualized as a trip flow diagram. For exam-228

ple, Figure 3 compares the trip frequencies for two similarly sized metropolitan229

statistical areas (∼ 1 million population): Grand Rapids-Wyoming, MI, and230

Hartford-West Hartford-East Hartford, CT. By contrasting and comparing231

the flow diagrams, we can qualitatively observe that Grand Rapids-Wyoming232

has a higher frequency of trips from home to work, to community, and to233
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Figure 2: Characterizing trip patterns based on the proposed set of activity
categories. In panel A, the frequency of visits to “home” is more than twice that of
visits to “commercial”, which is the second most visited location. In panel B, trip chains
consisting of 2 trips are the most common, accounting for almost 30% of all trip patterns.
They are followed by chains of 4 trips, corresponding to about 20% of trip patterns. Panel
C shows the probability of finding the top 10 most common trip chains (each with a
probability greater than 1%). These chains are denoted by activities labeled as 1 = Home,
2 = Work, 3 = Community, 4 = In Transit, 5 = Education, 6 = Commercial, 7 = Meal, 8
= Recreational, 9 = Care, 10 = Social, 11 = Other. Panel D illustrates the probability of
finding an activity chain based on its frequency rank. The red line represents the function
Probability ∝ 1/ranka with a = 1.08, suggesting that the probability distribution of trip
chains follows Zipf’s law.

education activities, while Hartford-West Hartford-East Hartford has more234

trips from home to business, to recreation, and to other destinations.235

The trip flow diagram also reveals the interconnectedness of different236

activities. Focusing on commercial activities, Grand Rapids-Wyoming shows237

a more even distribution of trips among different O-D pairs compared to238

Hartford-West Hartford-East Hartford, indicating a more integrated pattern of239
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Figure 3: Trip flow diagrams capture differences in travel patterns between cities.
The trip flow diagrams illustrate the frequency of trips between different origin-destination
activity-based category pairs. The starting points of the arrows represent the origins, while
the endpoints represent the destinations. The width of the arrows is proportional to the
frequency of trips for each specific OD pair. In panel A, the trip flow diagram for Grand
Rapids-Wyoming, MI, shows a significant volume of trips originating or ending at Work.
Conversely, panel B shows Hartford-West Hartford-East Hartford, CT, where there is a
noticeable decrease in work-related trips but an increase in trips related to Commercial,
Recreational, and Social activities.

commercial visits within the overall mobility structure. However, community240

activities in Hartford-West Hartford-East Hartford show a higher degree of241

interconnectedness than in Grand Rapids-Wyoming. Furthermore, Grand242

Rapids-Wyoming has more trips from “in-transit” to “business” and “home”,243

while Hartford-West Hartford-East Hartford has more trips from “in-transit”244

to “recreation”.245

Clustering analysis246

In order to find cities with similar mobility patterns, we cluster the O-D247

matrices of the 52 cities in an unsupervised manner. Specifically, we use hierar-248

chical clustering, which is widely used because of its high interpretability [61],249

with the Ward’s method because it tends to find clusters that are balanced250

and of equal size [62]. The Ward’s method minimizes the total intra-cluster251

variance and ensures that the cities grouped together have the most similar252
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trip frequency distributions, as measured by the Euclidean distance between253

their OD matrices.254

The process starts with each city as a singleton cluster and iteratively255

merges the cluster pair resulting in the smallest increase in total intra-cluster256

variance [63, 64]. The result is a dendrogram that visualizes the clustering257

hierarchy and allows the identification of natural groupings of cities based258

on their travel patterns. This methodology allows us to gain insight into259

the functional similarities and differences in urban mobility behavior across260

metropolitan areas.261

3.2. Urban form262

Input Data263

We characterize cities in terms of their urban form using four road network264

centrality measures, as outlined by Crucitti et al.[20]. Road networks for265

all U.S. cities can be easily obtained through open data sources such as266

OpenStreetMap [65], which provides consistent information across different267

regions, thus allowing for comprehensive and scalable analysis across many268

cities, a crucial factor for studies of this scope. Given that the NHTS data269

are reported on an MSA level, we extract MSA boundaries from Census [66]270

and use these boundaries to extract the road networks within cities with271

OSMnx [67], which is a Python library that provides tools for downloading,272

modeling, analyzing, and visualizing street networks from OpenStreetMap273

[65]. Once the road networks for the MSAs are extracted, we identify the274

geographic center of each MSA based on the median latitude and longitude275

of the network nodes. Then, we select a square box of area L2, with L = 2276

miles, centered on the geographic center. Although this method does not277

capture the network structure of the whole city, it allows us to focus on areas278

that are the most indicative of the city’s overall structure and function. The279

streets within this core area are turned into an undirected graph G with N280

nodes and K edges [20].281

The focus on such dense and central areas to represent a city’s urban core282

is supported by literature. Not only Cruccitty et al. [20], but also Boeing283

[68, 69] and Jacobs [70] compare the urban form of several cities by using284

diagrams of one square-mile road networks, thus illustrating that this fixed-285

area sampling of road networks can be a practical approach for urban form286

analysis. This approach is particularly useful for us because it provides a287

consistent and scalable method for the analysis of the cities we considered.288
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Knowledge extraction289

