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The “crowd” has become a very important geospatial data provider. Specifically, nonexpert users have been
providing a wealth of quantitative geospatial data (e.g., geotagged tweets or photos, online). With spatial
reasoning being a basic form of human cognition, textual narratives expressing user travel experiences (e.g.,
travel blogs) would provide an even bigger source of geospatial data. Narratives typically contain qualitative
geospatial data in the form of objects and spatial relations (e.g., “St. John’s church is to the North of the
Acropolis museum.” The scope of this work is (i) to extract these spatial relations from textual narratives,
(i1) to quantify (model) them, and (iii) to reason about object locations based only on the quantified spatial
relations. We use information extraction methods to identify toponyms and spatial relations, and we formu-
late a quantitative approach based on distance and orientation features to represent the latter. Probability
density functions (PDFs) for spatial relations are determined by means of a greedy expectation maximization
(EM)-based algorithm. These PDF's are then used to estimate unknown object locations. Experiments using
a text corpus harvested from travel blog sites establish the considerable location estimation accuracy of the
proposed approach on synthetic and real-world scenarios.
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1. INTRODUCTION

Off-the-shelf geospatial information services are typically based on quantitative,
coordinate-based data: maps are generated to answer geospatial questions such as
“Where is the Monastiraki Metro Station (Athens)” based on their accurate descriptive
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information. For instance, if such information appears in the precompiled database,
this implies that we know—within some accuracy—the coordinates of the Monastiraki
Metro Station. Such geospatial information services have been shown to be extremely
useful tools across many disciplines (see Krisp [2013] and Schiller and Voisard [2004])
ranging from natural research management to transportation planning and from pub-
lic information services to land use mapping. One of the reasons for the success of such
services is the perceived accuracy of the information provided. It is generated by com-
munities of mappers who contribute and maintain geospatial datasets. The resulting
services provide precise answers to geographic queries based on collected quantitative
information. However, the generatlon processing, and preservation of such quantita-
tive data is costly and time consuming. Although technology has helped to facilitate
such geospatial data collection (e.g., all smart phones are equipped with GPS position-
ing sensors), curating quantitative data requires constant supervision and control to
maintain a quality of service.

User-generated content has benefited many scientific disciplines (see Heipke [2010],
Pfoser [2011], Sui et al. [2012], and Arsanjani et al. [2015]) by providing a wealth of new
data sources. When generating geospatial data, most users are much more comfortable
authoring qualitative geospatial data, as people typically do not use coordinates to
describe their spatial experiences (trips, etc.) but rely on qualitative concepts in the
form of toponyms (landmarks) and spatial relationships (near, next, north of, etc.).
Thus, exploiting qualitative geospatial data (i.e., what “North of the Acropolis museum”
means in terms of real coordinates) is a challenging user-generated content case.

In this article, we consider supervised learning methods for quantifying qualitative
spatial relations, such as “North of,” “near to,” or “next to,” to solve the following
problem.

ProBLEM: Given a set of objects Py with a priori known coordinates in space, a set of
objects Py whose exact positions are unknown, and a set of predefined spatial relation-
ships R between Py and Py objects, find probabilistic estimates for the positions of Py
objects in space.

To better motivate the problem, consider the following narrative: “The Acropolis Pita
place is next to the Monastiraki Metro Station.” One of the challenges here in spatially
understanding the scenario is the uncertainty associated with this statement. The
spatial expression (“next to”) might be interpreted differently by the various users. For
example, it is apparent that the relation “next to” does not imply any orientation (“west
of,” “east of,” etc.). Nevertheless, given a predefined grid of points over and around the
Monastiraki Metro Station, we desire to associate probabilities to each location on
the grid as candidate positions of the Acropolis Pita place. The probabilities assigned
are drawn according to probabilistic models, trained and learned using user-generated
texts including the “next to” relation in a region relatively close to the point of interest
(POI). As such, we want to quantify what people imply when they say “next to.” Being
able to do so might allow us to actually discover the Acropolis Pita place (Figure 1 pro-
vides a toy example explanation). Eventually, by collecting more observations that men-
tion the Acropolis Pita place using qualitative spatial relations, we will be able to refine
the unknown location and thus locate places that otherwise could not be geocoded.

From the preceding discussion, it is obvious that the problem at hand involves high
uncertainty, especially when the geospatial information source is user generated. More-
over, the transition from textual data (travel blogs) to location estimation of unknown
POIs based on crowdsourced spatial relations is not at all straightforward. We there-
fore use a text mining preprocessing step. We employ natural language processing
(NLP) tools and algorithms to extract spatial entities (POIs) and spatial relations
between them (see Section 2). Following a probabilistic approach, we quantify the ex-
tracted spatial relations as PDFs. We first learn spatial relation models between known
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Fig. 1. Quantifying a spatial relation. Point A corresponds to a known reference POI (Monastiraki Metro
Station), and the arrows on the predefined grid correspond to probabilities of spots being the “Acropolis Pita
place next to” point A. The higher the arrow, the higher the probability that the location of interest (Acropolis
Pita place) lies at the corresponding grid point.

POlIs (i.e., focused over a predefined region of interest such as Athens) and given POI
pairs with known locations linked together by a specific spatial relation, we train the
corresponding spatial relation PDF comprised of distance and orientation (see
Section 3). Here a greedy expectation maximization (EM)-based algorithm is used.
The trained probabilistic models can then be used for location estimation tasks.

Given a specific spatial relation instance of the form (P,, R,, P,) and by employing
the trained model for spatial relation R,, we can associate probabilities with each
point on the discretized space. These probabilities are then used to estimate unknown
POI locations. The more observations we have with respect to an unknown location,
the more precise will be the estimate of the unknown POTI’s location. Actual location
estimation experiments using textual narratives from travel blogs establish the validity
and quality of the proposed approach.

