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Abstract

With vehicle tracking data becoming an important sen-
sor data resource for a range of applications related to
traffic assessment and prediction, fast and accurate map-
matching algorithms become a necessary means to ulti-
mately utilize this data. This work proposes a fast map-
matching algorithm which exploits tracking data error esti-
mates in a provably correct way and offers a quality guar-
antee for the computed result trajectory. A new model for
the map-matching task is introduced which takes tracking
error estimates into account. The proposed Adaptive Clip-
ping algorithm (i) provably solves this map-matching task
and (ii) utilizes the weak Fréchet distance to measure sim-
ilarity between curves. The algorithm uses the error es-
timates in the trajectory data to reduce the search space
(error-aware pruning), while offering the quality guarantee
of finding a curve which minimizes the weak Fréchet dis-
tance to the vehicle trajectory among all possible curves in
the road network. Moreover, this work introduces an output-
sensitive variant of an existing weak Fréchet map-matching
algorithm, which is also employed in the Adaptive Clipping
algorithm. Output-sensitiveness paired with error-aware
pruning makes Adaptive Clipping the first map-matching al-
gorithm that provably solves a well-defined map-matching
task. An experimental evaluation establishes further that
Adaptive Clipping is also in a practical setting a fast algo-
rithm that at the same time produces high-quality matching
results.

1 Introduction

With the availability of cheap positioning technology
and the penetration of asset tracking applications such as
fleet management applications, vehicle tracking data, as a
component of floating car data (FCD), becomes an impor-

tant tool for traffic assessment and prediction. Being a by-
product of another application has serious implications for
the data quality, e.g., infrequent position samples. Still be-
ing able to utilize such data for traffic assessment affords
sophisticated map-matching algorithms to accomplish the
task of matching inaccurate tracking data to a road network.
Of critical importance for traffic assessment is the amount
of available data and its timeliness. To provide real-time
map-matching, fast map-matching algorithms are needed.

This work exploits tracking data error estimates to prune
the road network graph in a provably correct manner yield-
ing a fast algorithm and still guaranteeing highly accu-
rate results. A new model for the map-matching task is
introduced which takes tracking error estimates into ac-
count. The proposed Adaptive Clipping algorithm (i) prov-
ably solves this map-matching task and (ii) finds a path in
the road network that resembles the trajectory of the track-
ing data based on the weak Fréchet distance measure be-
tween the curves [2]. Previous algorithms use the (strong)
Fréchet distance [1] or the weak Fréchet distance [3] for
the map-matching task, and produce accurate matching re-
sults. However, these algorithms are comparatively slow.
In fact, due to their quadratic runtimes and storage needs,
these algorithms do not scale well at all, which makes them
unsuitable for larger road maps.

Moreover, this work introduces an output-sensitive vari-
ant of the weak Fréchet map-matching algorithm of [3],
which is also employed in the Adaptive Clipping algorithm.
This output-sensitiveness together with the error-aware
pruning yields the Adaptive Clipping algorithm which is the
first map-matching algorithm that provably solves a well-
defined map-matching task. The competitive quality and
running time of Adaptive Clipping is established in an ex-
perimental evaluation comparing the algorithm to the exist-
ing Incremental algorithm [3].

The outline of this paper is as follows. Section 2 dis-
cusses tracking data and its use for the derivation of dynamic
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weights, related work with respect to map-matching algo-
rithms, and the Fréchet distance and its use in map-matching
algorithms. Section 3 introduces the output-sensitive map-
matching algorithm. Section 4 details metadata in the form
of tracking data errors, defines a data model incorporat-
ing this metadata, and introduces the Adaptive Clipping
algorithm as an implementation of the error-aware map-
matching task. Section 5 shows the outcome of the exper-
imental evaluation and, finally, Section 6 gives conclusions
and directions for future research.

2 Background and Related Work

The outset for this work is to create a map-matching al-
gorithms that allows us to utilize a readily available and
untapped data source, floating car data, for means of traf-
fic assessment. This section introduces the data, discusses
available map-matching algorithms and gives the necessary
background on Fréchet distances as they are used in the fol-
lowing sections.