After having extractedG for each city, we compute four centrality measures290

for each node i ∈ G: closeness [71], betweenness [71], straightness [20], and291

information [20] centralities, which are defined as follows. These measures,292

when applied to spatial networks, offer a comprehensive understanding of the293

spatial organization of urban streets, distinguishing between different urban294

forms, such as planned versus self-organized cities [20].295

• Closeness centrality (Ci) is a measure of how close a node i is to all296

other nodes in the network G. It is calculated as the reciprocal of the297

sum of the shortest path distances from node i to every other node j in298

the network. The formula for closeness centrality is given by:299

Ci =
N − 1∑
j∈G,j ̸=i dij

, (1)

where dij is the shortest path distance between nodes i and j, and N is300

the total number of nodes in the network. Higher values of Ci indicate301

greater closeness, meaning the node i is, on average, less distant from302

all other nodes.303

• Betweenness centrality (Bi) quantifies the centrality of a node i by304

counting the shortest paths between each pair of nodes j and k that305

pass through i. Nodes with high betweenness centrality are crucial for306

bridging information traffic across the network, acting as important307

conduits through which information flows. This metric is defined as308

Bi =
∑

j,k∈G,i ̸=j ̸=k

σ(j, i, k)

σ(j, k)
, (2)

where σ(j, k) is the total number of paths from j to k and σ(j, i, k) is309

the total number of paths from j to k that pass through i.310

• Straightness centrality (Si) compares the network distance to the311

Euclidean distance of the nodes. Specifically, for each network node i,312

it measures how much the paths between node i and all other nodes j313

deviate from a straight line on average. This metric is defined as follows314
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Si =
1

N − 1

∑
j∈G,j ̸=i

dEucl.ij

dij
, (3)

where dEuclij is the Euclidean distance between i and j.315

• Information centrality (Ii) is based on how a network reacts to the316

deactivation of the node i. Specifically, it is the relative decrease in317

efficiency when i is removed from G. This measure is defined as318

Ii =
E[G]− E[G′

i]

E[G]
, (4)

where G′
i is obtained from the network G with all N nodes and by319

removing all edges connected to node i, and E[G] is the efficiency of G,320

defined as321

E[G] =
1

N(N − 1)

∑
i,j∈G,i ̸=j

dEuclij

dij
. (5)

These measures, Ci, Bi, Si, Ii provide insights into the accessibility and322

connectivity of each node i of the road network G. With that, each city is323

represented by four distributions of centrality measures, one for each measure.324

Following [20], the heterogeneity of these distributions is captured by the325

Gini index, representing each city by a set of four Gini coefficients: gC for326

closeness, gB for betweenness, gS for straightness, and gI for information327

centrality. A high Gini coefficient (g = 1) indicates significant heterogeneity328

or inequality within the road network, whereas a low value (g = 0) suggests329

homogeneity.330

Clustering331

In order to find cities with similar structural patterns, we cluster cities332

using the same hierarchical clustering method described earlier. Specifically,333

each city is represented by gC , gB, gS, and gI . Then, we use the Ward’s334

method with the Euclidean distance to obtain the hierarchical clusters. By335

doing this, we identify coherent clusters of cities that have similar structural336

patterns as captured by gC , gB, gS, and gI [20]. Detailed information on the337

centrality measures for each city is provided in the appendix (Table .4).338
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4. Results339

In this study, we cluster 52 U.S. metropolitan areas based on mobility340

patterns captured by the frequency of trips between the different O-D pairs.341

Similarly, we cluster the same cities based on their structural similarities.342

Regarding “urban function”, we find 7 clusters of cities where cities in the same343

cluster exhibit similar travel patterns. Regarding “urban form”, we find only344

four clusters. Notably, there does not appear to be a correspondence between345

cities clustered together based on function and cities clustered together based346

on form. The results are described in detail as follows.347

4.1. Urban function348

Clustering based on function349

The hierarchical clustering of the 52 cities under consideration reveals 7350

clusters of cities with similar travel behaviors (Figure 4): three clusters of 2351

cities each, and clusters of 7, 9, 11, and 19 cities. We observe a tendency for352

cities within the same U.S. state to be grouped into the same cluster. For353

example, all cities in Texas, Wisconsin, Florida, and Ohio are found in the354

same cluster, and 5 out of 6 California cities are within the same cluster,355

suggesting that the local culture of the population somewhat influences356

mobility patterns. Interestingly, however, cities that are geographically distant357