Our contributions can be summarized as follows:

(i) We quantify qualitative spatial relations using a probabilistic path as presented
in our previous work (see Skoumas et al. [2013]).
(ii)) We propose a grid-based algorithm that performs location estimation based on the
aforementioned probabilistic models.
(iii) We evaluate our location prediction algorithm with extended experiments on both
synthetic and real-world location prediction scenarios.

2. TEXTUAL NARRATIVES AND QUALITATIVE SPATIAL RELATIONS

The resource in this work is textual narrative, and this section describes the basic
preprocessing steps needed to extract qualitative spatial data in the form of relations
from it. In terms of content sources, we focus on travel blogs as a potentially rich
geospatial data source. This selection is based on the fact that people tend to describe
their experiences in relation to their location, which results in “spatial narratives.”
To gather such data, we use classical Web crawling techniques [Drymonas and Pfoser
2010] and compile a database consisting of 250,000 texts obtained from 20 travel blogs.

Obtaining qualitative spatial relations from texts involves the detection of (i) spatial
objects (i.e., POIs or toponyms) and (ii) spatial relations linking the POIs. Our approach
involves geoparsing (i.e., the detection of candidate phrases) and geocoding (i.e., linking
parts of the phrase/toponym to actual coordinate information).

2.1. Textual Narratives, POls, and Spatial Relations

The extraction of qualitative geospatial data from texts requires the utilization of
efficient NLP tools to automatically extract and map phrases to spatial relations. In the
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past, the extraction of semantic relations between entities in texts has been developed
in Bunescu and Mooney [2006], Fader et al. [2011], Akbik and Brof3 2009, Mesquita
et al. [2013], and Zelenko et al. [2002], whereas extraction of spatial relations (mostly
topological relations) from texts is analyzed in Kordjamshidi et al. [2011], Yuan [2011],
Loglisci et al. [2012], and Zhang et al. [2011], and recently in Wallgriin et al. [2014].
Although the preceding works are related to the current effort and problem setting,
we implemented a specialized spatial relation extractor that addresses the problem
of noisy crowdsourced data. The implementation is based on the Natural Language
Processing Toolkit (NLTK) [Loper and Bird 2002], a popular Python natural language
processing library.

Using NLTK, we managed to initially extract approximately 500,000 POIs! from our
travel blog corpus. For the geocoding of the POIs, we rely on the GeoNames? geographi-
cal gazetteer, which has global coverage and contains more than 10 million places. This
procedure associates (whenever possible) geographic coordinates with POIs found in
the travel blogs using string matching based on the Levenshtein string distance met-
ric [Hirschberg 1997]. Using the GeoNames gazetteer, we managed to geocode about
480,000 out of the 500,000 extracted POIs.?

Having detected and geocoded sets of POIs, the next step is to extract spatial rela-
tions. ReVerb [Fader et al. 2011] and EXEMPLAR [Mesquita et al. 2013] are available
software tools for the extraction of semantic (not necessarily spatial) relations between
identified entities in texts. However, it was not clear that these methods would per-
form well at the task of spatial relation extraction, which motivated us to develop a
task-specific supervised spatial relation extraction method based on NLTK [Loper and
Bird 2002] components and predefined strings and tag sequences. Specifically, we have
a manually annotated dataset (see Skoumas et al. [2013])—that is, 12,000 sentences
with two or more POlIs, which result in about 1,500 “clean” spatial relation instances
between POIs. We use 80% of the clean spatial relation instances with NLTK to extract
the part-of-speech tag sequences, which contain POIs and spatial relations. Each ex-
tracted tag sequence becomes a “rule,” which we use to extract spatial relations. This
is a very common information extraction technique discussed in Chapter 7 of Loper
and Bird [2002]. It turns out that the use of both tag sequences and string matching
reduces the number of false positives considerably.*

IThe POI extraction procedure contains three steps. Initially, we use NLTK’s word tokenizer to tokenize each
sentence. NLTK’s maximum entropy part-of-speech tagger is used with the Penn Treebank tag set trained
over the Penn Treebank corpus to obtain part-of-speech tags for each token of each sentence. Finally, we use
NLTK’s maximum entropy chunker for the named entity (POIs) recognition task. Named entities are definite
noun phrases that refer to specific types of individuals, such as organizations, persons, and dates. In our
case, the chunker will only recognize POIs that are mentioned via a proper name (e.g., “Monastiraki Metro
Station”). The chunker is trained on the ACE corpus, and we extract locations, organizations, facilities, and
geopolitical entities (GPEs) as they are described in Chapter 7 of Loper and Bird [2002].
Zhttp://www.geonames.org/.

3Today, there are many available geotaggers (Google Geocoding API, Yahoo Geocoding API). Unfortunately,
all of them have a small free geocoding quota, which becomes a serious problem when one needs to geocode
a large number of POIs. A workaround is the use of gazetteers and custom solutions. This is why we also
used the GeoNames gazetteer. Another problem that arises in geocoding is named entity disambiguation,
typically characterized by more than one POI with the same name in a gazetteer. Disambiguation is simpler
in our case, as we only consider sentences that contain two or more POIs, and we geocode a POI only if it is
included in an extracted triplet of the form (POI;, Relation, POIy). If two or more candidates exist for each
POI of a triplet, we use the minimum kilometric distance feature [Pouliquen et al. 2006]—that is, we keep
the candidates that are closest in space and within a limit of 20km (city scale).

4As an example, consider the following phrase. “Deutsche Bank invested 10 million dollars in Brazil.” Here,
a simple string matching solution would extract a triplet of the form (Deutsche Bank, in, Brazil), which is
a false positive. In our approach, the use of predefined tag sequences avoids this kind of mistake. On the
other hand, for the phrase “Deutsche Bank invested 10 million dollars in Rio de Janeiro, which is in Brazil,”
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Table |. Precision and Recall for Three Different Spatial Relation
Extraction Approaches

Method Precision Recall
EXEMPLAR [Mesquita et al. 2013] 0.71 0.40
ReVerb [Fader et al. 2011] 0.15 0.43
NLTK [Loper and Bird 2002] 0.60 0.82
S
GPE is VBZ near IN GPE

e il |

New NNFP York NNP Boston NNP
Fig. 2. Example of a POS-tagged word sequence with embedded named entities.