2.1 Data

For several years, a new technology has been discovered
to overcome the issue of using costly stationary sensor net-
works (loop detectors) for traffic assessment. Floating car
data (FCD) is already a well known technology for various
ITS (intelligent transportation systems) application and has
become an interesting complement to conventional traffic
sensors. Floating car data (FCD) refers to using data gen-
erated by one vehicle as a sample to assess to overall traffic
conditions (“cork swimming in the river”). The most impor-
tant data component is the position of the vehicle. Having
large amounts of vehicles collecting such data for a given
spatial area such as a city (e.g., taxis, public transport, utility
vehicles, private vehicles) will create an accurate picture of
the traffic condition in time and space [11]. In all these FCD
collection scenarios, this data is produced as a by-product
of another application (e.g., fleet management). Being a by-
product has serious implications for the data quality, e.g.,
infrequent position samples. To still be able to use this data,
sophisticated map-matching algorithms are needed to pro-
vide accurate matches of the tracking data to a path in the
road network.

Besides traffic assessment, FCD can be used to create a
reliable travel time database for a road network used in nav-
igation systems. Per default, only static travel-times derived
from road categories and speed limits are used to calculate
the fastest or shortest path for a given trip. Dynamic travel
times derived from FCD aim at supplying on-the-fly com-
puted speed types. The outdatedness of travel times is of
critical importance here. To utilize FCD best, travel times

have to be computed on-the-fly as FCD is collected in real
time.

Based on the above requirements, fast and accurate map-
matching algorithms are needed to utilize vehicle tracking
data for traffic assessment and related applications.

2.2 Available Map-Matching Algorithms

Algorithms for map-matching vehicle-tracking data
comprise the categories of incremental algorithms and
global algorithms.

Incremental algorithms follow a greedy strategy of se-
quentially extending a solution from an already matched
edge. Greenfeld [8] introduces a map-matching strategy
based on distance and orientation that does not assert any
further knowledge about the movement besides the position
samples. Civilis et al. [5][6] in their work on location up-
date techniques for the tracking of users in location-based
services introduce a map-matching algorithm that is based
on edge distance and direction similar to [8]. The tracking
data itself is obtained by using an active sampling technique
based on predicted and measured positions. By controlling
the sampling rate, the sampling error can be kept minimal
and the map-matching algorithm is presented with an opti-
mal dataset. An approach that augments GPS positioning
with other methods such as dead reckoning to reduce the
measurement error and to achieve better map-matching re-
sults is advocated in [10]. Finally, the Incremental algorithm
presented in [3], although based on locally matching geome-
tries additionally uses a constant-depth recursive look-ahead
to evaluate path alternatives. This algorithm will be used as
a benchmark in Section 5. Incremental algorithms are usu-
ally very fast, however due to their heuristic nature they re-
strict the trajectories in the road network that are considered
as a valid match.

Global algorithms consider all possible trajectories in
the road network to find amongst them the trajectory that
is most similar to the vehicle trajectory. Yin and Wolf-
son [12] propose an algorithm based on a weighted graph
representation of the road network in which the weights of
each edge represent the distance of the edge to the trajec-
tory. The matched trajectory in the road network is found
by using a Dijkstra shortest-path algorithm for the weighted
graph. This algorithm is based on a measure related to the
average Fréchet distance, however no overall quality guar-
antee on the matched curve is given. The authors claim that
the algorithm produces high quality matches, however de-
tails on the data set, such as type and size are missing. Cao
and Wolfson [4] propose an algorithm to find a path in the
graph whose Hausdorff distance to the vehicle trajectory is
at most a given parameter ε. Although using the Hausdorff
distance, a function not well-suited for curves [2], Cao and
Wolfson’s algorithm seems to be related to the computation
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of the weak Fréchet distance, but this fact is not mentioned,
and their runtime is a linear factor higher than the algorithms
of [1, 3], and no experimental evaluation is given. Alt et
al. [1] and Brakatsoulas et al. [3] utilize the strong and the
weak Fréchet distance measures to find a path in the road
network that closely resembles the trajectory. Although at
first sight considering all possible paths seems inefficient,
the existing algorithms run in polynomial time. Moreover,
the algorithms of [1, 3, 4] are based on a notion of similarity
between two curves, which has the advantage that the com-
puted result trajectory comes with a quality guarantee, since
it is a curve which minimizes the distance to the vehicle tra-
jectory among all possible curves in the road network.

In terms of quality and speed, global algorithms gen-
erally produce high-quality matching results but are slow
compared to incremental algorithm. Thus, as we shall see
in Section 4, the objective in this work is to improve the
speed of a global algorithm by preserving its accuracy.

2.3 Fréchet Distances

The algorithm we present in Section 4 is based on the
global map-matching algorithms of [1, 3], which employ
the Fréchet distance measure for curves. This section will
give relevant definitions and results that will be needed in
the remainder of this paper. For more details we refer the
reader to [1, 2, 3].