and have different socioeconomic profiles are also found in the same cluster.358

Consider the cluster consisting of the New Orleans-Metairie and Hartford-359

West Hartford-East Hartford MSAs, which are separated by more than 1,200360

miles and exhibit contrasts in their cultural landscapes, economic drivers,361

and historical backgrounds. New Orleans-Metairie, located in the heart of362

Louisiana’s Gulf Coast, has French, Spanish, and African cultural influences.363

The MSA was significantly impacted by Hurricane Katrina in 2005, which364

resulted in significant population loss and structural damage. The economic365

activity of the city is concentrated in port-related industries, oil and gas366

extraction, and tourism. In contrast, Hartford-West Hartford-East Hartford,367

located in the north-central region of Connecticut, has a more traditional368

New England character. Its economy is driven by the insurance and financial369

services industries, reflecting its role as a regional commercial center.370

The hierarchical clustering also shows that clusters 4 (purple) and 5371

(brown) are closely related. These clusters consist mainly of cities near the372

east and west coasts, suggesting similarities in the mobility patterns of coastal373

residents (Figure 5). In contrast, the interior regions of the U.S. are mainly374
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Figure 4: Clustering metropolitan statistical areas based on the occurrence of
trip chains. Hierarchical clustering of cities using flow diagrams captures the prevalence of
specific trip chains through the frequency of origin-destination (OD) activity pairs. Using
a threshold of 60% of the maximum distance, we found that the 52 metropolitan statistical
areas analyzed are grouped into 7 distinct clusters. The threshold of 60% of the maximum
distance was determined using the elbow method (see appendix Fig. .10).

composed of cities in clusters 2 (green) and 6 (pink). Most cluster 2 cities375

are located in the northern half of the country, while most cluster 6 cities are376

located in the southern half. This spatial distribution may indicate regional377

differences in mobility behavior, possibly influenced by factors such as climate378
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Figure 5: Spatial distribution of metropolitan statistical area clusters. Boundaries
of Metropolitan Statistical Areas at the county level are represented by black lines, and
state boundaries are indicated by white lines. The color coding of the MSAs corresponds to
the colors used in the hierarchical clusters, as shown in Figure 4. States such as California,
Texas, Florida, and Ohio have multiple Metropolitan Statistical Areas that fall within the
same cluster.

and cultural practices.379

Characterizing the clusters380

Let us explore the similarities and differences between the clusters of cities.381

Figure 6 shows stacked bars illustrating the probability distribution of visits382

to different activities for each cluster. The activities are ordered by visit383

frequency, with the most visited places at the bottom of each bar and the384

least visited at the top. This arrangement captures the hierarchy of residents’385

destination preferences, with each activity’s position in the stacked bar graph386

graphically representing its relative importance or priority.387

We find that “home” is consistently the most visited location across388

all clusters, accounting for approximately 36% of all visits. This activity is389

followed by visits to commercial locations in all clusters. However, the ranking390

of other activities shows variations between different clusters. For example,391
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Figure 6: Distinct patterns in daily activities and destination priorities across
clusters. The height of each bar indicates the probability of finding trips to a particular
activity, distinguished by different colors. Most visited activities are presented at the
bottom. Note that each cluster has a unique sequence of activities (colors), reflecting the
different priorities and preferences in daily activities among the populations of each cluster.

“recreation” appears as the third most common activity in cities within cluster392

1, while “work” occupies this position in other clusters. Interestingly, in cluster393

1, “work” ranks fifth, and the visit frequencies for “recreation”, “in-transit”,394

“work”, “meal”, and “social” are similar, as indicated by the comparable395

heights of their respective bars in the stacked graph. In contrast, cities in the396

other clusters have a more pronounced difference in the distribution of visits397

among these activities, with “work” being more predominant.398

The observed diversity in activity rankings across city clusters suggests399

different lifestyle patterns and priorities for activity visits. Specifically, in400

clusters where “work” is the third most common activity, there is variation401

in the fourth most common activity: “meal” ranks fourth in clusters 2, 5,402

and 6; “recreation” ranks fourth in cluster 4; “in-transit” is the fourth most403

common activity in clusters 3 and 7. In fact, this diversity becomes even404

more apparent as we move further down the ranking.405

To better understand the differences in the trip chains of the seven clusters406

of cities, we show in Figure 7 the ten most common trip chains in the whole407

U.S. and the probability of finding each of these chains in the clusters. We408

observe that the chain 1-2-1 (home-work-home) is the most frequent in all409

the clusters, corresponding from 8% (cluster 1) to about 12% (cluster 6) of410

all the chains. The chain 1-5-1 (home-education-home) is not very frequent411

in cluster 1, corresponding to less than 1% of the chains, in contrast to the412
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other clusters where it corresponds to at least 4% of the chains.413
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Figure 7: Variability in trip chains across city clusters in the U.S.. Top 10 most
common trip chains nationwide (ranked according to the overall frequency), with activities
labeled as: 1 = Home, 2 = Work, 3 = Community, 4 = In Transit, 5 = Education, 6 =
Commercial, 7 = Meal, 8 = Recreational, 9 = Care, 10 = Social, 11 = Other. Each bar
indicates the probability of finding a given activity chain according to the cluster of cities.
Across all clusters, the “Home-Work-Home” chain emerges as the most common. However,
the variation in probabilities for other sequences highlights the distinct lifestyle patterns in
different city clusters.