The quality of the various algorithms is summarized in Table I. Having the three
algorithms to extract the relationships from the remaining 300 (20%) manually anno-
tated sentences shows that our NLTK-based method and EXEMPLAR perform better
than ReVerb in terms of precision and recall. Although our NLTK approach seems to
have slightly lower precision than EXEMPLAR, it achieves a higher recall (i.e., cases
for which the fraction of extracted relations relevant to the query is larger).’

2.2. RELEX Algorithm

The resulting relation extraction (RELEX) algorithm (Algorithm 1) integrates POI
and relation extraction as described earlier in a single method. Initially, the raw text
document is segmented into sentences (step 3). Each sentence is further subdivided
(tokenized) into words and tagged for part of speech (steps 5 and 6). Named entities
(POIs) are identified (step 7). We typically look for relations between specified types of
named entities, which in NLTK are organizations, locations, facilities, and geopolitical
entities (GPEs). In case there are two or more named entities in a sentence, we check if
any of the predefined tag sequences apply (step 12). If so, we check if a spatial relation
instance from our relation catalog exists (string matching) (step 14). Should there be a
match, we record the extracted triplet (steps 15 through 18). Thus, a result comprises a
triplet O of the form (P,, R,, P,), in which P, and P, are named entities of the required
types and R, is the observed spatial relation that relates to P, and P,.

A relation extraction example is shown in Figure 2. Here, the sentence “Boston is
near New York” is analyzed as explained, and two named entities are identified as
GPEs.

We first check if the tag sequence “GPE (set of NNPs)—present verbal form (VBZ)—
preposition/subordinating conjunction (IN)—GPE (set of NNPs)” exists in our set of
predefined spatial relation tag sequences. Performing string matching on the interme-
diate chunks (“near”) results in the triplet (New York, Near, Boston).

Algorithm 1 extracted approximately 500,000 triplets from our travel blog corpus
consisting of 250,000 texts. Figure 3 shows a small sample of a spatial relationship
graph, a spatial graph in which nodes represent POIs and edges label spatial relation-
ships existing between them. The graph visualizes a sample of the spatial relationship
data collected for New York City. In this work, we extracted spatial relation data for

our NLTK-based algorithm would extract a triplet of the form (Rio de Janeiro, in, Brazil), which is a true
positive.

5At this point, we highlight the fact that EXEMPLAR and ReVerb are not trained specifically for this task,
which is the cause of their lower performance. Our NLTK-based method performs slightly better, as it has
been trained to extract spatial relations only extracted from a noisy crowdsourced dataset.
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ALGORITHM 1: RELEX—Spatial Relation Extraction

Input: A database of texts T', a set of tag sequences A, a set of spatial relation strings R
Output: A set of triplets O of the form (P,, R,, P,), where P, # P, and R, € R

1 begin
2 foreach text t € T do
3 Extract sentences from ¢ into set S
4 foreach sentence s € S do
5 Token s using NLTK
6 PosTag s using NLTK
7 Identify named entities using NLTK
8 if two or more named entities in s then
9 Extract POI pairs in P
10 foreach p € P do
11 pa < Extract tag sequence of p
12 if py € Athen
13 pr < Extract string pattern of p
14 if pr € R then
15 P, < p(1)
16 P, — p(2)
17 R, < PR
18 O.PusaTripLET(P,, R,, P,)
19 end
20 end
21 end
22 end
23 end
24 end
25 return O
26 end

four different cities: London, New York, Paris, and Beijing. All four city datasets will be
used in the experimental evaluation of our location estimation approach in Section 5.

3. SPATIAL RELATION MODELING

To increase the usefulness of qualitative spatial data, it needs to be quantified—that
is, translating expressions such as “near” to actual distances. Our proposal is to use
probabilistic modeling for this task. This approach includes the selection and extraction
of respective features (distance and direction), as well as the methods to train and
optimize the probabilistic model.

3.1. Feature Extraction

We model a spatial relation between two POlIs, P,, P,, in terms of distance and ori-
entation features. Assuming a projected (Cartesian) coordinate system, the distance
is computed as the Euclidean metric between the two respective coordinates, whereas
the orientation is established as the counterclockwise rotation of the x-axis, centered at
P,, to point P,. For a concise and consistent mathematical formalization, consider that
for each instance of each relation, we create a two-dimensional spatial feature vector
X =(Xy, X,)T, where X; denotes the distance and X, denotes the orientation between P,
and P,. Several instances of a spatial relation lead to a set of two-dimensional spatial
feature vectors, which we denote as X = {X7, Xy, ..., X,}. Each spatial feature vector
set will be used to train one probabilistic model for each spatial relation.
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Fig. 3. Small sample of a spatial relationship graph for New York City.

An example of the feature extraction procedure is illustrated in Figure 4, where
four instances of spatial relation Near are used to create the respective set of spatial
feature vectors Ao = {[Xa1, Xo117, [Xao, Xo2lT, [Xy3, Xo3]7, [Xy4, Xo4]7}. In this scenario,
Py ={A, D, E, G} is the set of reference points and Py = {B, C, F', H} is the set of points
described based on the reference points.