The (strong) Fréchet distance for two curves has been
proposed by Fréchet [7]. A popular illustration of the
Fréchet distance is the following: Suppose a person is walk-
ing his dog, the person is walking on the one curve and the
dog on the other. Both are allowed to control their speed
but they are not allowed to go backwards. Then the (strong)
Fréchet distance of the curves is the minimal length of a
leash that is necessary for both to walk the curves from be-
ginning to end. If both are allowed to go backwards then
one obtains the weak Fréchet distance

Most algorithms that compute the (weak or strong)
Fréchet distance between two curves or which employ those
distances in global map-matching algorithms first solve
their decision variant: For a fixed ε > 0 decide whether the
distance is at most ε or not. Afterwards the minimization
problem is solved by applying parametric search or binary
search. The algorithms solving these decision problems for
a fixed ε > 0 are all based on the notions of the free space
diagram or the free space surface [1].

The free space diagram of a line segment (edge in the
road network graph) and a curve (trajectory) encodes which
pair of points, one on the line segment and the other on the
curve, are at distance at most ε. The axes of a coordinate
system are identified with the parameterizations of the curve
and the line segment. A white point in the free space dia-
gram encodes a pair of points at distance at most ε, and a

ε
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Figure 1. Free spaces: (a) A free space di-
agram. (b) A road network (left) and corre-
sponding free space surface (right).

black point a distance greater than ε. See Figure 1(a) for an
example.

Both the free space diagram of two polygonal curves as
well as the free space surface of the road network and the
trajectory are composed of these segment-curve free space
diagrams; for every two incident line segments (in the road
network, or in another curve) their individual free space di-
agrams with the curve are glued together according to the
incidence information. Figure 1(b) gives an example road
network (left) and its corresponding free space surface for a
vehicle trajectory consisting of five position samples (right).
The vehicle trajectory is not shown explicitly but implicitly
by the white free space area. An example path in the free
space from lower left to upper right is drawn dashed.

Deciding whether the weak or strong Fréchet distances
are at most ε amounts to finding a path in the white free
space area from a lower left corner to an upper right corner.
For the strong Fréchet distance the path has to be monotone,
for the weak Fréchet distance it can be any path.

3 Output-Sensitive Map-Matching

The concept of output-sensitiveness presents an improve-
ment of existing Fréchet-based map-matching algorithms in
that it simplifies existing algorithms and greatly improves
average case running times.

3.1 Weak Fréchet Distance and Free Space Graph
Optimizations

The traditional approach for solving the decision prob-
lem for the weak Fréchet distance (for curves [2] or the
map-matching variant [1, 3]) constructs the free space di-
agram or surface in Θ(mn) time and space and then runs
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a graph traversal algorithm on the free space for a total of
Θ(mn) time. Here m and n are the complexities of the two
curves (or the curve and the road map). In this approach
the free space is implicitly interpreted as a free space graph
whose vertices are the white intervals on the boundary of
a free space cell, and all intervals incident to the same cell
are connected by edges. See Figure 2 illustrations of the
free space graph of one free space cell (Left) and of the free
space graph of the free space surface of Figure 1(b) (Right).

Figure 2. The free space graph of one free
space cell (left) and of the free space surface
of Figure 1(b) (right).

This free space graph encodes all connectivity informa-
tion of the free space. We modify this graph representation
in order to solve the optimization problem directly, without
the decision problem: Every pair (e, v) with an edge e on
one curve (or on the roadmap) and a vertex v on the other
curve (or on the roadmap) defines a possible free space in-
terval, which in turn defines a vertex in the free space graph.
For each such pair (e, v) we compute the smallest ε for
which the free space interval exists, which by definition is
the smallest distance from v to e. We weigh the correspond-
ing free space graph vertex with that distance. Let us define
the weight of a path in the free space graph to be the maxi-
mum of the weights of the free space graph vertices it visits.
Then a path from the start to the end with minimum weight
ε∗ corresponds to a path in the free space diagram for ε∗,
and any ε < ε∗ for which there is a path in the free space di-
agram would contradict the definition of ε∗. Hence ε∗ is the
optimal ε, or, in other words, the weak Fréchet distance. We
can compute such a shortest path using Dijkstra’s shortest-
path algorithm in O(mn log(mn)) time and Θ(mn) space.

The beauty of this algorithm is that it is the same for the
computation of the weak Fréchet distance for two curves
and for the map-matching task using the weak Fréchet dis-
tance, only that in the latter case the underlying free space
graph is a bit more complicated.