While cluster 1 has the lowest frequencies of chain 1-6-1 (home-commercial-414

home), it has one of the highest frequencies of chain 1-6-6-1 (home-commercial-415

commercial-home), showing the interconnectedness of commercial activities416

in the chains of the cities within this cluster. The same interconnectedness417

of visits to Commercial places is seen in cities of cluster 3, which have the418

highest frequencies of chains 1-2-6-1 (home-work-commercial-home) and 1-6-419

6-1 (home-commercial-commercial-home). Besides, it is interesting to see the420

manifestation of religious engagement in cities of cluster 7, where the chain421

1-3-1 (home-community-home) is very popular.422

Table 2, which shows the top five most frequent trip chains in each423

cluster, emphasizes the diversity of trip chains among the clusters. The424

majority of the chains in the table consist of three trips, supporting the425

idea that most travel patterns are driven by a specific need. The 1-2-1426

(home-work-home) chain is the most prevalent in all clusters, reflecting the427

universality of individuals’ need to go to Work. The diversity of trip chains428

becomes evident from the second most frequent chain onward. Cluster 1429

cities exhibit longer chains as the second most frequent, indicating a higher430

degree of interconnectedness between different activities. Interestingly, cluster431
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1 displays the interconnectedness of recreational activities, while cluster 3432

exhibits the interconnectedness of commercial activities. Again, we observe433

that each cluster has a unique rank order of the most frequent trip chains.434

Rank Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

1st 1-2-1 1-2-1 1-2-1 1-2-1 1-2-1 1-2-1 1-2-1

2nd
1-4-5-4-1
1-6-6-1

1-6-1 1-5-1 1-5-1 1-6-1 1-5-1 1-5-1

3rd 1-6-1 1-5-1 1-6-1 1-6-1 1-5-1 1-6-1 1-3-1

4th
1-8-1
1-8-6-1

1-10-7-8-10-1
1-8-1

1-2-6-1
1-6-6-1

1-8-1 1-8-1 1-8-1 1-8-1

5th 1-9-1 1-7-1
1-6-7-1-6-6-1

1-9-1
1-7-1 1-2-6-1 1-2-6-1 1-6-1

Table 2: The top 5 trip chains in each city cluster capture the diversity of
lifestyle patterns. For each group of cities, the table lists the top 5 (most frequent) trip
chains, providing insight into the unique behavioral patterns that characterize each cluster.
Activities are labeled as: 1 = Home, 2 = Work, 3 = Community, 4 = In Transit, 5 =
Education, 6 = Commercial, 7 = Meal, 8 = Recreational, 9 = Care, 10 = Social, 11 =
Other.

4.2. Clustering based on urban form435

The analysis we have presented so far has focused on mobility patterns436

derived from the frequency of trips and trip chains, regardless of the infras-437

tructure of cities. Structural aspects of cities, such as road network structure438

and spatial distribution of different building types, might affect the way439

people move and schedule their activities [72, 73, 74, 75]. In fact, population440

density might affect the probability of finding complex trip chains [72] since441

high-density areas imply shorter distances between O-D pairs [73], but car442

drivers are less likely to be impacted by urban form than users of public443

transportation [75]. In the U.S., where about 86% of workers go to work in444

their own cars [76], and public transportation usage is not only low [77] but445

also has been decreasing over years [78], we expect that mobility patterns446

will not be strongly impacted by urban form.447

In this sense, we also characterize the urban form of the cities under448

consideration by analyzing four centrality measures (closeness, betweenness,449

straightness, and information centralities), which are provided in detail in450

section 3.2. The pairwise comparison of cities based on their Gini coefficients451

indicates clusters of cities sharing similar structural properties (Figure 8).452
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Considering the structural properties, the 52 cities are divided into four453

clusters. Cities in cluster 1 show the lowest values of gB, gS and gI (Figure 9),454

suggesting a more homogeneous and organized structural profile than cities455

in the other clusters. In contrast, cities in cluster 3 exhibit higher values of456

gB, gS and gI , indicating that such cities have more heterogeneous structural457

profiles compared to the other ones.458

In contrast to the clustering by urban function (Figure 4), which shows459

clear grouping patterns of cities belonging to the same states (e.g., cluster 4460

for California and cluster 6 for Texas), the clustering by urban form (Figure461

8) does not reveal a strong association between cities that are geographically462

close. Although we find pairs of same-state cities, like Dallas–Fort Worth–463

Arlington and San Antonio–New Braunfels (Texas, cluster 1 in Figure 8), and464

Los Angeles–Long Beach–Anaheim and Sacramento–Roseville–Arden-Arcade465

(California, cluster 4 in Figure 8) further down the hierarchy, same-state cities466

are more scattered across different hierarchical levels.467

Moreover, cities that are close to each other in the clustering by function468

(Figure 4) are found at different hierarchical levels in the urban form clustering469

