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ABSTRACT
Urban areas provide us with a treasure trove of available data cap-

turing almost every aspect of a population’s life. This work focuses

on mobility data and how it will help improve our understanding of

urban mobility patterns. Readily available and sizable farecard data

captures trips in a public transportation network. However, such

data typically lacks temporal signatures and as such the task of in-

ferring trip semantics, station function, and user clustering is quite

challenging. While existing approaches either focus on station-

level or user-level signals only, we propose a Station-to-User (S2U)

transfer learning framework, which augments user-level learning

with shared temporal patterns learned from station-level signals.

Our framework is based on a novel, so-called “Tidal-Regularized

Non-negative Matrix Factorization” method, which incorporates

a-priori tidal traffic patterns in generic Non-negative Matrix Fac-

torization. To evaluate our model performance, a user clustering

stability test based on the classical Rand Index is introduced as a

metric to benchmark different unsupervised learning models. Using

this metric, quantitative evaluations on three real-world datasets

show that S2U outperforms two baselines methods by 7 − 21%. We

also provide a qualitative analysis of the user clustering and station

functions for the Washington D.C. metro and show how S2U can

support spatiotemporal urban analytics.
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1 INTRODUCTION
With two thirds of the population living in urban areas by 2050

[21], our future is characterized by mega cities in which urban

mobility becomes a critical concern. For example, according to the

2019 INRIX Traffic Scorecard [25], people in large cities across the

world waste an average of more than 150 hours stuck in traffic per

year, wasting hundreds of billions of USD and creating unnecessary

greenhouse gas emissions. For these reasons, many recent stud-

ies have focused on modeling and predicting human mobility in

urban areas (cf. [29]). Paramount to improving urban mobility is

to understand why people travel. Directly collecting trip purpose

data through travel surveys is a long-standing and time intensive

practice [20]. Mobile computing and crowdsourcing data [8–10, 31]

provides us with new means to collect such information. Yet, a data

driven approach is challenging, as available trip information does

not typically capture trip semantics such as the trip purpose.

The goal of this work is to provide a machine learning framework

to infer the trip purpose from, for example, commonly available

farecard data from public transportation systems such as the metro.

Each record represents a trip and is of the form <Card ID, Entry

Station, Arrival Station, Entry Time, and Arrival Time>. Assuming

that how people utilize the metro in urban areas reflects some

underlying behavior, it is possible to utilize machine learning to

discover common threads and patterns with respective to user

behavior. For example, Figure 1(a) shows the daily trip of a single

user (identified by Card ID). Each arrow is a trip between stations

with its associated timestamp. There is only one timestamp for

a trip because the entry or exit time are not always available in

different farecard systems and most schedules of metro systems run

so tight that duration of trips varies little and with little interest in

our problem. In our toy example, the user enters the first station

at 6 ∶ 14𝑎𝑚, after a stop enters another station at 7 ∶ 25𝑎𝑚 to go

to the third station, which likely brings him to his work place. In

the afternoon, another trip happens at 5 ∶ 26𝑝𝑚 going back to the

second station. The user might have dinner there and then travels

at 7 ∶ 13𝑝𝑚 to the fourth station, which could be the airport to catch

a flight. With many such user trips, we can aggregate and group

these trips by their origin-destination (OD) pairs in Figure 1(b), and

considering the temporal trip distribution of users in Figure 1(c) we

can make the following observations.

(1) Tidal Patterns:Using four origin-destination pairs of theWash-

ington D.C. metro example in Figure 1(b), we observe morning

peaks in the direction of 𝐴 → 𝐵, commonly paired with after-

noon peaks in the opposite direction 𝐵 → 𝐴. This phenomenon

is referred to as a tidal traffic pattern (cf. [1, 28]).
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Figure 1: (a) Ametro trip example - each arrow indicates a trip and timestamp; (b) four station pairs and their symmetric forwards (blue lines)
and backwards (orange lines) passenger flows known as “tidal traffic”; (c) trip flows of two frequent travellers (Users 1&2 - blue lines) show a
strong recurrent commuting pattern, while Users 3&4 have a pattern that is harder to predict.

(2) Flow Outliers: The second and fourth row in Figure 1 (b) show

station pairs with non-symmetric patterns. For example, on

Day 4, the afternoon return-flow from Station D to C is much

lower than what we expected from the respective morning peak.

Stations G and H have additional spikes throughout the day,

which may be due to non-symmetric activities such as tourism

or special events that are not observable in farecard data.

(3) Commuters: Many metro users are commuters, such as the

users corresponding to the top two rows in Figure 1 (c), have a

morning/afternoon trip-return trip pattern.

(4) User Outliers: In Figure 1 (c), Users 3 and 4 have irregular trips.
On Day 4, User 4 has only a single trip without a return trip.

Inferring trip purpose or typology of such users is challenging.

Based on these observations, we can abstract and highlight a num-

ber of unique challenges for inferring the trip purpose from farecard

data. (1) The function of a metro station is user dependent, as the

home station of one user may be the work station of another, and

the “third place”[22] or the recreation station of yet another user.

(2) Matching farecards to users is non-trivial, as one user can have

multiple cards and one card can be used by different users. (3)

Users making irregular trips are hard to categorize and make it

difficulty to infer a trip purpose. These challenges blur the signal of

each individual user and make inferring the trip purpose through a

straightforward application of machine learning challenging and

less convincing. To address these challenges, we propose a novel

“Station-to-User (S2U)” transfer learning framework along with a

domain-specific “Tidal-Regularized Non-negative Matrix Factor-

ization (TR-NMF)” machine learning algorithm. This framework

defines similarities of users by mapping them to a latent feature

space learned from stations. Creation of this feature space exploits

knowledge about “tidal” behavior of users having recurrent morn-

ing and afternoon peaks [3]. We also propose a clustering stability

test as a cross-model evaluation metric to promote future bench-

marking for station and user clustering research.

The remainder of this paper is organized as follows: After sur-

veying the related work in Section 2, we introduce the datasets and

formalize the problem of explainable user clustering in Section 3.

Section 4 introduces our new S2U transfer learning framework with

its novel TR-NMFMLmodel to achieve explainable clustering based

on trip semantics. Section 5 provides a quantitative and qualita-

tive evaluation of the proposed approach. Finally, Section 6 gives

conclusions and provides directions for future research.

2 RELATEDWORK
Early works on metro farecard data focus on descriptive statistics to

characterize tidal patterns and dominant stations [10, 17]. Solutions

have been proposed to infer the function of regions of a city based

on individual mobility data in [36]. This work uses topic modeling

to map point of interest and user visits of a region to latent topics.