3.2 Output-Sensitiveness

All previous algorithms for the computation of the strong
or the weak Fréchet distance [2] or for the strong or weak
Fréchet distance based map-matching algorithms [1, 3] con-
struct and store the whole free space of size Θ(mn) in ad-
vance.

The advantage of the shortest path algorithm on the free
space graph as described in Section 3.1 is that it can be im-
plemented to explore and construct necessary portions of the
free space graph on the fly during the traversal. We use hash
tables to keep track of previously visited free space graph
vertices. Assuming that a hash table operation needs O(1)
time, this yields an output-sensitive algorithm that runs in
O(K log K) time, where K is the size of the traversed free
space. The traversed free space is that part of the free space
(or free space graph) that has to be traversed in order to find
a shortest path from any start free space graph vertex (e, p0)
to any end free space graph vertex (f, pn), where e, f are
road network edges and p1 is the first and pn the last vertex
of the GPS curve. Clearly K = O(mn), but since the algo-
rithms stop as soon as a shortest path to the first end vertex
has been found, K might be much smaller than O(mn).

Output-sensitive algorithms have the potential to be
much more efficient especially for large road maps.

4 Localizing Global Map-Matching Strate-
gies

Additional metadata information related to the tracking
data, such as tracking data error, can be exploited to refine
the modeling of the map-matching task. In this section, we
introduce the error-aware map-matching task and the Adap-
tive Clipping algorithm. The algorithm is a way to local-
ize the global weak Fréchet map-matching algorithm. At
the same time it is the first map-matching algorithm which
provably solves this well-defined map-matching task.

4.1 Error-Aware Map-Matching

The tracking data is obtained by sampling positions, typ-
ically using GPS, to produce data that in database terms is
commonly referred to as trajectories. Unfortunately, this
data is not precise due to the measurement error caused by
the limited GPS accuracy, and the sampling error caused by
the sampling rate [9].

Although the GPS error can be substantial in certain sit-
uations (shadowed and reflected signals), with the use of
GPS signal augmentation (WAAS, EGNOS) a typical worst-
case measurement error is in the range of 10m 1. Sampling

1Represents an average value and has to be substituted with worst-case
estimates depending on specific measurement scenarios.
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movement introduces an error that is directly related to the
frequency with which position samples are taken (sampling
rate). The authors in [9] show that the sampling error is
bound by an error ellipse derived from the actual and the
maximum traveled distance. Considering a typical sampling
rate of 30s and a maximum speed of 50km/h, the traveled
distance between position samples can easily reach an error
in the range of 150m (radius) (cf. [3]). Figure 3 visualizes
this error example (worst-case estimate).

Sampling error (140-160m)

P1

P2

Sampling error + Measurement error (150-170m)

Measurement error (~10m)

Active Region

Figure 3. Measurement error, sampling error,
and active region.

Usually the vehicle trajectory is modeled as a polygonal
curve consisting of a sequence of vertices that are connected
by straight-line edges, with the vertices p1, . . . , pn being the
sampled GPS positions. Given the two error measures, the
positions of the vertices are only accurate up to the mea-
surement error, and the straight-line edges are only accurate
up to the sampling error. A more appropriate error-aware
representation of the vehicle trajectory is to represent every
GPS position with a disk that reflects the measurement er-
ror and every two consecutive GPS positions with an error-
ellipse that reflects the sampling error (cf. Figure 3). This is
a “fuzzy” representation of the trajectory, which describes
a region in the plane that contains all possible trajectories
where the vehicle could have been, and therefore conveys
the true content of the data, as opposed to the polygonal-
curve representation, which conveys a false sense of pre-
ciseness.

For any two consecutive positions pi, pi+1 let us call
pipi+1 an edge of the vehicle trajectory. Let the velocity v,
the sampling rate r, and the measurement error μ be given.
For every pi we define its active region A(pi) as the disk
centered at pi with radius μ. For every edge pipi+1 we de-
fine its active region A(pipi+1) as the Minkowski sum of the
error ellipse (defined by e, v, and r) with the disk of radius μ

(centered at the origin). 2 Intuitively A(pipi+1) is a “thick-
ened” ellipse whose boundary has been thickened by a disk
of radius μ (gray-shaded area in Figure 3). A(pi) contains
all positions in the plane which by the measurement error
could correspond to pi, and A(pipi+1) is a combination of
measurement and sampling errors and contains all positions
in the plane which could correspond to any point in between
pi and pi+1.