(Figure 8). For example, in the urban form clustering, the pairs of cities470

belonging to the three urban function clusters composed of two cities are471

dispersed. Hartford-West Hartford-East Hartford and New Orleans-Metairie472

are very close in the function cluster (cluster 1 in Figure 4) but are at different473

clusters (clusters 2 and 1) in the form cluster (Figure 8). This distinction474

is also evident for cities like Birmingham-Hoover and Louisville/Jefferson475

County, which belong to function cluster 3, and Grand Rapids-Wyoming and476

Salt Lake City, belonging to function cluster 7. In the urban form clustering,477

Birmingham-Hoover is in cluster 2, while Louisville/Jefferson County belongs478

to cluster 4. Similarly, Grand Rapids-Wyoming is in cluster 1, and Salt Lake479

City is in cluster 3.480

A more robust comparison between form and function clusters can be481

obtained by using both the Jaccard score [79] and the Adjusted Rand Index482

(ARI) [80] to assess the similarities between form and function clusters.483

Specifically, the Jaccard score of 0.41 suggests a poor overlap between form and484

function clusters, and the ARI of -0.01 suggests almost no agreement between485

the cities within form and function clusters, thus further supporting our486

observations. This contrast between the results of the function clustering and487

the form clustering highlights the dissociation between the form (structural488

properties) and function (activities) of cities.489
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Figure 8: Clustering metropolitan statistical areas based on the structure of the
road networks. Hierarchical clustering of cities using structural features extracted from
road networks. Using a threshold of 30% of the maximum distance, we found that the
52 metropolitan statistical areas analyzed could be classified into 4 distinct clusters. The
threshold of 30% of the maximum distance was determined using the elbow method (see
appendix Fig. .11).

5. Discussion and Conclusions490

The urban-function clustering results suggest that the travel behaviors491

in U.S. cities can be categorized into a few universal classes. Examining the492
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Figure 9: Differences between the four structural clusters. The Gini coefficients of
the centrality metrics used here, gC for closeness, gB for betweenness, gS for straightness,
and gI for information, indicate the differences between the uneven distribution of these
metrics among the cities of each cluster.

travel behaviors of cities within clusters reveals similarities and differences493

that may be tied to the characteristics and needs of populations living in494

the cities. For example, cities within one cluster have a higher frequency of495

recreational trips than work trips, which could reflect different demographic496

characteristics of the population (e.g. younger, retiree) and their needs (e.g.497

more social activity, more work from home).498

The lack of a strong relationship between the urban form and travel behav-499

ior indicates that the function of cities may be driven by other mechanisms500

such as individual needs, socioeconomic factors, and cultural or social dynam-501

ics. More research is needed to uncover drivers of these universal mobility502

classes and the clusters based on urban form. However, we expect urban form503

to have a greater influence on mobility patterns in countries with lower levels504

of car ownership, where the distance between origin-destination pairs may505

impose greater constraints on travel patterns.506

Our results support the recent commentary by Batty [81] that challenges507

the traditional notion that the physical form of cities directly follows their508

function. Batty argues that form and function often develop separately,509

particularly in modern cities, where physical structures may outlast their510

original functions. This mismatch is exacerbated by the differing rates of511

change between physical infrastructure and the activities that occupy these512

spaces. Batty ultimately suggests that to better understand and plan cities,513

it is essential to move beyond the simplistic view that form and function514
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are inherently aligned and instead develop more sophisticated models that515