3.2. Probabilistic Modeling

The next modeling step is the mapping of a feature vector representing spatial relations
to preselected probability density functions (PDFs). Recent research on the quantitative
representation of spatial knowledge has been conducted in relation to situational
awareness systems, robotics, and image processing. Modeling uncertain spatial in-
formation for situational awareness systems is discussed in Kalashnikov et al. [2006]
and Ma et al. [2009]. The authors propose a Bayesian probabilistic approach to model
and represent uncertain event locations described by human reporters in the form
of free text. Estimation of uncertain spatial relationships in robotics is addressed in
Smith et al. [1990]. A probabilistic algorithm for the estimation of distributions over
geographic locations is proposed in Hays and Efros [2008], where a data-driven scene
matching approach is used to estimate geographic information based on images. Finally,
image similarity based on quantitative spatial relationship modeling is addressed in
Wang and Makedon [2003]. Based on the nature of the features extracted as explained
in the previous section, we follow the modeling approach that we outlined in Skoumas
et al. [2013].

Specifically, given the training data (e.g., a set of spatial feature vectors X for each
spatial relation), we estimate a continuous density distribution using a Gaussian mix-
ture model (GMM) for each of these relations. The intuition is that people use and
understand spatial relation phrases differently. This results in multicomponent distri-
butions of the features. Figure 5 illustrates a representative PDF example of distance
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Fig. 4. Distance and orientation feature extraction procedure. In this case, the respective triplets are
(B, Near, A), (C, Near, D), (F, Near, E), and (H, Near, G).

and orientation features for the spatial relation South, which further strengthens our
intuition.

Moreover, in Li and Barron [1999], it is shown that for any heterogeneous multidi-
mensional data that originates from an arbitrary PDF p(.), there exists a sequence of
finite mixtures py(x) = Z;‘;l w;g(x; 6;) that achieves Kullback-Leibler (KL) divergence

D(pl|pr) — D(plig,) < O1/k)

for any g, = [ g(x;0)P(do)—that is, one can achieve a good approximation with rate
O(1/k) by using a k-component mixture of g(x; -). Furthermore, this bound is achievable
by employing a greedy training schema [Li and Barron 1999].

Other approaches to estimate continuous densities for spatial relations could be
nonparametric. A well-known example of such an approach is kernel density estimation
(KDE). In Section 5 of this work, we show that the GMM-based approach outperforms
KDE in terms of location estimation accuracy.

In general, a GMM is a weighted sum of M-component Gaussian densities as p(x|1) =
Zf»‘i 1 wig(x; wi, X;), where x is a d-dimensional data vector (in our case d = 2), w; are
the mixture weights, and g(x; u;, ¥;) is a Gaussian density function with mean vector
w; € R? and covariance matrix ; € R?*¢, To fully characterize f, one requires the
mean vectors, the covariance matrices, and the mixture weights. These parameters are
collectively represented in A = {w;, u;, ¥;} fori =1,..., M.

In our setting, each spatial relation is modeled as a two dimensional GMM, trained
on each relation’s spatial feature vector set. We assert that distance and or1entat10n
features are informative enough to model spatial relationships in a Cartesian context.
For the parameter estimation of each Gaussian component of each GMM, we use EM
(see Dempster et al. [1977]). EM enables us to update the parameters of a given M-
component mixture with respect to a feature vectorset X = {Xp,..., X, with1 <j <n
and all X; € R? such that the log-likelihood £ = Z?:l log(p(X;|A)) increases with each
re-estimation step (i.e., EM re-estimates model parameters A until £ convergence).

Finally, a main issue in probabilistic modeling with mixtures is that a predefined
number of components is neither a dynamic nor an efficient and robust approach. The
optimal number of components should thus be decided based on each dataset. In this
work, we employ the greedy learning approach detailed in Skoumas et al. [2013] to
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Fig. 5. Distance and orientation feature for the spatial relation South with the respective PDF.

dynamically estimate an optimized number of components in a GMM (see also Verbeek
et al. [2003]).

At this point, we highlight that the proposed spatial relation modeling scheme is
distribution independent. With the necessary tweaks, one can transform the schema
to use mixtures of any distribution type. Such a selection is user defined. However, its
application would be much harder in practice. We use mixtures of PDF's, as it was shown
in Li and Barron [1999] that densities of heterogeneous and noisy data, such as our
case of crowdsourced data, can be approximated by a sequence of finite mixtures. We
particularly use GMMs due to their simplicity and their generally low classification
errors (see Bishop [2006] and Duda et al. [2001]). The results that we obtain, and
thoroughly analyze in Section 5, encourage their use in practice. Thus, GMMs provide a
challenging baseline for potentially better mixture models to be explored in future work.

To visualize the actual models and the respective probabilities that they assign to
partitioned space, Figure 6 depicts three instances of spatial relations, with the center
of the grid denoting a reference (landmark) point. The examples have been derived
from the New York, London, and Beijing datasets.

4. LOCATION ESTIMATION WITH SPATIAL RELATIONSHIP FUSION

Location estimation in the context of this work refers to reasoning about object locations
based on their spatial relations to known locations. Using the probabilistic models of
spatial relations, we outline two approaches for solving this location estimation task.

4.1. Naive Method

Spatial relations can be considered as links connecting spatial objects. A simple ap-
proach one could follow to estimate the location of an unknown POI would be to cal-
culate the mean location of the connected known POIs combined with a user-defined
spatial extent, such as a 1km radius around the mean location. However, this would
contain quite high uncertainty and would be close to a random selection, as it does not
consider the semantics of the link (qualitative spatial relations). Experimentation will
compare this naive approach to a grid-based method described in the following section.

4.2. Grid-Based Approach

Spatial relations essentially are observations that correlate objects in space. Having
quantified them by employing probabilistic models allows us to reason about locations
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Fig. 6. Spatial extension of spatial relationships—probabilities of specific spatial relationships (Near, At,
West) relating vertices to the center grid cell.

taking uncertainty into account. Our goal now is to show how such probabilistic models
can be employed in location estimation scenarios. Unknown locations can be estimated
by fusing spatial relationship observations to known POIs (landmarks).