The sequence of all active regions
A(p1), A(p1p2), A(p2), . . . , A(pn−1), A(pn−1pn), A(pn)
is an error-aware representation of the vehicle trajectory.
See Figure 4 for an example of active regions. Notice that
metadata such as known speed on trajectory edges could be
used to refine the active regions.

Figure 4. An excerpt of the road network, the
trajectory, and three active regions with their
bounding boxes.

The following Lemma shows which properties those tra-
jectories in the road network have that could have led to the
observed vehicle trajectory.

Lemma 1. The true trajectory of vertices q1, . . . , ql in
the road network that has lead to the vehicle trajectory
p1, . . . , pn has the following properties:

(i) Start condition: q1 ∈ A(p1)

(ii) End condition: ql ∈ A(pn)

(iii) Intersection property: The polygonal curve
q1, . . . , ql intersects A(pi) for every 1 ≤ i ≤ n.

2The Minkowski sum (also called vector sum) of two point sets C, D ∈
R

2 is defined as C ⊕ D = {c + d | c ∈ C, d ∈ D}.
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(iv) Containment property: If qi ∈ A(pj) and qi+k ∈
A(pj+1) for k ≥ 0 then the polygonal curve
qi, . . . , qi+k has to lie in A(pjpj+1).

Proof. (iii) follows from the measurement error, since every
pi has to have a corresponding point on the polygonal curve
q1, . . . , ql. (i) and (ii) follow from (iii) and the fact that the
curves have corresponding start points and corresponding
end points. A sampling ellipse with foci pj and pj+1 con-
tains all positions where the vehicle could have been if it
started in pj and ended in pj+1. Including the measurement
error by considering a startpoint qi ∈ A(pj) and an endpoint
qi+k ∈ A(pj+1) yields (iv).

We define the error-aware map-matching task as fol-
lows:
Given: A road network G and an error-aware representation
A(p1), A(p1p2), A(p2), . . . , A(pn−1), A(pn−1pn), A(pn)
of the vehicle trajectory.
Task: Find a curve q1, . . . , ql in G that fulfills the properties
of Lemma 1.

This formulation of the map-matching task models all
known information about the map-matching problem. In
the following Section we describe the Adaptive Clipping al-
gorithm which solves the error-aware map-matching task.

4.2 Adaptive Clipping Algorithm

Our new Adaptive Clipping algorithm that we present in
this Section is a way to localize the global weak Fréchet
map-matching algorithm. In Theorem 2 we show that in
addition it provably solves the error-aware map-matching
task as defined in Section 4.1.

The Adaptive Clipping algorithm follows an incremental
clipping approach: Our output-sensitive weak Fréchet algo-
rithm from Section 3 computes the free space graph, identi-
fies start and end vertices, and then runs Dijkstra’s algorithm
to find a shortest path from a start to an end vertex. We mod-
ify this algorithm to run in stages, each stage corresponding
to one trajectory edge. Let the trajectory be p1, . . . , pn, and
denote by pipi+1 the trajectory edge between pi and pi+1.

Stage 1.
Dijkstra’s algorithm is seeded with the start free space graph
vertices (p1, e), where e is any road network edge (or a part
of it) in A(p1). Then, Dijkstra’s algorithm is executed on the
part of the free space graph induced by the free space graph
vertices (p1, e), (v, p1p2), (p2, e

′), where v is any vertex and
e any edge in A(p1p2), and e′ is any edge in A(p2). This
computes shortest path values for shortest paths from a start
free space graph vertex (p1, e) to any vertex (p2, e

′).

Stage i for 2 ≤ i ≤ n − 1.
Dijkstra’s algorithm is seeded with the shortest path values

that have been computed in stage (i − 1) for all free space
graph vertices (pi, e

′). Then, Dijkstra’s algorithm is exe-
cuted on the part of the free space graph induced by the free
space graph vertices (pi, e), (v, pipi+1), (pi+1, e

′), where
v is any vertex and e any edge in A(pipi+1), and e′ is any
edge in A(pi+1). This computes shortest path values for
shortest paths from a start free space graph vertex (p1, e) to
any vertex (pi+1, e

′).

Traceback.
All stages store predecessor trees. In the end one shortest
path is constructed by tracing back through the predecessor
trees of all stages.
See Figure 4 for an illustration of the active regions in the
road network.

Clearly, this algorithm computes a shortest path in a re-
stricted free space graph. We claim that it also solves the
error-aware map-matching task.