The latent topics that are leveraged to assess similarity between

regions. Following this approach, it has been shown in [37] that the

function of a region changes over time and that it is paramount to

consider temporal dynamics. Specifically using farecard data, latent

factor based solutions can recognize daily patterns for weekdays,

weekends, and holidays [35].

Related to our approach, a recent matrix factorization based

approach to infer the temporal functions of regions (or stations)

has been proposed in [32]. This approach has been leveraged to

identify tidal patterns of human mobility in [28]. What these efforts

have in common is to infer the function of regions or stations. Our

goal is to go a step further and to identify the “function” or signature

of individual users to assess the similarity of users and to cluster

them into groups of similar behavior. Thework in [8] uses trajectory

data and stop points to infer user-specific activities. However, using

only origin, destination, and time information available in farecard

data, it is not possible to infer stops at specific points of interest to

directly infer the purpose of a trip.

Non-negative Matrix Factorization (NMF) based solutions have

also been proposed for other problems related to urban mobility,

such as predicting road traffic [11, 33] and predicting metro traffic

demand [6]. These works provide powerful solutions to predict

traffic, but lack explanatory power. To capture spatial and temporal

mobility patterns, existing efforts [10, 23, 27] use NMF to explain

temporal patterns in daily life, such as commuting pattern that con-

centrates on mornings and afternoons, and explains the function

of urban areas. In a recent work [30], a context-aware tensor de-

composition is used to explain urban mobility over space and time

using a tensor factorization approach. These works model similar

spatial and temporal urban dynamics, such as days having similar

mobility patterns and regions having similar function. However,

they do not for a similarity assessment and categorization of users

and passengers. In contrast, our approach unwraps the signatures of

individual metro users and to cluster them so to explain individual

users and the purpose of their trips.
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Figure 2: Station-to-User (S2U) Transfer Learning Framework

3 PROBLEM DEFINITION
This section formally defines a trip database and the data structures

obtained from a trip database that will later be factorized to cluster

stations and users.

Definition 3.1 (Trip Database). Let 𝒰 be a set of metro users,

let 𝒮 be a set of metro stations, let 𝒪𝒟 = 𝒮 × 𝒮 denote the set

of all origin-destination station pairs, and let 𝒯 be a set of time

intervals or epochs. A trip database 𝒟ℬ is a collection of tuples

(𝑢, (𝑜,𝑑), 𝑡) ∈ 𝒰 × 𝒮 × 𝒮 × 𝒯 , where 𝑢 ∈ 𝒰 is a user, (𝑜,𝑑) ∈ 𝒪𝒟
is an OD-pair, 𝑜 ∈ 𝒮 is the origin station, 𝑑 ∈ 𝒮 is the destination

station, 𝑡 ∈ 𝒯 is the start time of the trip.

Using the trip database, we can define a temporal flow matrix for

all OD-pairsm which aggregates trip data and stores the number

of trips, grouped by OD-pairs, for each time epoch.

Definition 3.2 (OD-pair Temporal Flow Matrix). An OD-pair tem-

poral flow matrix is denoted as𝑉𝑉𝑉 ∈ R⋃︀𝒪𝒟⋃︀×⋃︀𝒯 ⋃︀, such that:

𝑉𝑉𝑉
(𝑜,𝑑)∈𝒪𝒟,𝑡∈𝒯 = ⋃︀{𝑥 ∈ 𝒟ℬ⋃︀𝑥 .𝑜 = 𝑜 ∧ 𝑥 .𝑑 = 𝑑 ∧ 𝑥 .𝑡 = 𝑡}⋃︀

We further define a temporal flow matrix for each user that

aggregates the number of trips per user grouped by time epochs

independent of individual stations.

Definition 3.3 (User Temporal Flow Matrix). is denoted as 𝑈𝑈𝑈 ∈
R⋃︀𝒰 ⋃︀×⋃︀𝒯 ⋃︀, matrix such that:

𝑈𝑈𝑈𝑢∈𝒰 ,𝑡∈𝒯 = ⋃︀{𝑥 ∈ 𝒟ℬ⋃︀𝑥 .𝑢 = 𝑢 ∧ 𝑥 .𝑡 = 𝑡}⋃︀

Given an OD-pair temporal flow matrix𝑉𝑉𝑉 and a user temporal

flow matrix𝑈𝑈𝑈 , our goal is to cluster users such that (latent) features

extracted from temporal flow are maximized between users of the

same cluster. Given these clusters, our goal is to evaluate these

features of a cluster to explain the function of clusters and the

latent semantic of users and their trips.

4 STATION-TO-USER (S2U) TRANSFER
LEARNING FRAMEWORK

To better cluster users based on the purpose of their trips, we

propose a framework to learn the temporal signature between

stations and users in a transfer learning manner. The diagram of

this Station-to-User (S2U) Learning Framework is shown in Figure 2

and has three main steps.

Step 1: Tidal-Regularized Matrix Factorization: Factoriza-
tion of the OD-pair temporal flow matrix𝑉𝑉𝑉 (cf. Definition 3.2) to

find latent temporal features𝐻𝐻𝐻 and latent trip features𝑊𝑊𝑊 . To obtain

interpretable features, we employ a tidal-regularized loss function

to better fit the (empirically grounded) tidal pattern observed in ur-

ban mobility contexts (“commuters”). More details on this approach

are provided in Section 4.1.

Step 2: Explainable Station Pattern Generation: Semantics-

based aggregation of latent trip features𝑊𝑊𝑊 to reconstruct semantics-

based inflows and outflows at each station. The reconstructed flows

indicate, for example, the degree to which a station is a work des-

tination (inflow) or a home destination (outflow). Details of this

approach are given in Section 4.2.

Step 3: Explainable User Clustering:Mapping temporal flow

of users𝑈𝑈𝑈 to the space spanned by shared temporal signatures𝐻𝐻𝐻

learned from decomposing the station flow matrix using transfer

learning. This yields a user weight matrix𝑊𝑊𝑊
′
containing the tem-

poral features of each user. The reason for mapping users to the

station space is that tidal features of stations are more stable and

less noisy as shown in our experimental evaluation. This approach

allows us to provide explainable behavioral differences between

users, even if only a few observed trips available. More details on

this step are found in Section 4.3.