The qualitative location estimation (QLEST) algorithm (Algorithm 2) details our
location estimation method for an unknown POI P, and a given set of triplets 7 of
the form (P,, R,, P,) about P,. Here, P, € Py is a landmark POI in a set of landmarks
Py. QLEST is a grid-based approach, where given a predefined grid of points over
and around a landmark POI P,, we desire to associate probabilities to each vertex on
the grid as candidate positions of the unknown POI P,. The probabilities assigned are
drawn according to probabilistic models, trained and learned as described in Section 3.

ALGORITHM 2: QLEST—Qualitative Location Estimation

Input: A set of trained GMMs G, a bounding box Bg, grid dimensionality in Gp, an
unknown POI P,to locate, a set of landmark POIs Py, and a set of triplets 7 of the
form (P,, R,, P,)

Output: Each region’s (grid cell) likelihood R,

1 begin
2 Gy < Calculate grid vertices for B; based on Gp
3 foreach ¢t € 7 do
4 G <« Load GMM for spatial relation R, of triplet ¢u
5 foreach gv € G, do
6 X < [0,0]
7 X[1] < Calculate distance between gv and P,
8 X[2] < Calculate orientation between gv and P,
9 L., < P(XI§)
10 V. .PUSHLIKELIHOOD(Lyg, )
11 end
12 end
13 Fyr < Sum and normalize each vertex’s likelihoods in V.
14 R < Calculate each region’s likelihood using 7,
15 return R,
16 end
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Fig. 7. Example of a QLEST run where grid likelihoods based on a set of N triplets 7 are fused.

Finally, all assigned probabilities are aggregated to define the overall probability of
each grid cell.

The first step is to discretize space by partitioning it with respect to grid vertices
(step 2). For example, for a grid dimensionality Gp = 15, we have 15 x 15 = 225 grid
vertices and 14 x 14 = 196 grid cells (regions). Next, for each triplet ¢, we load the
GMM relationship model ¢, which corresponds to spatial relation R, (step 4). Then we
calculate the distance and orientation between each grid vertex gv and the respective
landmark P, of the loaded triplet and create a spatial feature vector X (steps 6 through
8). We calculate the probability of spatial vector X given the selected relationship model
¢’ and store it in matrix V, (steps 9 and 10). In this way, we assign likelihoods to each
vertex of the grid for each given triplet ¢. Finally, all likelihoods per vertex are summed
up and normalized in Fy, (step 11), and a probability is assigned to each grid cell
(region) R, (step 12). The overall likelihood of a grid cell is calculated as the mean
value of the likelihoods of its four vertices.

An example of a QLEST run is shown in Figure 7, where we estimate grid cell
likelihoods for each triplet of a given set of N triplets. Finally, all grid cell likelihoods
are fused to give the final region likelihoods R .. The presented QLEST method, which
fuses (spatial relationship) observations to estimate unknown point locations, will be
used in the following experimental section in the context of synthetic and real-world
location estimation scenarios.

5. LOCATION FUSION EXPERIMENTS

To assess the quality of the probabilistic spatial modeling and location estimation
approach, we perform an extensive experimentation using synthetic and real-world
location estimation scenarios. All text processing has been implemented in Python,
whereas the relationship modeling and location estimation methods were implemented
in Matlab.

5.1. Location Estimation for Synthetic Scenarios

We first assess location estimation using a synthetic data scenario. To generate POIs
and spatial relations that connect them, we follow an approach similar to that of
Algorithm 2—that is, we discretize space by partitioning it with respect to grid vertices
Gy, which will be used as known POlIs, and we then generate a random point repre-
senting an unknown POI P,. For each grid vertex gv € Gy, we calculate the distance
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and orientation from P, and create the spatial feature vector X. Finally, we pick the
spatial relationship GMM G’ that maximizes the likelihood of X. Under a mathemat-
ical formalization, this means that ¢’ is picked as ¢’ < argmax,; P(X|g, gv), where

G is again a set of trained spatial relation GMMs. Thus, for each random point P,, we
generate a set of triplets of the form (P,, R,, P,), with P, always being a grid vertex
(the number of triplets is equal with the number of vertices). Following this procedure,
we generate 1,000 location prediction scenarios for each of our four city datasets.

To provide some baseline results, we define a one-component baseline (BSL) model,
which is a GMM model p(x|1) = Zf‘i q wiglx; ui, X;) with M = 1 (simple Gaussian
distribution). We will models—the BSL model, the KDE model, and our optimized (op-
timized number M of Gaussian components) GMM model (OPT)—trained as described
in Section 3.2.

Figure 8 illustrates the approach by means of four (very challenging) examples in the
Beijing area. The red stars in the first column (Figure 8(a), (¢), (e), (g)) illustrate the
random points that were generated. The second column (Figure 8(b), (d), (f), (h)) show
the assigned probabilities of each region after a full run of Algorithm 2. We observe
that our approach assigns the highest probability to the grid cell where the random
point was generated for the first two cases (Figure 8(a) through (d)), and the prediction
is also accurate (i.e., the are high probabilities around the generated points) for the
other two cases (Figure 8(e) through (h)).

Additionally, for the 1,000 generated points, we consider the cases in which the
randomly generated point’s region is among the top-k2 predicted regions with & =
{1, 5, 10, 20}, respectively. The prediction accuracy results are shown in Figure 9. The
results show the superior performance of the OPT model against both BSL and KDE
models, with the KDE model performing slightly better than the BSL model. Addition-
ally, Tables II and III show the actual prediction accuracy improvement of the OPT
model with respect to the BSL model and the KDE model, respectively. In some cases
(indicated in bold), the prediction accuracy improvement is equal to or greater than
30%.