account for their complex and evolving relationship.516

Future research could benefit from exploring other metrics to characterize517

urban form and function. While our study has leveraged specific metrics for518

these, there may be other metrics that could reveal alternative insights into519

the relationship between form and function, such as geographical measures520

of trips and built environment. Additionally, extending our framework to521

travel surveys from different countries could facilitate a broader comparison522

of urban function and new insights into the relationship between form and523

function beyond the U.S. Furthermore, given that results show a lack of524

relationship between form and function, future work may investigate the525

underlying reasons (socio-demographic, cultural, social norms etc.) for such526

clusters.527

In summary, we explored the interplay between urban form and function.528

Using data from the 2017 NHTS, we proposed a framework to characterize529

the urban function of 52 cities. We also characterized cities with respect530

to their urban form via centrality measures from road networks. The rela-531

tionship between form and function can improve urban planning and policy532

decisions, by basing decisions that drive urban form of a city on the needs533

and characterizations of the populations that live there.534
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Figure .10: Elbow method to determine the threshold (and number of clusters)
for the urban function dendrogram. Panel A shows the average intra-cluster variance
w as a function of the scaling factor f . The scaling factor f is used to obtain the distance
threshold, where the threshold is defined as f * maximum distance. Panel B shows the
number of clusters n as a function of the scaling factor f . Panel A demonstrates that for
f > 0.6, w increases sharply, indicating a loss of cluster compactness. Panel B illustrates
that for f < 0.6, there is significant volatility in the number of clusters n, which could lead
to inconsistent or unstable clustering outcomes. Therefore, our choice of f = 0.6 seeks to
achieve a balance where: it is the highest value before the intra-cluster variance becomes
too high and the lowest value before the number of clusters becomes overly volatile.

0.0 0.2 0.4 0.6 0.8 1.0
f

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

w

A

0.0 0.2 0.4 0.6 0.8 1.0
f

0

10

20

30

40

50

n

B

Figure .11: Elbow method to determine the threshold (and number of clusters)
for the urban form dendrogram. Panel A shows the average intra-cluster variance w
as a function of the scaling factor f . The scaling factor f is used to obtain the distance
threshold, where the threshold is defined as f * maximum distance. Panel B shows the
number of clusters n as a function of the scaling factor f . By using the criterion from
Fig..10 for determining the urban form clusters, we observe that a distance threshold of
f = 0.3 is a justifiable choice to balance intra-cluster variance with the number of clusters.
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CBSA Name Population Trips Households Respondents RP TR

35620 New York-Newark-Jersey City, NY-NJ-PA 19995910 40600 5537 11759 0.000588 3.452675
31080 Los Angeles-Long Beach-Anaheim, CA 13278000 22947 3178 6627 0.000499 3.462653
16980 Chicago-Naperville-Elgin, IL-IN-WI 9514113 6955 909 1890 0.000199 3.679894
19100 Dallas-Fort Worth-Arlington, TX 7403925 66565 8988 19016 0.002568 3.500473