4.1 Tidal-regularized Non-negative Matrix
Factorization (TF-NMF)

We decompose matrix𝑉𝑉𝑉 ∈ R⋃︀𝒪𝒟⋃︀×⋃︀𝒯 ⋃︀ into two non-negative matri-

ces𝑊𝑊𝑊 ∈ R⋃︀𝒪𝒟⋃︀×𝐾 and𝐻𝐻𝐻 ∈ R𝐾×⋃︀𝒯 ⋃︀, such that

𝑉𝑉𝑉 ≈𝑊𝑊𝑊𝐻𝐻𝐻 =∶ ˆ𝑉𝑉𝑉 , (1)

where 𝐾 is a positive integer, 𝒪𝒟 is the set of origin-destination

pairs, and 𝒯 is the set of temporal epochs (c.f. Definition 3.1). To

find𝑊𝑊𝑊 and𝐻𝐻𝐻 we minimize a loss function ℒ defined by the mean

square approximation error and the 𝑙1 and 𝑙2 norms of𝑊𝑊𝑊 and𝐻𝐻𝐻 as

follows [13]:

ℒ′ =∑𝑖∑𝑡
(𝑉𝑉𝑉 𝑖,𝑡 − ˆ𝑉𝑉𝑉 𝑖,𝑡 )2

+ 𝛼𝜂(∏︁𝑊𝑊𝑊 ∏︁1 + ∏︁𝐻𝐻𝐻∏︁1) + 𝛼(1 − 𝜂)(∏︁𝑊𝑊𝑊 ∏︁2 + ∏︁𝐻𝐻𝐻∏︁2),
(2)

where ∏︁ ⋅∏︁1 is the 𝑙1 norm of a matrix, ∏︁ ⋅∏︁2 is 𝑙2 (or Frobenius norm)

of a matrix, and 𝛼,𝜂 are hyper-parameters.

Motivated by a tidal pattern observed in urban contexts such as

for traffic and passenger volumes (cf. [1, 26, 28]), we observe that

this pattern has strong temporal peaks, with the morning commute

happening before 11𝑎𝑚, and a symmetric afternoon commute after

2𝑝𝑚. We incorporate this a-priori knowledge into our NMF approach

by adding a tidal-regularized (TR) loss to the generic NMF
loss function. It acts as a soft regularization to guide learned

temporal signatures towards a better fit to such a tidal pattern. To

understand the tidal regularized loss, we partition factor matrices

𝑊𝑊𝑊 and𝐻𝐻𝐻 to separate tidal features corresponding to daily morning

and afternoon peaks. This approach is illustrated in Figure 3 and

described in the following.

(i) Grouping latent features by temporal semantics.Generic
NMF does not consider (or understand) temporal ordering, as tem-

poral epochs (columns in𝑈𝑈𝑈 and𝑉𝑉𝑉 ) are treated as nominal (but not

ordinal) variables. As such, we sort latent features by their temporal

semantics to understand and guide the learning process. We ex-

ploit that matrix𝐻𝐻𝐻 provides the temporal semantics of each latent

feature. It describes each temporal epoch (such as each hour), by
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Figure 3: Partitions of matrix𝑊𝑊𝑊 and matrix𝐻𝐻𝐻 by Symmetric OD-Pairs and temporal ordering, and compositions of tidal-regularized loss

𝐾 latent features. Assuming tidal patterns, we expect some latent

features to have larger weights for morning epochs, and some la-

tent features to have larger weights in the afternoon partition. The

example in the upper right corner of Figure 3 shows the temporal

semantics of the Washington D.C. metro data obtained from NMF

using 𝐾 = 6 latent features. Latent features 1 and 2, have morning

hour semantics. Features 5 and 6 relate to afternoon hours. Feature

3 relates to mid-day activities and Feature 4 captures late afternoons

and evenings.

We swap lines in 𝐻𝐻𝐻 such that the first 𝑘
′ ≤ 𝐾⇑2 rows corre-

spond to the morning features, the last 𝑘
′
rows correspond to the

afternoon features, and the middle 𝐾 − 2𝑘′ rows capture all other
(non-commuting) features. 𝑘

′
is a hyper-parameter of our model.

To ensure that this swapping of columns in𝐻𝐻𝐻 does not affect the

factor product𝑉𝑉𝑉 , we perform the same swap orders among columns

of𝑊𝑊𝑊 using the observation based on Lemma A.1 in Appendix A.

In the following, we will exploit this assumption to regularize the

matrix factorization to leverage tidal patterns for a more accurate

and more explainable factorization model.

(ii) SymmetricOD-Pairs:Next, we exploit the symmetry across

origin-destination pairs in a sense that we expect an OD-pair (𝑜,𝑑)
to have a flow symmetric to its inverse OD-Pair (𝑑,𝑜). This is a con-
sequence of most passenger flow being generated by commuters.

For example in Figure 1(b), for an OD pair that is mainly used in

the morning, the symmetric OD pair will be mainly used in the af-

ternoon. We drop all the OD-pairs having 𝑜 = 𝑑 , i.e., users entering
and exiting the same station. A similar swap is done to make sure

the upper half of rows in𝑊𝑊𝑊 meets the requirement of 𝑜 < 𝑑 and

the lower half of rows in𝑊𝑊𝑊 includes all OD-pairs with 𝑜 > 𝑑 as

illustrated in in the upper left of Figure 3.

With this notation, we will introduce different partitions for

normal weight matrix𝑊𝑊𝑊 and temporal feature matrix𝐻𝐻𝐻 to allow

semantics-based regularization.

(iii) Partitions of latent feature matrix 𝐻𝐻𝐻 with subsets of
latent features by temporal ordering. For each row of 𝐻𝐻𝐻 , we

additionally divide the columns into two subsets: a morning subset
and an afternoon subset (illustrated in the center of Figure 3). The

columns of𝐻𝐻𝐻 represent time of day 𝑡 ∈ 𝒯 (such as each hour of a

day), so the morning subset includes all hours before or equal to 𝑡
′

hour and the afternoon subset includes all hours after 𝑡
′
hour, where

𝑡
′
is a hyper-parameter. We simply select 𝑡

′ = 12 as noon by default.

Finally, we get five partitions of𝐻𝐻𝐻 based on (i) and this subsetting:

𝐻𝐻𝐻
1
,𝐻𝐻𝐻

2
,𝐻𝐻𝐻

3
,𝐻𝐻𝐻

4
, and the middle rows for non-commuting features.

This partitioning ensures that the afternoon subsets of morning

signatures𝐻𝐻𝐻
2
and the morning subsets of afternoon signatures𝐻𝐻𝐻

3

are strongly regularized to zero, or are directly set to zero during

training. 𝐻𝐻𝐻
1
, 𝐻𝐻𝐻

4
and the middle signatures are trained without

any regularization. Such regularization is shown by the expression

∑𝑘,𝑡 𝐻𝐻𝐻2

𝑘,𝑡 +∑𝑘,𝑡 𝐻𝐻𝐻
3

𝑘,𝑡 in the ellipsoid of Figure 3. It is the first part

of our proposed Tidal-Regularized (TR) loss.