Finally, based on the qualitative spatial relation rules between points described in
Papadias and Sellis [1994], we measure the percentage of selected models ¢’ that
are qualitatively correct—that is, they reveal a true spatial relation between a vertex
and a random point. Figure 10 shows the percentage of qualitatively correct models
G'. The percentage of OPT models is considerably higher than that of KDE and BSL
models (with the KDE model performing slightly better than the BSL model in most
cases). Table IV shows this improvement in relative terms. In some cases (indicated in
bold), the qualitative accuracy improvement is more than 10%. The inherited noise in
crowdsourced data is the reason for the error that is evident in some cases. Specifically,
some of the models are similar (i.e., they return similar probabilities), although they
express qualitatively different spatial relations.

5.2. Location Estimation for Real-World Scenarios

The ultimate goal of this work is to train probabilistic models so as to provide location
estimates for cases, such as finding the the Acropolis Pita place, based on relative
qualitative spatial relationships discovered in textual narratives. This is a potentially
important method, as it provides a solution to the geocoding problem that exists for
user-contributed data on the Web—that is, there are myriad POIs and locations whose
coordinates do not exist in any gazetteer.

In addressing this challenge, we present extensive location estimation experiments
on 3,000 real-world scenarios extracted from all four datasets as they were presented
in Section 5.1. (about 800 real scenarios per region). We extract 3,000 POIs (considered
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Fig. 8. Synthetic location estimation scenarios in the Beijing area. The first column ((a), (c), (e), and (g))
shows the generated point with a red star. The second column ((b), (d), (f), and (h)) shows the probability of
each region after a full run of Algorithm 2 using heatmap colors.

as unknown) whose locations are given in (spatial) relation to known POIs. Note that
these cases have not been used in the training phase. The experiments will also show
the impact of the number of components per spatial relationship model on the quality
of the location estimation outcome (e.g., the performance improvement when using the
OPT instead of the BSL or KDE models). The spatial relation fusion procedure in the
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Fig. 9. Location prediction accuracy: prediction accuracy of the BSL model (a), the KDE model (b), and the
OPT model (c) for & values 1, 5, 10, and 20, respectively.

Table II. Prediction Accuracy Improvement of the Optimized
Model (OPT) Compared to the Baseline Model (BSL)

OPT Improvement per Top-k Case

Dataset k=1 k=5 k=10 k=20
London +34% +40% +44% +42%
New York +50% +53% +51% +50%
Paris +21% +27% +30% +29%
Beijing +24% +16% +16% +15%

Table Ill. Prediction Accuracy Improvement of the Optimized Model (OPT)
Compared to the Kernel Density Estimate Model (KDE)

OPT Improvement per Top-k Case

Dataset k=1 k=5 k=10 k=20
London +28% +38% +39% +37%
New York +46% +48% +45% +49%
Paris +18% +21% +36% +25%
Beijing +21% +13% +15% +15%

real-world scenarios is the same as that presented in Algorithm 2. It only differs in
that the reference landmarks are actual POIs (not grid vertices) extracted from textual
narratives, and that we use the observed, in text, spatial relation model instead of the
selected model G'.
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Table IV. Qualitative Accuracy Improvement When Using
the Optimized Model (OPT) Compared to the Baseline
Model (BSL) and the Kernel Density
Estimate Model (KDE)

OPT Improvement

Dataset BSL KDE
London +8% +6%
New York +11% +9%
Paris +13% +7%
Beijing +9% +4%
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Fig. 11. Location prediction accuracy. Percentage of real scenarios—center of spatial probability density
closer than the mean location of referenced POlIs.

5.2.1. Naive Method. The first experiment estimates the location of an unknown POI
using BSL, KDE, and OPT models and compares the result to the mean location
of all referenced POIs (see Section 4.1). The results for all four datasets are given in
Figure 11. The one-component BSL model provides better location estimation (the high-
est probability predicted point is closer to the unknown POI than the mean location)
when compared to the mean location. It is closer to the actual POI’s location in 56%,
57%, 70%, and 80% of the cases for the datasets of London, New York, Paris, and
Beijing, respectively. The KDE model improves prediction accuracy by 3% to 5% in all
cases—that is, 4%, 5%, 3%, and 4% for each respective dataset. Finally, the OPT model
improves the results further by 12%, 20%, 16%, and 10% for each respective dataset.
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Table V. Comparing the Naive Method to Models—Average
Relative Error in Percentage (0% Means Same
Computed Position)

Dataset BSL KDE OPT
London 29% 28% 27%
New York 26% 24% 22%
Paris 19% 18% 16%
Beijing 12% 11% 11%

Table VI. Prediction Accuracy in Terms of Estimated Distance from the
Unknown POI Location—BSL Versus OPT Models
Dataset
London New York Paris Beijing
Distance | BSL OPT | BSL OPT | BSL OPT | BSL OPT
0-2km 8% 11% | 14% 24% | 10% 12% | 21% 29%
2-4km | 36% 33% | 43% 33% | 30% 33% | 22% 35%
4-6km | 30% 31% | 21% 30% | 37% 35% | 39% 21%
6-8km | 17% 16% | 15% 9% 16% 15% | 13% 11%
>8km 9% 9% 7% 4% 7% 5% 5% 4%

Table VII. Prediction Accuracy in Terms of Estimated Distance from the
Unknown POI Location—KDE Versus OPT Models
Dataset
London New York Paris Beijing
Distance | KDE OPT | KDE OPT | KDE OPT | KDE OPT
0-2km 9% 11% | 16% 24% | 10% 12% | 23% 29%
2-4km | 31% 33% | 41% 33% | 31% 33% | 27% 35%
4-6km | 33% 31% | 24% 30% | 36% 35% | 33% 21%
6-8km | 18% 16% | 13% 9% | 17% 15% | 11% 11%
>8km 9% 9% 6% 4% 6% 5% 6% 4%

There are cases in which the mean location is closer to the unknown POI location than
the predicted location of the BSL, KDE, and OPT models. Table V shows the actual
average distance gap in a percentage for each dataset. The results show that although
not outperforming the mean location in a small number of cases, the predicted location
is still close to the computed mean location. The results show that for scenarios with
good data coverage, such as Beijing (many spatial relationships extracted from texts),
the spatial probabilities almost always (greater than 90%) outperform a naive method,
and even if they do not, they produce similar results.