26420 Houston-The Woodlands-Sugar Land, TX 6900090 35171 4803 10302 0.001493 3.413997
47900 Washington-Arlington-Alexandria, DC-VA-MD-WV 6198129 6001 843 1687 0.000272 3.557202
33100 Miami-Fort Lauderdale-West Palm Beach, FL 6118155 1986 305 590 0.000096 3.366102
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 6078522 4420 651 1273 0.000209 3.472113
12060 Atlanta-Sandy Springs-Roswell, GA 5872432 19682 2791 5790 0.000986 3.399309
14460 Boston-Cambridge-Newton, MA-NH 4841772 3030 398 804 0.000166 3.768657
38060 Phoenix-Mesa-Scottsdale, AZ 4758748 4875 735 1465 0.000308 3.327645
41860 San Francisco-Oakland-Hayward, CA 4712421 17609 2309 4688 0.000995 3.756186
40140 Riverside-San Bernardino-Ontario, CA 4565909 6519 968 2128 0.000466 3.063440
19820 Detroit-Warren-Dearborn, MI 4321593 2169 308 618 0.000143 3.509709
42660 Seattle-Tacoma-Bellevue, WA 3885579 2393 343 702 0.000181 3.408832
33460 Minneapolis-St. Paul-Bloomington, MN-WI 3590598 4734 656 1354 0.000377 3.496307
41740 San Diego-Carlsbad, CA 3321237 20375 2775 5674 0.001708 3.590941
45300 Tampa-St. Petersburg-Clearwater, FL 3106922 1574 252 461 0.000148 3.414317
19740 Denver-Aurora-Lakewood, CO 2891776 2033 256 519 0.000179 3.917148
41180 St. Louis, MO-IL 2805758 1849 240 502 0.000179 3.683267
12580 Baltimore-Columbia-Towson, MD 2798707 2793 411 834 0.000298 3.348921
16740 Charlotte-Concord-Gastonia, NC-SC 2525544 6168 845 1705 0.000675 3.617595
36740 Orlando-Kissimmee-Sanford, FL 2517777 1151 153 331 0.000131 3.477341
41700 San Antonio-New Braunfels, TX 2472121 13672 1897 3959 0.001601 3.453397
38900 Portland-Vancouver-Hillsboro, OR-WA 2454815 1836 228 493 0.000201 3.724138
38300 Pittsburgh, PA 2329004 1511 223 435 0.000187 3.473563
40900 Sacramento–Roseville–Arden-Arcade, CA 2319572 28027 3984 8287 0.003573 3.382044
29820 Las Vegas-Henderson-Paradise, NV 2181635 1142 158 317 0.000145 3.602524
17140 Cincinnati, OH-KY-IN 2179864 1326 172 357 0.000164 3.714286
28140 Kansas City, MO-KS 2127203 1228 163 321 0.000151 3.825545
12420 Austin-Round Rock, TX 2115475 16205 2168 4441 0.002099 3.648953
18140 Columbus, OH 2082581 1461 188 377 0.000181 3.875332
17460 Cleveland-Elyria, OH 2057238 1409 187 382 0.000186 3.688482
26900 Indianapolis-Carmel-Anderson, IN 2027584 1052 152 297 0.000146 3.542088
41940 San Jose-Sunnyvale-Santa Clara, CA 1992674 7504 939 2084 0.001046 3.600768
34980 Nashville-Davidson–Murfreesboro–Franklin, TN 1899354 837 126 256 0.000135 3.269531
47260 Virginia Beach-Norfolk-Newport News, VA-NC 1724408 1364 190 407 0.000236 3.351351
39300 Providence-Warwick, RI-MA 1616614 1844 275 533 0.000330 3.459662
33340 Milwaukee-Waukesha-West Allis, WI 1574444 21800 2913 5787 0.003676 3.767064
27260 Jacksonville, FL 1505033 765 111 215 0.000143 3.558140
36420 Oklahoma City, OK 1381492 760 105 210 0.000152 3.619048
32820 Memphis, TN-MS-AR 1346837 544 74 160 0.000119 3.400000
39580 Raleigh, NC 1334235 4437 561 1203 0.000902 3.688279
40060 Richmond, VA 1292999 803 111 211 0.000163 3.805687
31140 Louisville/Jefferson County, KY-IN 1291867 671 102 191 0.000148 3.513089
35380 New Orleans-Metairie, LA 1270326 570 76 140 0.000110 4.071429
25540 Hartford-West Hartford-East Hartford, CT 1207027 710 94 187 0.000155 3.796791
41620 Salt Lake City, UT 1204205 1068 124 294 0.000244 3.632653
13820 Birmingham-Hoover, AL 1149510 604 80 174 0.000151 3.471264
15380 Buffalo-Cheektowaga-Niagara Falls, NY 1129882 6076 845 1664 0.001473 3.651442
40380 Rochester, NY 1071962 6748 963 1945 0.001814 3.469409
24340 Grand Rapids-Wyoming, MI 1060068 706 87 182 0.000172 3.879121