Theorem 2. The Adaptive Clipping algorithm solves the
error-aware map-matching task as defined in Section 4.1.
Moreover, amongst all curves in the road network that fulfill
the properties of Lemma 1, the Adaptive Clipping algorithm
finds a curve with minimum weak Fréchet distance.

Proof. Let q1, . . . , ql be the curve in the road network that
has been computed by the Adaptive Clipping algorithm.
First we will show that this curve fulfills all conditions of
Lemma 1:

The start vertices of the algorithm are (p1, e), where e is
any road network edge (or a part of it) in A(p1). Therefore
q1 ∈ A(p1), which is condition (i). In stage n − 1 short-
est paths to an end vertex (pn, e′) are computed with e′ in
A(pn), which is condition (ii). Condition (iii) follows im-
mediately from noticing that the algorithm visits one vertex
(pi, e) for e ∈ A(pi), for every i.

Now assume that qi ∈ A(pj) and qi+k ∈ A(pj+1) for
k ≥ 0. This means that there has to be an edge e in A(pj)
that is incident to qi such that the algorithm visits the ver-
tex (pj , e). Similarly, there has to be an edge e′ in A(pj+1)
that is incident to qi+k such that the algorithm visits the ver-
tex (pj+1, e

′). In order to reach (pj+1, e
′) from (pj , e) the

algorithm has to be in stage j in which the only other al-
lowed vertices are (v, pjpj+1), (pj+1, e

′), where v is any
vertex and e any edge in A(pjpj+1). This proves (iv), and
finishes the proof that the algorithm solves the error-aware
map-matching task.

The last claim follows from noticing that the algorithm
works just like the weak Fréchet algorithm, only on a re-
stricted free space graph.

The output-sensitive running time of this algorithm is
O(

∑n−1
i=1 Mi log Mi + n), where Mi is the number of

edges and vertices of the road network in the active re-
gion A(pipi+1) whose corresponding freespace graph ver-
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tices have been traversed during the algorithm. For M =∑n−1
i=1 Mi, which is the size of the traversed free space, the

runtime can be expressed as O(M log M) + n.
Let m be the total number of edges and vertices in the

road network. In general, Mi ∈ O(m) for each i, which
yields O(mn log m) total runtime. This is, however, a very
rough upper bound. In our application the data suggests the
following two special cases: (1) It seems that most of the
times active regions A(pq) and A(p′q′) only intersect if they
are adjacent, i.e., if q = p′. In this case

∑n−1
i=1 Mi = O(m)

and the total runtime simplifies to O(m log m + n). (2) In
our application it also seems that the parts of the road net-
work in each error ellipse are very small, almost of constant
complexity. If each Mi is indeed a constant then the runtime
simplifies to O(n log n).

5 Experimental Evaluation

The objective of this section is to contrast the perfor-
mance of Adaptive Clipping with the Incremental algorithm
[3] in terms of (i) the quality of the map-matching result, (ii)
running time, and (iii) database IO operations.

5.1 Setup

The tracking data used in the experiments was obtained
by sampling vehicle movements at a rate of 30 seconds. The
dataset consists of 27 vehicle trajectories consisting of a to-
tal of 15727 position samples. The smallest and the largest
trajectory consist of 207 and 1003 edges, respectively 3. The
tracking data was collected in the municipal area of Athens
(40x40km) through the years 2000 to 2003. The road net-
work consists of 108000 vertices and 150000 edges.

The implementation platform for the various map-
matching algorithms is Java 1.5 in connection with an Or-
acle 9i database. The algorithms interface with a database
using standardized embedded SQL statements making the
map-matching algorithms comparable in terms of I/O op-
erations. The road network graph was stored by means of
tiles. Thus, only portions of the road network are kept in
main memory. Should the map-matching algorithm require
an additional network portion, the respective tile is fetched
from the database. A LRU buffer scheme is employed to
cache road network in main memory. The parameters with
respect to the Oracle DBMS are a block size of 6KB and the
database cache size of 192MB. Using the tiling approach,
the road network graph was partitioned into 16 × 16 = 256
tiles and with a LRU buffer size of 50 tiles. The tiling
parameter was established during a brief empirical study.

3The vehicle tracking data was supplied by Emphasis Telematics, a co-
operating telematics company and fleet management service provider.

However, further research into identifying the optimal pa-
rameter setting for each algorithm is necessary. The trajec-
tory data is available by means of text files. For a map-
matching task, an entire trajectory is kept in main-memory.