5.2.2. Location Estimates. Having established the validity of our approach, we want to
measure the distance of the estimated to the actual POI location. Tables VI and VII
illustrate the percentage of location estimation scenarios belonging to the predefined
distance buckets of 0 to 2km, 2 to 4km, 4 to 6km, 6 to 8km, and greater than 8km. The
tables show the location estimate errors for the model pairs BSL and OPT, and KDE
and OPT for all four city datasets. To interpret the results, we can observe that the
more results fall into the shorter distance buckets (smaller error), the better are the
estimates for the specific model case. Again, an improvement of the result quality can
be observed when contrasting the BSL and OPT models. The latter accumulates more
estimates in the shorter distance buckets. A similar observation can be made when
contrasting the KDE and OPT models, with the KDE model performing again slightly
better than the BSL model in most cases. Specifically, for the case of London and New
York, there is an increase (indicated in bold) in the first (0 to 2km) and third (4 to
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Fig. 12. Estimation error in kilometers: mean (a) and median (b) error.

Table VIII. Distance Between the Center of the Spatial Probability
Distribution and the Unknown POI

Percentage of Relations Considered

Dataset 10% 50% 100%
London 15.3km 7.9km 7.7Tkm
New York 16.2km 11.9km 11.1km
Beijing 14.4km 8.6km 1.2km
Paris 8.7km 1.6km 0.8km

6km) bucket percentages in Table VI, and in the first (0 to 2km) and second (2 to 4km)
bucket percentages in Table VII, whereas for the Paris and Beijing datasets, there is an
increase in the first (0 to 2km) and second (2 to 4km) distance buckets in both tables.
This means that by using the OPT method, we obtain more precise location estimates
than by using BSL or KDE models.

Assuming a perfect method, all results would be in the first bucket. The case of
Beijing, with many available spatial relations, comes close to this ambition, as 29%
and 35% (64% total) of the estimates are within 2km and 4km of the actual location,
respectively. Moreover, Figure 12(a) shows the mean and Figure 12(b) the median
error expressed in kilometers for BSL, KDE, and OPT models for all four datasets,
respectively. In most cases, the mean and median error is close to 4km (4.1km <
MeanError < 4.6km, 4km < MedianError < 4.3km) for BSL and KDE models with
small variations. The OPT model outperforms, again, both BSL and KDE models by
achieving mean and median errors that are smaller than 4km (3.9km < MeanError <
4.1km, 3.6km < MedianError < 3.9km) in almost all cases.

5.2.3. Case Studies. To illustrate the impact of the number of observations on the
result quality, we visualize four concrete location estimation scenarios (one for each
dataset) by progressively increasing the number of observations (spatial relationships)
in each case. Figure 13 illustrates the aforementioned scenarios. Figure 13(a) through
(c) illustrate an unknown POI (red star) in the greater London area whose position is
described in relation to known POIs (black stars) using a total number of 15 spatial
relations. Figure 13(a) shows the contours of the spatial probability distribution when
we use 50% (randomly selected) of the observations, whereas Figure 13(b) shows the
final distribution considering all spatial relations. Finally, Figure 13(c) is a close-up
of Figure 13(b) with a Google Maps basemap overlay. In a similar fashion, Figure 13
shows the results for New York, Beijing, and Paris, with a total number of 20, 70,
and 200 spatial relations being used in each case, respectively. These results demon-
strate the considerable prediction accuracy. Especially the estimates for Beijing (see
Figure 13(g) through (i) and Paris (see Figure 13(j) through (1)) clearly pinpoint the
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Fig. 13. Real-world location estimation scenarios. Rows 1 through 4 are scenarios for London, New York,
Beijing, and Paris. Columns 1 through 3 shows results for 50%, 100%, and 100% (close-up on Google Maps)
of the observations (discovered relations) considered in the estimation.
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unknown POI location. What is further encouraging is that even for the cases of Lon-
don (see Figure 13(a) through 9¢)) and New York (see Figure 13(d) through (f)), for
which the number of relations is considerably smaller, the proposed approach works
reasonably well.

As expected, the prediction accuracy increases with the number of observations
considered. This is confirmed by the mass of the probability moving closer to the
unknown POI location when increasing the number of observations from a randomly
selected 50% (first column in Figure 13) to 100% (second column in Figure 13). This
effect is observed for all four cases. Table VIII shows the distances between the centers
of the spatial probability distributions (OPT model result) and the actual POI locations
as we increase the percentage of spatial relations considered in our estimate.

The results show that as we increase the number of relations, we achieve more
accurate estimates. The improvement is considerable for all cases, with Beijing and
Paris benefitting most and achieving errors of less than 2km (indicated in bold in
Table VIII). Moreover, although the estimation quality (accuracy as well as precision)
increases with the number of observations, even in the case of a small number of
available observations we can rely on the crowd as a data source for location estimation.

Overall, we can conclude that the proposed OPT modeling using GMMs optimized by
the greedy EM algorithm presented in Section 3.2 can efficiently handle the uncertainty
introduced by user-contributed qualitative geospatial data. In combination with infor-
mation extraction techniques and with our location estimation algorithm presented in
Section 4.2, it provides us with the nontrivial means of textual narrative-based location
estimation.

6. RELATED WORK

Work relevant to this article includes (i) location estimation of multimedia data and
social network (mostly Twitter) users and (ii) location estimation of unknown points of
interest based on spatial relations from textual data.