Table .3: Survey sample of the 52 metropolitan statistical areas considered in our
study. The populations of the 52 MSAs range from about 20 million (New York-Newark-
Jersey City, NY-NJ-PA) to about 1 million (Grand Rapids-Wyoming, MI). Miami-Fort
Lauderdale-West Palm Beach, FL is the MSA with the lowest number of respondents per
population (RP ), while Milwaukee-Waukesha-West Allis, WI is the MSA with the highest
RP . New Orleans-Metairie, LA is the MSA with the highest number of trips per respondent
(TR), while Riverside-San Bernardino-Ontario, CA is the MSA with the lowest TR.
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CBSA Name N K gC gB gS gI

35620 New York-Newark-Jersey City, NY-NJ-PA 2394 5387 0.127327 0.682789 0.039603 0.318825
31080 Los Angeles-Long Beach-Anaheim, CA 2152 5441 0.094496 0.709616 0.035135 0.412317
16980 Chicago-Naperville-Elgin, IL-IN-WI 1128 2647 0.073475 0.685659 0.041714 0.458221
19100 Dallas-Fort Worth-Arlington, TX 1207 2422 0.080747 0.615434 0.035558 0.271236
26420 Houston-The Woodlands-Sugar Land, TX 1919 4488 0.082815 0.691538 0.036149 0.373662
47900 Washington-Arlington-Alexandria, DC-VA-MD-WV 2486 5815 0.087535 0.725811 0.043323 0.475085
33100 Miami-Fort Lauderdale-West Palm Beach, FL 2096 5229 0.088166 0.676180 0.027919 0.348319
37980 Philadelphia-Camden-Wilmington, PA-NJ-DE-MD 3365 8734 0.110400 0.590990 0.018681 0.220553
12060 Atlanta-Sandy Springs-Roswell, GA 1922 4491 0.097634 0.730911 0.036503 0.495538
14460 Boston-Cambridge-Newton, MA-NH 4614 10601 0.086550 0.686178 0.021993 0.316404
38060 Phoenix-Mesa-Scottsdale, AZ 2087 5505 0.086680 0.630859 0.021133 0.333990
41860 San Francisco-Oakland-Hayward, CA 296 612 0.120070 0.785144 0.073210 0.730222
40140 Riverside-San Bernardino-Ontario, CA 1235 2886 0.098547 0.755147 0.041215 0.454126
19820 Detroit-Warren-Dearborn, MI 2138 6059 0.077572 0.633654 0.024718 0.310755
42660 Seattle-Tacoma-Bellevue, WA 1770 4343 0.106320 0.654941 0.028030 0.300125
33460 Minneapolis-St. Paul-Bloomington, MN-WI 2404 6546 0.103187 0.626181 0.024254 0.264981
41740 San Diego-Carlsbad, CA 534 1185 0.119378 0.733981 0.042088 0.531494
45300 Tampa-St. Petersburg-Clearwater, FL 1917 4503 0.087433 0.704628 0.041332 0.482138
19740 Denver-Aurora-Lakewood, CO 2365 7132 0.093128 0.582267 0.020100 0.250526
41180 St. Louis, MO-IL 2183 5441 0.097427 0.706505 0.032111 0.491463
12580 Baltimore-Columbia-Towson, MD 3537 8981 0.097876 0.588500 0.014014 0.165263
16740 Charlotte-Concord-Gastonia, NC-SC 2378 5992 0.097786 0.676392 0.028119 0.344950
36740 Orlando-Kissimmee-Sanford, FL 1643 4085 0.106687 0.679974 0.051443 0.595827
41700 San Antonio-New Braunfels, TX 1791 4714 0.081657 0.621472 0.023974 0.299523
38900 Portland-Vancouver-Hillsboro, OR-WA 4435 12416 0.099747 0.626652 0.018926 0.220801
38300 Pittsburgh, PA 2177 5795 0.099360 0.751551 0.047649 0.477508
40900 Sacramento–Roseville–Arden-Arcade, CA 2768 6664 0.096988 0.724939 0.036631 0.429907
29820 Las Vegas-Henderson-Paradise, NV 2338 5360 0.081965 0.625770 0.027804 0.282615
17140 Cincinnati, OH-KY-IN 1738 4574 0.095197 0.687736 0.028983 0.389251
28140 Kansas City, MO-KS 2503 7452 0.097335 0.575030 0.011462 0.207925
12420 Austin-Round Rock, TX 1943 4985 0.082082 0.662383 0.030088 0.365086
18140 Columbus, OH 1397 3533 0.096888 0.746490 0.051459 0.562358
17460 Cleveland-Elyria, OH 1564 4336 0.091482 0.671150 0.030674 0.400152
26900 Indianapolis-Carmel-Anderson, IN 2073 6071 0.089505 0.625797 0.019112 0.251671
41940 San Jose-Sunnyvale-Santa Clara, CA 2676 6730 0.094453 0.610913 0.021256 0.302443
34980 Nashville-Davidson–Murfreesboro–Franklin, TN 1249 2975 0.098068 0.705842 0.041068 0.453458
47260 Virginia Beach-Norfolk-Newport News, VA-NC 1959 5213 0.088525 0.737602 0.055929 0.334743
39300 Providence-Warwick, RI-MA 1680 4462 0.105542 0.751966 0.037493 0.559642
33340 Milwaukee-Waukesha-West Allis, WI 1922 4942 0.087781 0.615313 0.021265 0.245400
27260 Jacksonville, FL 1417 3581 0.088426 0.708114 0.036279 0.461129
36420 Oklahoma City, OK 2625 7366 0.107396 0.616557 0.017379 0.224385
32820 Memphis, TN-MS-AR 1723 4301 0.081761 0.716835 0.039208 0.443304
39580 Raleigh, NC 2061 5413 0.105767 0.645926 0.023171 0.298301
40060 Richmond, VA 2137 5564 0.086185 0.659416 0.030028 0.297409
31140 Louisville/Jefferson County, KY-IN 1770 4664 0.085449 0.703791 0.034157 0.392355
35380 New Orleans-Metairie, LA 2909 7514 0.088600 0.601389 0.020339 0.162278
25540 Hartford-West Hartford-East Hartford, CT 1332 3342 0.103619 0.631258 0.045534 0.331053
41620 Salt Lake City, UT 2595 6227 0.091808 0.776648 0.026630 0.465922
13820 Birmingham-Hoover, AL 2275 6197 0.097283 0.620737 0.022107 0.282488
15380 Buffalo-Cheektowaga-Niagara Falls, NY 2155 5922 0.089330 0.635451 0.023827 0.387595
40380 Rochester, NY 1468 3924 0.102368 0.696740 0.033079 0.436049
24340 Grand Rapids-Wyoming, MI 2342 6639 0.095191 0.601011 0.018051 0.266500

Table .4: Topological features of the 52 metropolitan statistical areas considered
in our study. The road network sample G of each metropolitan area has N nodes
(intersections) and K edges (roads connecting intersections). For road network G, the
inequalities in the distribution of these centralities are captured by the Gini coefficients of
closeness (gC), betweeness (gB), straightness (gS), and information (gI).
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