The Adaptive Clipping algorithm assumes a maximum
speed of v = 80km/h and a measurement error of 8m.
We approximate A(e) by its axis-aligned bounding box,
and A(pi) by the intersection of the bounding boxes of
A(pi−1pi) and A(pipi+1).

Although a Java implementation of the Global algorithm
[3] exists, its running time for the dataset used in the follow-
ing experiments was very long (several hours for one trajec-
tory) and did not permit us to perform a respective evalu-
ation. However, a brief study involving a smaller network
showed that its map-matching accuracy (cf. Section 5.2)
was in almost all cases equal to that of Adaptive Clipping.

In all charts that follow below, the sorting order of the
trajectories is according to the running time of the Adaptive
Clipping algorithm for the respective matching result (cf.
Figure 7(a)).

5.2 Accuracy

To compare the two algorithms, map-matching results
for the tracking data were evaluated using the (i) weak
Fréchet distance, (ii) the strong Fréchet distance (c.f. Sec-
tion 2.3) and (iii) the average Fréchet distance with sam-
pling distance 2m (cf. [3]). The average Fréchet dis-
tance computes an average of the distance between matched
points (in contrast to the weak or strong Fréchet distances
which compute the maximum).

All 27 data sets contain noise in the sampling rate (i.e.,
two consecutive samples are significantly more than 30 sec-
onds apart), and the road network apparently lacks roads
that actually do exist and the vehicle traversed. We cope
with this noise by chopping noise regions off the data sets
(online, during the execution of the map-matching algo-
rithm), which results in each data set now being a set of sub-
trajectories. Overall, the 27 trajectories comprise 399 sub-
trajectories, the smallest number of sub-trajectories was 4,
the largest 23, and the average 15. Notice that we still match
all the trajectory positions, we just do not consider certain
trajectory edges to be part of the data set. We generalize the
weak and strong Fréchet distances to this setting by taking
the maximum of the distances for each sub-trajectory. The
average Fréchet distance takes the average of all individual
distances.

The Adaptive Clipping algorithm computes along with
the result curve the weak Fréchet distance based on the re-
stricted free space graph. This distance is, since it considers
only a subset of reparametrizations, greater or equal to the
weak Fréchet distance between the trajectory and the result
curve in the road network. Interestingly, out of the 399 sub-
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Figure 5. Weak Fréchet distance quality mea-
sure

trajectories only 3 have a smaller weak Fréchet distance.
Also, in only one case the Fréchet distance is greater than
the weak Fréchet distance. Hence, the tracking data exhibits
special properties in which all three distances happen to al-
most always coincide. For this reason, we consider in the
following experiments only the weak Fréchet distance and
the average Fréchet distance to determine the quality of the
respective matching results.

Figures 5 and 6 determine the quality of the matching re-
sult by means of the weak Fréchet and the average Fréchet
distance, respectively. Figures 5(a) and 6(a) give the abso-
lute distances, whereas the relative quality is shown in Fig-
ures 5(b) and 6(b). For the relative distance, the Adaptive
Clipping algorithm is the benchmark. What can be readily
observed is that the Adaptive Clipping algorithm produces
matching results of superior quality. The measured weak
Fréchet distance for the Incremental algorithm is an average
of 4 times larger (worst case 18 times). Using the average
Fréchet distance, it is still on average 1.5 times larger (worst
case 5 times). The absolute distances in Figures 5(a) and
6(a) indicate that the trajectory and the matched curve ex-
hibit (i) a worst case distance (weak Fréchet) of up to 2000m
and 600m and (ii) an average distance (average Fréchet) of
up to 120m and 35m for the Incremental and the Adaptive
Clipping algorithm, respectively. This rather large distances
for the Incremental algorithm are the result of a poor match
for the intital trajectory points (cf. also [3]).
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Figure 6. Average Fréchet distance quality
measure

5.3 Speed

The speed of computation is measured in terms of (i) the
algorithmic running time and (ii) the number of database IO
operations.

Figures 7 and 8 give the overall running times and time
attributed to database access, respectively. Again, absolute
and relative times (percentages) are shown, with the Adap-
tive Clipping algorithm serving as a benchmark for the In-
cremental algorithm.

An important objective for this work was to use it for
real-time map-matching of tracking data. Figure 7(a) shows
that matching the smallest trajectory, which consists of 207
position samples takes 40s (50s). With a sampling rate
of 30s, this data was collected over a period of 6210s (1h
40min). Thus, the sampling rate could be as low as 0.2s
(0.25s) (for 207 samples, the collection period would then
be equal to the running times of the map-matching algo-
rithms) for the Adaptive Clipping (Incremental algorithm)
still to be able to keep up with the incoming tracking data
stream.