(vi) Temporal partitions of weight matrix𝑊𝑊𝑊 . Based on (i)

and (ii), as a result of swapping rows and columns, we get different

partitions for𝑊𝑊𝑊 and𝐻𝐻𝐻 as illustrated in Figure 3. For matrix𝑊𝑊𝑊 , we

subdivide the columns of𝑊𝑊𝑊 into three groups corresponding to 𝑘
′

morning features (left), 𝑘
′
afternoon features (right), and 𝐾 − 2𝑘′

non-commuting features (middle). The upper half of rows in𝑊𝑊𝑊

captures OD pairs with 𝑜 < 𝑑 , while the lower half is for OD pairs

with 𝑜 > 𝑑 .
Components of Tidal-Regularized (TR) loss.We can now formalize

the three components of TR loss (three arc lines pointing to∑ sign

before TR loss ℒ′′ on the right side of Figure 3) as follows:

● Component 1 - zero-regularized𝐻𝐻𝐻
2
and𝐻𝐻𝐻

3
;

● Component 2 - minimizing the differences between a OD-pair

(𝑜,𝑑)’s total morning commuting flow and its symmetric OD

pair’s (𝑑,𝑜) afternoon commuting flow;

● Component 3 - minimizing the differences between the OD-pair

(𝑜,𝑑)’s total afternoon commuting flow and its symmetric (𝑑,𝑜)
morning commuting flow.

Next, we will explain each component in detail. For Component

1 (top arc), its goal is to create partitions 𝐻𝐻𝐻
2
and 𝐻𝐻𝐻

3
with zeros

or close to zero because of our definition of temporal signatures.

𝐻𝐻𝐻
2
are the afternoon subsets of morning commuting signatures,

so𝐻𝐻𝐻
1
should be the part to learn the morning peaks of commuter

flows. For the same reason,𝐻𝐻𝐻
3
are the morning subsets of afternoon

commuting signatures, so𝐻𝐻𝐻
4
should contain the afternoon peaks

of commuter flows. We use a zero-regularization to penalize any
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element that is not zero, as follow:

∑𝑘,𝑡
𝐻𝐻𝐻

2

𝑘,𝑡 +∑𝑘,𝑡
𝐻𝐻𝐻

3

𝑘,𝑡

For Component 2 (middle arc), we first reconstruct the matrix of

all (𝑜,𝑑) morning trips as𝑊𝑊𝑊
1
𝐻𝐻𝐻

1
. Then, we accumulate all times 𝑡

during the morning to get only one total flow for each (𝑜,𝑑) as

𝑟𝑟𝑟
𝑚𝑜𝑟𝑛𝑖𝑛𝑔

(𝑜,𝑑)
=∑𝑡

′

𝑡=1
(𝑊𝑊𝑊 1

(𝑜,𝑑),𝐻𝐻𝐻
1

,𝑡)

Similarly, afternoon commuting flows of symmetric OD pairs (𝑑,𝑜)
are obtained by

𝑟𝑟𝑟
𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑜𝑛

(𝑑,𝑜)
=∑𝑇

𝑡=𝑡 ′+1
(𝑊𝑊𝑊 4

(𝑑,𝑜),𝐻𝐻𝐻
4

,𝑡)

The next step is to obtain, for an origin destination pair (𝑜,𝑑), the
absolute differences of (𝑜,𝑑)’s morning flow 𝑟𝑟𝑟

𝑚𝑜𝑟𝑛𝑖𝑛𝑔

(𝑜,𝑑)
and their

symmetric OD pair (𝑑,𝑜) afternoon flows 𝑟𝑟𝑟
𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑜𝑛

(𝑑,𝑜)
. We use the

squared difference (𝑟𝑟𝑟𝑚𝑜𝑟𝑛𝑖𝑛𝑔
(𝑜,𝑑)

−𝑟𝑟𝑟𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑜𝑛
(𝑑,𝑜)

)2 to penalize differences
betweenmorning peaks and symmetric afternoon peaks. This penal-

ization helps to ensure that the matrix factorization is regularized

to maintain the symmetric tidal behavior that we have observed

empirically in Figure 1. Then, all squared differences for OD-pairs

with 𝑜 < 𝑑 are summed up as the 2
𝑛𝑑

component. The squared

differences are summed up and multiplied by a hyper-parameter 𝛾

as for the TR loss. If this component is substantial during training,

the model will be penalized and be forced to optimize towards the

direction of lowering such a penalty.

Component 3 (bottom arc) is computed analogously for themorn-

ing commute of (𝑑,𝑜)s as follows.

𝑟𝑟𝑟
𝑚𝑜𝑟𝑛𝑖𝑛𝑔

(𝑑,𝑜)
=∑𝑡

′

𝑡=1
(𝑊𝑊𝑊 3

(𝑑,𝑜),𝐻𝐻𝐻
1

,𝑡).

The afternoon commute of their symmetric OD-pairs (𝑜,𝑑) is cal-
culated as

𝑟𝑟𝑟
𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑜𝑛

(𝑜,𝑑)
=∑𝑇

𝑡=𝑡 ′+1
(𝑊𝑊𝑊 2

(𝑜,𝑑),𝐻𝐻𝐻
4

,𝑡).
Then, all squared differences between symmetric OD-pairs are

summed up and multiplied by 𝛾 and added to TR loss.

In summary, the Tidal-regularized loss is formulated by summing

up all three components as follows:

ℒ′′ = 𝛾∑𝑑≤⋃︀𝒮⋃︀−1,𝑜<𝑑
((𝑟𝑟𝑟𝑚𝑜𝑟𝑛𝑖𝑛𝑔
(𝑜,𝑑)

− 𝑟𝑟𝑟𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑜𝑛
(𝑑,𝑜)

)2

+ (𝑟𝑟𝑟𝑚𝑜𝑟𝑛𝑖𝑛𝑔
(𝑑,𝑜)

− 𝑟𝑟𝑟𝑎𝑓 𝑡𝑒𝑟𝑛𝑜𝑜𝑛
(𝑜,𝑑)

)2) + 𝜌(∑𝑘,𝑡
𝐻𝐻𝐻

2

𝑘,𝑡 +∑𝑘,𝑡
𝐻𝐻𝐻

3

𝑘,𝑡),
(3)

where 𝜌,𝛾 are hyper-parameters used to tune the algorithm.