6.1. Location Estimation of Multimedia Data and Social Network Users

The work of Friedland et al. [2010] is one of the first attempts for multimodal location
estimation on videos where visual, acoustic, and textual information is combined to
declare where a video was recorded. Furthermore, Choi et al. [2013] extend this work,
where the authors study human performance as a baseline for location estimation for
three different combinations of modalities (audio only, audio + video, audio + video +
textual metadata) and compare it to the automatic method’s performance in Friedland
et al. [2010]; the study demonstrates cases when humans could effectively identify an
audio cue for estimating the video’s location when the automatic method failed. Kelm
et al. [2013] combine the data from the visual and textual modalities with external
geographical knowledge bases by building a hierarchical model that combines data-
driven and semantic methods to group visual and textual features together within
geographical regions. As a result, the proposed method successfully located 40% of the
videos in the MediaEval 2010 Placing Task test set within a radius of 100m.

From a different perspective, Cheng et al. [2010] consider geolocation prediction from
Twitter data. In particular, the authors propose a probability framework to estimate
the city-level location of a Twitter user based on tweet content. According to their
results, about half of the Twitter users can be placed within 100 miles of their true
locations. Following this line of work, Chang et al. [2012] propose to model the spatial
usage of a word as a GMM, which is an approach that is also followed in our work.
Content-based machine learning techniques for Twitter user localization are presented
in Jaiswal et al. [2013], whereas Han et al. [2012, 2014] study the location estimation
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problem that is based on the automatic identification of location indicative words—that
is, words that implicitly or explicitly encode an association with a particular location.

Backstrom et al. [2010] have similarly found spatial scaling among online interac-
tions: they show how this association appears so strong and important that it can be
safely exploited to infer where Facebook users are only from the location of their friends.

McGee et al. [2013] extend the method [Backstrom et al. 2010], citing the difficulties
of adapting from Facebook to Twitter: (i) user-provided data is significantly less precise
in Twitter, (ii) the geographic scale of the study moves from only within the United
States to a global scope, and (iii) social relationships in Twitter serve multiple roles,
beyond signifying friendships. As such, McGee et al. [2013] seek to classify a user’s
Twitter relationships according to the probability that they serve as strong predictors
of that user’s location. For ground truth, users with at least three GPS posts are
selected, and the median latitude and longitude values are selected as their location.
The naive method discussed in our work is similar to this approach. In Section 5,
we showed that the proposed modeling and grid-based location estimation algorithm
outperforms mean location solutions.

Kong et al. [2014] propose several extensions to the Backstrom et al. [2010] model
based on strategies for weighting which of a user’s friends are likely to be most pre-
dictive of their location. Given a user, their friends are weighted according to a social
tightness coefficient, which is computed as the cosine similarity of the two users’ friends.

Finally, some topic models that take into account geographical lexical variation
have been proposed in Eisenstein et al. [2010] and Hong et al. [2012]. These are
very interesting approaches that connect words within high-level topics with specific
geographic regions.

We highlight that although the preceding approaches study a similar problem to
ours, they do not handle scenarios where the observations contain POIs with positions
not stored in a geographical database (they assume that all extracted POIs are known).
In stark contrast, our approach can further improve upon the works presented earlier
by providing probabilistic location estimates for POIs observed for the first time.

6.2. Location Estimation of Unknown POls

After the present article was written, we became aware of independent recent works
on location estimation of POIs that are not stored in any geographical database. Specif-
ically, the Moncla et al. [2014a, 2014Db] propose an unsupervised geocoding algorithm
that employs clustering techniques to estimate a spatial footprint of toponyms not
found in gazetteers. The authors evaluate their approach with a corpus of real hik-
ing descriptions in three different languages. However, there is an important differ-
ence with our setting: the authors assume that there is no uncertainty included in
human descriptions, which is a rather strong assumption for real applications. In
particular, they consider the hiking descriptions as a priori 100% correct, and they
provide a heuristic solution based on predefined patterns and categories of spatial re-
lationships. We believe that our approach—that is, probabilistic modeling of spatial
relationships combined with our grid-based location estimation algorithm—is an im-
portant complementary feature in such scenarios that takes the uncertainty contained
in user-generated texts into account and further improves other proposed approaches
for location prediction of unknown POlIs.

7. CONCLUSIONS

The increase in available user-generated data provides us with a unique opportunity
to generate rich geospatial datasets. With textual narrative being the most popular
form of human expression on the Internet, this work provides a method that effectively
translates text into geospatial datasets. Our specific contribution is detecting spatial

ACM Transactions on Spatial Algorithms and Systems, Vol. 2, No. 2, Article 5, Publication date: June 2016.



Location Estimation Using Crowdsourced Spatial Relations 5:21

relationships in textual narratives and using them to estimate the position of unknown
object locations. This is also a first step toward solving the geocoding problem for “collo-
quial” locations generated by user-generated content. We introduce specific preprocess-
ing techniques for extracting spatial relations from textual narratives and use a novel
quantitative approach based on training probabilistic models for the representation
of spatial relations. Combining these models and interpreting them as observations
allows us to reason about unknown object locations. The proposed approach provides
an optimized spatial relation modeling technique combined with a grid-based location
estimation algorithm that achieves high-quality location estimation results as evi-
denced by a range of real-world datasets. Here, our probabilistic approach is robust
with respect to handling the uncertainties that characterize geospatial observations
derived from crowdsourced textual data. The results show that colloquial location es-
timation facilitated by crowdsourced geospatial narratives is a feasible approach.

Directions for future work include the optimization of the NLP techniques used for
the automatic extraction of POIs and spatial relationship information from texts. Fur-
thermore, we will investigate the implementation of global prediction models, which
could complement geocoding methods in our increasingly non-Cartesian world. In addi-
tion, this will enable us to evaluate additional probabilistic and deterministic modeling
techniques and to develop more efficient text-to-map applications.
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