In comparing the two algorithms, surprisingly in almost
all cases, Adaptive Clipping runs faster than the Incremental
algorithm (up to 20%). According to the asymptotic running
times of the algorithms, Adaptive Clipping - O(n log n) and
Incremental algorithm - O(n) [3], with n being the number
of trajectory edges, the opposite was expected. However,
the O(n) time of the Incremental algorithm absorbs the lo-
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Figure 7. Total running times of the map-
matching algorithms

cal look-ahead cost (constant factor), which in practice sig-
nificantly affects the running time.

A large portion of the running time (75% to 85%) is at-
tributed to database access. Hence, this time largely deter-
mines the overall running time. However, interesting devia-
tions (cf. trajectories 10 to 15) exist. When Adaptive Clip-
ping is slower or equal in terms of database access time, the
overall relative running time of Adaptive Clipping is even
worse, i.e., the algorithm draws its performance advantage
largely from a more intelligent choice of which portion of
the road network to load from the database. The number of
logical IO operations is shown in Figure 9. Logical IO is
the sum of the number of buffers read from disk and from
the memory cache. Using a buffer cache size of 192MB the
number of disk accesses was kept low. To force disk ac-
cesses, we conducted an experiment with a smaller cache
size (1MB). The charts were similar to what is presented
in 9 and, most importantly, did not present different perfor-
mance characteristics relative between the trajectories and
in relation the running times of Figure 8. The number of IO
operations show a more balanced picture between the two
algorithms but still confirm the performance advantage of
Adaptive Clipping. Comparing Figures 9(b) and 8(b) shows
that the running time attributed to database access is not
solely determined by the number of IO operations but also
by additional factors related to query execution.

Overall, the experiments show that Adaptive Clipping
with respect to the Incremental algorithm (i) produces bet-
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Figure 8. Running times attributed to
database access

ter matching results by (ii) in most cases having a lower
running time. Both algorithms are further well suited to per-
form real-time map-matching for tracking data collected at
a typical sampling rate of 30s. The sampling rate could be
as low as 0.2s to still fulfill the real-time requirement.

6 Conclusions and Future Work

Map-matching algorithms are an enabling technology to
the use of vehicle tracking data for traffic assessment and
related applications such as routing. To possibly include
a large variety of datasets and to guarantee the timeliness
of the data, the key objective in this work is to provide
a fast and accurate map-matching algorithm. We present
the Adaptive Clipping algorithm, which combines the best
of both worlds of previously introduced algorithms. It is
fast in that (i) it intelligently uses tracking data metadata
in the form of error estimates to prune the road network
graph in a provably correct manner and (ii) employs an
output-sensitive optimization for Fréchet-based algorithms.
It is accurate since it (i) provably solves the error-aware
map-matching task, and (ii) offers the quality guarantee
of finding a curve which minimizes the weak Fréchet dis-
tance to the vehicle trajectory among all possible curves
in the road network. The performance study establishes
the running time of Adaptive Clipping to be lower than
that of the fastest available algorithm, the Incremental al-
gorithm. Its output-sensitive asymptotic running time is
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Figure 9. Number of database IO operations

O(M log M + n), where 1 ≤ M ≤ mn is the size of the
traversed free space. Also, the quality of the matching re-
sult is in all cases superior to that of the Incremental algo-
rithm. Overall, Adaptive Clipping is a fast algorithm pro-
ducing high-quality matching results and thus can be used
in a real-time tracking data collection scenario.

The directions for future work are as follows. Hav-
ing reached a certain level of maturity, Adaptive Clipping
should be applied as a map-matching algorithm in a life data
collection scenario. Also, given that in such a scenario typ-
ically many concurrent data streams exist, we have to eval-
uate of how well the overall architecture (DBMS and algo-
rithm) scales with concurrent map-matching threads. With
respect to algorithmic improvements, we will explore and
evaluate the use of spatial range queries to speed up the
computation of the active regions. Moreover, we plan on
utilizing additional FCD data components as metadata in the
algorithm, e.g., use collected speed information for the def-
inition of the active regions. We are currently working on
assessing the quality of various map-matching algorithms
by using artificially generated trajectories to conduct the ul-
timate quality test of comparing the result trajectories of the
various map-matching algorithms with the actual original
curve.
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