Finally, the total loss ℒ is obtained by summing up, both, the

generic NMF loss and our newly-proposed TR loss as follows:

ℒ = ℒ′ +ℒ′′ .
We use Tensorflow1

and utilize the Autodiff 2
features, which

automatically compute the gradient update rules to optimize𝑊𝑊𝑊

and 𝐻𝐻𝐻 . To terminate training, we either use a threshold for the

reconstruction error ⋃︀⋃︀𝑉𝑉𝑉 − ˆ𝑉𝑉𝑉 ⋃︀⋃︀1 (which tells us the sum of absolute

difference between raw and reconstructed flow matrix), or use

a fixed number of training steps. Post training, we convert the

1www.tensorflow.org
2https://www.tensorflow.org/tutorials/customization/autodiff

latent representation to a unit vector (cf. [34]) and also update the

corresponding normalized weight𝑊𝑊𝑊 as follows:

ℎ𝑘,𝑡 = ℎ𝑘,𝑡 ⇑
{︂
∑𝑇

𝑡
ℎ2
𝑘,𝑡
, 𝑤𝑖,𝑘 =𝑤𝑖,𝑘

{︂
∑𝑇

𝑡
ℎ2
𝑘,𝑡
,

where𝑤𝑖,𝑘 is the element in 𝑖
𝑡ℎ

row and 𝑘
𝑡ℎ

column of𝑊𝑊𝑊 , and ℎ𝑘,𝑡

is the element in 𝑘
𝑡ℎ

row and 𝑡
𝑡ℎ

column of 𝐻𝐻𝐻 . The complexity

analysis of our algorithm is shown in Appendix B and potential

early stopping to accelerate algorithm is shown in Appendix C.

4.2 Explainable station pattern generation
based on latent temporal signatures

4.2.1 Relating temporal signatures to station functions: We

reconstruct in- and outflows based on each semantic-based tem-

poral signature group (defined in Part (i) of Section 4.1) for each

station (cf. [4, 10]). For example, the morning inflow of a station

means it attracts people for, e.g., work, and we refer to this as

the “attractivity” of a station. Based on our previous arguments on

TR loss, afternoon outflow for the same station indicates people

leaving from work and it is symmetric to the morning inflow. A

morning outflow of station generates people, e.g., homes and hotels.

We refer to this as “generativity” function of a station. Different

from existing works, we propose the novel TR Loss, which strongly

guides learned temporal signatures to fit a-priori tidal patterns.

The temporal signatures gain more explanatory power for differ-

ent reconstructed in- and outflows of stations. Moreover, we can

distinguish between different types of commuting (flexible work

hours, etc.) for a station using each individual temporal signature

(a row of𝐻𝐻𝐻 ) through a temporal signature’s peak hour.

4.2.2 Semantics-based aggregation: Semantics-based aggrega-

tion is a procedure to get explainable station functions for each

station, for example, Station 𝐴 ∈ 𝒮 in Figure 4. Aggregation is

performed for each hour ℎ of the day for which data is found in

the corresponding column 𝑖 in matrices𝑊𝑊𝑊
1
and𝑊𝑊𝑊

3
. For example,

for ℎ = 7𝑎𝑚 and 𝑖 = 1, we select a morning subset of one specific

temporal signature (a 7𝑎𝑚-peak temporal signature𝐻𝐻𝐻
1

1,⋅ in Figure 4)

according to the partitions of temporal signatures (defined in Part

(iii) in Section 4.1). We also select from the column of partition

𝑊𝑊𝑊
1
that corresponds to the selected hour of the day ℎ (weights of

the peaking signature at that time) for all the other OD-pairs (𝐴, ⋅)
that originated from station 𝐴, like (𝐴, 𝐵), (𝐴,𝐶), (𝐴,𝐷), noted as

𝑊𝑊𝑊
1

(𝐴,⋅),𝑖
. Then, we can reconstruct the outflow matrix for this spe-

cific temporal signature as:

𝑉𝑉𝑉
𝐴−𝑜𝑢𝑡
𝑖 =𝑊𝑊𝑊 1

(𝐴,⋅),𝑖𝐻𝐻𝐻
1

𝑖,⋅

The total generativity 𝐺𝑒𝑛ℎ(𝐴) of station 𝐴 at time ℎ is computed

as the sum of all elements in reconstructed flow matrix as follows:

𝐺𝑒𝑛ℎ(𝐴) =∑𝑖,𝑡
𝑉
𝐴−𝑜𝑢𝑡
𝑖,𝑡

For example, the 7𝑎𝑚-peak generativity of Station 𝐴 is

𝐺𝑒𝑛7𝑎𝑚(𝐴) =∑
1,𝑡
𝑉
𝐴−𝑜𝑢𝑡
1,𝑡 ,

as column 1 of𝑊𝑊𝑊
1
corresponds to the 7𝑎𝑚 flow.

An analogous approach is used to compute the attractivity of

Station 𝐴 at time ℎ. We first select h-peaking weights of all OD-

pairs (⋅,𝐴) destined for station 𝐴, like (𝐵,𝐴), (𝐶,𝐴), (𝐷,𝐴), noted
5

www.tensorflow.org
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Figure 4: Semantics-based aggregation operation to get explainable
generativity and attractivity station functions

as𝑊𝑊𝑊
3

(⋅,𝐴),𝑖
. Then, an inflow matrix 𝑉𝑉𝑉

𝐴−𝑖𝑛 =𝑊𝑊𝑊 1

(⋅,𝐴),𝑖
𝐻𝐻𝐻

1

𝑖, is recon-

structed. The total attractivity of station 𝐴 at time ℎ is defined

as: ∑𝑖,𝑡 𝑉𝑉𝑉𝐴−𝑖𝑛𝑖, 𝑗 . The recovered in- and outflows inherit the seman-

tic meaning of different stations. Stations with large early-hour

in-flows are attractive places for work, where stations with large

early-hour outflows are strong generative places such as residen-

tial areas. Section 5.3 gives examples for such a station function

analysis in Washington D.C.

4.3 Using Temporal Station Signatures for
Explainable User Clustering

To explain the semantics of users, we project their trips to the

temporal signature space defined for stations in Section 4.1. In

this section, we will first introduce how such transfer learning is

conducted so that a stable and explainable user clustering can be

found. Then, we introduce a novel Clustering Stability Test that can

be used to universally judge the stability performance of methods

with different internal procedures.

4.3.1 Transfer learning: Similar to general transfer learning con-

cepts, our idea is that latent temporal signatures found in stations

define the common travel patterns of single users. For example, if

a station has a peak-outflow at 5𝑝𝑚, and a user frequently arrives

at that station at 5𝑝𝑚, we infer that the trip purpose of the user

likely corresponds to the purpose of the station. For another user

with a trip at 4𝑝𝑚, the weight for the 5𝑝𝑚-peak temporal signature

would not be zero, but a value smaller than the previous user. The

small weight value indicates a small probability that this user has

a 5𝑝𝑚-peak travel pattern. This transfer learning approach learns

temporal signatures from the station flow matrix decomposition

and applies them to decompose the raw user temporal flow matrix

𝑈𝑈𝑈 . To do this, we implement a multiplicative update rule to project a

user flow vector to the latent space defined by the learned temporal

signatures as follows:

𝑤
′(𝑖+1)

𝑢,𝑘
←𝑤

′(𝑖)

𝑢,𝑘

(𝑈𝑈𝑈𝑢,⋅𝐻𝐻𝐻𝑇 )𝑢,𝑘
(𝑊𝑊𝑊 (𝑖)𝐻𝐻𝐻𝐻𝐻𝐻𝑇 )𝑢,𝑘

, (4)

𝔘(#)

𝔘(%)

𝔘(%&#)

training 
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…

𝑋(%)
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𝑋(()…

𝑋(%)𝑋(#) 𝑋(() …
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𝐴𝑅𝐼(%,#) 𝐴𝑅𝐼(%,()

… …
…

𝐶𝑆𝑇mean / median
Clustering 

Stability Test

Figure 5: Clustering stability test

where𝐻𝐻𝐻 is the same temporal signature matrix in Equation 1, and

𝑤
′

𝑢,𝑘 are weights over shared temporal signatures, that is, an ele-

ment in all the users’ weight matrix𝑊𝑊𝑊
′
for user ID𝑢 (rows) and tem-

poral signatures 𝑘 (columns). 𝑖 is the number of iterations needed

until convergence (like Mean Square Error between reconstructed

flows and original flows). More details on multiplicative update

rules can be found in, e.g., [16, 34]. After finding the weight matrix

𝑊𝑊𝑊
′
for users, each user is represented by a row vector. We use

k-means++ [2] to cluster users based on their temporal signature

weights. Since each weight is associated with latent temporal signa-

tures, the semantics of each cluster can be explained by the weights

of temporal signatures within the cluster.

4.3.2 User Clustering Stability Test: To assess the performance

of our clustering methods, we introduce a novel domain-specific

quantitative evaluation metric called “Clustering Stability Test”

(CST) based on the Adjusted Rand Index [14]. The challenge of

evaluating our clustering results is that we do not have an authori-

tative ground truth that defines the “correct clustering”. However,

we can exploit that the clustering of a set of users should remain

the same even if other users are inserted and removed from the

database. Specifically, we can leverage that for different training

data sets {𝑈𝑈𝑈 𝑡𝑟𝑎𝑖𝑛𝑚 }𝑀𝑚=1, the same set of tested users𝑈𝑈𝑈
𝑡𝑒𝑠𝑡

should

be distributed across the same clusters. For example, the cluster of

“early bird” commuters in𝑈𝑈𝑈
𝑡𝑒𝑠𝑡

should remain the same, regardless

of other users𝑈𝑈𝑈
𝑡𝑟𝑎𝑖𝑛
𝑖 that are additionally considered for clustering.

We refer to this as the stability of a clustering approach.

Figure 5 summarizes our metric to measure the stability of an

algorithm. From left to right we first 1) partition the original user

set 𝒰 into𝑀 non-overlapping training sets {𝑈𝑈𝑈 𝑡𝑟𝑎𝑖𝑛𝑚 }𝑀𝑚=1 and a non-
overlapping test set 𝑈𝑈𝑈

𝑡𝑒𝑠𝑡
. 2) We generate 𝑀 datasets {𝑈𝑈𝑈𝑚}𝑀𝑚=1

as the union of each training set with the test set, formally,𝑈𝑈𝑈𝑚 =
𝑈𝑈𝑈
𝑡𝑟𝑎𝑖𝑛
𝑚 ∪𝑈𝑈𝑈 𝑡𝑒𝑠𝑡 . The set 𝑈𝑈𝑈𝑚 is clustered and we let 𝑋𝑚 denote a

set of cluster labels of users in 𝑈𝑈𝑈
𝑡𝑒𝑠𝑡

. The rationale is that we

now have𝑀 different clusterings of the same group𝑈𝑈𝑈
𝑡𝑒𝑠𝑡

. 3) We

use the Adjusted Rand Index (ARI) [14] to compute the pair-wise

clustering similarity score 𝐴𝑅𝐼(𝑋𝑖 , 𝑋 𝑗), 1 ≤ 𝑗 < 𝑖 ≤𝑀 . This results

in a lower triangle matrix of ARI scores. 4) The mean (median)

value of all ARI scores is denoted as 𝐶𝑆𝑇𝑚𝑒𝑎𝑛 (𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛) and is

used as our proposed CST score to compare different clustering

methods. Additional detials can be found in Appendix E.

5 EXPERIMENTS AND RESULTS
We assess the performance of the proposed S2U Framework by

using three real-world datasets and comparing it to two compet-

ing methods and one control method. Section 5.1 introduces our

experimental setup. Section 5.2 assesses the methods using the
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newly-proposed clustering stability procedure 𝐶𝑆𝑇 . A qualitative

evaluation using spatial-temporal visualizations are discussed in

Section 5.3. This includes explainable Metro station generativity

and attractivity, and explainable user clustering results that decode

urban mobility patterns as part of a Washington D.C. case study.

5.1 Experimental Setup
Real-world datasets: we utilize the following three real-world

mobility datasets from Washington D.C.

Metro farecard data was provided to us by the Washington Met-

ropolitan Area Transit Authority (WMATA). The data covers the

DC metro area for the week of May-01-2016 to May-07-2016. Each

farecard record only contains limited information <Card ID, Entry

Station, ArrivalStation, Entry Time, and Arrival Time>. We only

consider the entry timestamp, as the trip duration is not part of

our model. There are a total of 3.57 million trip records, and about

0.8 million unique card/user IDs. The trip frequency distribution is

skewed towards users with a small number of trips per week (< 3

trips). To split the data into a training and testing dataset, we ran-

domly selected without replacements 10 training sets with 50,697

users, each and 1 test dataset with 10, 000 users.

Taxi data is collected from different taxi agencies for the open-

data initiative of Washington D.C.
3
It includes 89,237 taxi IDs for

all taxi services within D.C. during 2016. We treat each taxi ID as

a user who serves specific areas. Since taxis do not have stations

(at least for drop offs), we use grid cells of size 0.02 (≈ 2.2𝑘𝑚)

by 0.02 degree to create an OD pair temporal flow matrix. We

expect tidal traffic patterns for taxi IDs, as a larger demand for

transportation during peak hours is expected to lead to an increase

in supply offered by taxi companies. However, we note that trip

length distribution of different taxi IDs is more uniform than Metro

data, since a single driver may now serve many passengers, rather

than only his own commute. We randomly split the data into 8

training datasets containing 10,904 taxi IDs each and one test dataset

containing 2,000 taxi IDs.

Bike-sharing data was obtained from Capital Bikeshare
4
, a ser-

vice that covers the Greater DC urban area. It includes 3032 unique

bike IDs and 401 bike docking stations. Similar to taxi data, there is

no specific user ID for each trip, so we chose to use bike IDs as user

IDs. In this case, the user clustering pattern does not directly reflect

user travel behavior but travelling patterns of different bikes. We

use 10 training datasets each of which has 303 bike IDs, and 30 bike

IDs for the test dataset. To pre-process the data, raw timestamps

are mapped to one 24 hour period for 𝒯 . Table 1 summarizes the

datasets used in the experimentation.

Table 1: Descriptive summaries of experiment datasets

Data Total users Total trip Training sets Users per train Users per test

Metro 516,976 845,700 10 50, 697 10, 000

Taxi 89,237 89,237 8 10, 904 2, 000

Bike 3,032 51,325 10 303 30

Metric:Weuse our Clustering Stability Test𝐶𝑆𝑇𝑚𝑒𝑎𝑛 and𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛
introduced in Section 4.3.2 to evaluate quantitative performance.

The higher the clustering stability test score is, the better a method

3https://dcgov.app.box.com/v/taxi-trips-2016
4https://www.capitalbikeshare.com/system-data

Table 2: Comparisons using user clustering stability test

data 𝐶𝑆𝑇 scores

MED of multiple runs MAD of multiple runs

Naive NMF S2U Control Naive NMF S2U Control

Metro

𝐶𝑆𝑇𝑚𝑒𝑎𝑛

[95% lower]
1

0.5217

[0.4743]

0.6501

[0.6159]

0.7019
[0.6542]

0.8034

[0.7444]

0.0474 0.0342 0.0477 0.0590

𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛
[95% lower]

0.5504

[0.4981]

0.5815

[0.5482]

0.6496
[0.5675]

0.7347

[0.5947]

0.0523 0.0333 0.0821 0.1400

Taxi

𝐶𝑆𝑇𝑚𝑒𝑎𝑛
[95% lower]

0.5417

[0.4951]

0.6605

[0.5801]

0.8117
[0.7729]

1

[1]

0.0466 0.0804 0.0388 0

𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛
[95% lower]

0.4781

[0.4559]

0.6079

[0.584]

0.8150
[0.7729]

1

[1]

0.0222 0.0239 0.0421 0

Bike

𝐶𝑆𝑇𝑚𝑒𝑎𝑛
[95% lower]

0.5727

[0.4419]

0.5412

[0.4265]

0.6347
[0.5511]

0.7846

[0.6925]

0.1308 0.1147 0.0836 0.0921

𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛
[95% lower]

0.5697

[0.4404]

0.5525

[0.4356]

0.6272
[0.5428]

0.7816

[0.6532]

0.1293 0.1169 0.0844 0.1284

1
95% lower confidence interval is computed by𝑀𝐸𝐷 −𝑀𝐴𝐷 .

performs. Additionally, since we introduce random splitting to ob-

tain training and test datasets, we need to reduce the chance of

an outlying performance from just a random good/bad split. We

use Median (MED) (instead of mean) values for a set of 𝐶𝑆𝑇𝑚𝑒𝑎𝑛

or 𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛 measures obtained from dozens of runs so as to elim-

inate the impact of such outliers. The higher a median value is,

the better a method performs. We also report the Median Absolute

Deviation (MAD) of the same set of runs. MAD tells us how much

different random splits could impact the Median value. We expect

MAD to be low.

Competing methods: The following two competing methods

and a control experiment are used. Method 1: “Naive” - a naive

model using raw trip volumes for each time epoch as clustering

features in k-Means++; Method 2: “NMF” - a baseline model using

NMF on temporal trip count features proposed in [5] and applying

k-Means++ clustering to the reduced weight matrix; Method 3:

“Control” - a control experiment, which fully replicates a training

set for the clustering stability test. The Control method should

output almost perfectly stable clustering, i.e., 𝐶𝑆𝑇 = 1 with the

objective to show the effectiveness of 𝐶𝑆𝑇 . The hyper-parameter

tuning of our method is shown in Appendix D.

All experiments were conducted on a Linux workstation with a

10-core processor (i9@3.3GHz) and 64GB of main memory.

5.2 Quantitative Comparison - Clustering
Stability Test

In our experiments, for each method, we conduct a hundred of runs

to calculate MED and MAD values, with are the median 𝐶𝑆𝑇 value

and the deviation based on median for these runs, respectively.

Table 2 shows the performance of the different methods. The best

MED 𝐶𝑆𝑇 scores in each case are indicated in bold and typically

stem from our novel S2U method.

Our main finding is that S2U outperforms the other two com-

peting methods for all three datasets in both MED of 𝐶𝑆𝑇𝑚𝑒𝑎𝑛 and

MED of𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛 . Even if we subtract the MAD scores fromMEDs

(e.g., for SFU,𝐶𝑆𝑇𝑚𝑒𝑎𝑛 and the Metro data 0.7019−0.0477 = 0.6542),
which is the 95% lower bound of the Confidence Interval (CI) [12],

S2U still outperforms all other methods, e.g., S2U𝐶𝑆𝑇𝑚𝑒𝑎𝑛 = 0.6542
for Metro data vs. Naive = 0.5217 and NMF = 0.6501. The Con-

trol model shows consistently higher values than the S2U results,

instilling confidence in our results.

We also show the distributions of clustering labels for each

dataset and each model in Figure 6. An additional proof for a

better clustering result is the less skewed distribution of clustering
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(a) Naive for Metro (b) NMF for Metro (c) S2U for Metro

(d) Naive for Taxi (e) NMF for Taxi (f) S2U for Taxi

(g) Naive for Bike (h) NMF for Bike (i) S2U for Bike

Figure 6: Histograms of user clustering labels - each bar is a cluster
group, total of 6 cluster groups for each method)

labels in Figure 6(c) and Figure 6(f) compared to the Naive and NMF

models. This indicates that each cluster captures more meaningful

patterns of sparse users. The cluster labels of Metro and Taxi for

Naive and NMF models in Figures 6(a), 6(b), 6(d), and 6(e) have all

dominating clusters. This is an indicator that these two methods

do not capture the real patterns since the raw user temporal flow

matrix𝑈𝑈𝑈 and the matrix decomposed by NMF are not informative

for sparse users. The clustering labels are more evenly distributed

for bikeshare data.

Examining the results in more detail we see that NMF already

performs better than Naive for Metro and Taxi data with a 0.13

higher MED 𝐶𝑆𝑇𝑚𝑒𝑎𝑛 score and 0.03 higher MED 𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛 score.

If we consider MAD values for variances of random splitting, the

improvement of𝐶𝑆𝑇𝑚𝑒𝑎𝑛 or𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛 for NMF is still a significant

improvement for the Metro and Taxi datasets when compared to

the Naive method. This result tells us that even raw features of

Metro users and Taxi drivers contain information that can be used

for clustering. Our proposed S2U method provides an even bigger

improvement for Taxi data as shown in Table 2. MED 𝐶𝑆𝑇𝑚𝑒𝑎𝑛

improves significantly by 0.15 and MED 𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛 improves by

an even greater margin of 0.21. Moreover, if we look at Figure 6,

S2U found more evenly distributed class labels for Metro and Taxi

data, while Naive and NMF are heavily biased towards one group.

The former is a good indicator of more useful clusters.

When comparing Taxi and Bike data, we observe that NMF does

not perform as well as Naive for Bikeshare data. It is 0.01 to 0.02

lower for MED 𝐶𝑆𝑇𝑚𝑒𝑎𝑛 and MED 𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛 scores, respectively.

Considering MAD scores and the 95% lower CI, the differences are

even smaller, and it is hard to argue that NMF outperforms the

Naive method. A possible reason here is that Bike IDs have less

of a variance in their pattern than Taxi IDs. Taxi drivers have a

unique (spatial) service pattern (commuters) while bikes (we focus

on their ids) are more randomly used and distributed throughout

the system/area. That is why our S2U framework improves the

clustering power by 15 − 21% for Taxi data and only by 7 − 8% for

Bikeshare data when compared to the best Naive or NMF result.

(a) Temporal signatures by generic NMF

(b) Temporal signatures by TR-NMF

Figure 7: Temporal signatures by generic Non-negative Matrix Fac-
torization (NMF) and Tidal-Regularized Non-Negative Matrix Fac-
torization (TR-NMF))

7am
 :

8am
 :

noo
n : 6pm

 :
3pm

 :
5pm

 :

Figure 8: Explainable User Clustering Labels (8 user cluster labels)
5.3 Qualitative Evaluation
This evaluation centers on the qualitative analysis of temporal

signatures identified by a generic NMF method and our proposed

TR-NMF algorithm. We also provide an intuitive visualization of

different user groups’ behavior identified by the S2Umethod. Lastly,

we visualize user features transformed to latent space using S2U

and raw feature space.

Latent temporal signature improvement: Figure 7 shows the
temporal signatures found by TR-NMF and a generic NMF model.

This figure plots the normalized total signals for a 24 hour period

over time. Figures 7(a) and 7(b) show the temporal signatures found

by the generic NMF algorithm and the TR-NMF algorithm, respec-

tively. In both figures, Components 1 & 2 are morning commute
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signatures, Components 5 & 6 are afternoon commute signatures,

and Components 3 & 4 are non-commute signatures. While the

overall trends are quite similar, TR-NMF improves Component 4

(red, one of non-commuting signature) and component 6 (light blue,

one of afternoon commute signatures). Component 4 is less pro-

nounced around noon to improve the signal of Component 6 since

those temporal features are closer to Component 6’s peak feature.

This result shows how tidal-regularized loss constrains learning

and provides better explainable power for the temporal patterns

specifically here for the case of the metro farecard data.

Qualitative evaluation of explainable S2U user clustering:
To illustrate the qualitative result and the potential of S2U for ex-

plaining user-based urban mobility, Figure 8 visualizes the learned

user weights in conjunction with users’ cluster labels. Since S2U de-

termines the significance of each temporal signature and respective

weight for each user, each temporal signature is strongly associated

with specific temporal travel behaviors. We can use this visualiza-

tion to further analyze user travel patterns.

In Figure 8, each row represents a user’s weight vector from

𝑊𝑊𝑊
′
, and each column is a weight for a corresponding temporal

signature (we utilize a total of six). In this figure, we randomly

select 1000 users. The darker a cell is shaded (dark blue), the larger

is its respective weight. To the right of the figure is a color bar

that shows weight in relation to shading. On the left side of the

figure, eight cluster labels are shown using eight colors. The 𝑥

axis labels represents the weights that correspond to the respective

temporal signatures (“weight_1” corresponds to “component_1”) of

Figure 7. Overall, we generated eight user clusters, which can help

us interpret activities in the DC metro area using farecard data.

For example, users in the dark green cluster (first group from

top) have strong early 7𝑎𝑚 commuting travels, but they do not have

pronounced noon or afternoon travel. The brown cluster (second

group from top) are users who go to work early, i.e., 7𝑎𝑚 and

also return back home early at around 3𝑝𝑚. The pink cluster (third

group from top) contains users who start later at around 8𝑎𝑚 and

return home later at 4𝑝𝑚. The light green clusters (fifth group

from top) represents users with early 7𝑎𝑚 morning and early 3𝑝𝑚

afternoon commutes. These three clusters (brown, pink, and light

green) capture commuters with different schedules. The purple

(fourth group from top) and the yellow clusters (sixth group from

top) captures users with less focused morning schedules, but still

having an afternoon 3𝑝𝑚 or late afternoon 5𝑝𝑚 travel pattern,

respectively. The dark yellow cluster (seventh group from top)

are users who mainly travel in the evening, i.e., around 6𝑝𝑚 and

capture either night-life users or tourists. The last dark grey cluster

is extremely sparse users who have few (1-2) trips per week. The

small weight values indicate the low confidence with which they

exhibit the various temporal signatures. This cluster also shows the

limitations of our approach in that we can categorize users with

few trips (3-5 trips per week), but with fewer trips there is simply

not enough data to infer the semantics of the user.

Visual user clustering improvement over raw and latent
feature spaces: Figure 9 utilizes the t-Distributed Stochastic Neigh-
bor Embedding (t-SNE) [19] to qualitatively show the intrinsic prop-

erties of our data. t-SNE is an information-based machine learning

visualization technique that can transform a high-dimensional to

low-dimensional feature space through non-linear manifold while

Metro

R
aw

S2
U

Taxi Bike

X

Y

X

Y

X

Y

(a) (b) (C)

(e) (f) (g)
Figure 9: t-SNE visualization in which points are t-SNE transformed
users using both raw and S2U-transformed users, and points’ colors
are based on Naive model and S2U model using 6 clusters.

preserving informative similarity patterns within the data. Figures 9

(a), (b), and (c) (in the top row) show properties of the raw data

while the bottom row shows the properties of S2U transformed

features. The 𝑥 and 𝑦 axis are the data reduced to two features.

Each point is a user. Different colors of points are clustering labels

identified previously. By comparing raw features and transformed

features, we can see that S2U features are more informative and

exhibit more distinct patterns. For Metro data, the raw features of

users are not very distinctive while the transformed features show

clearer clusters. The case is similar for Bikeshare data. For Taxi

data, raw features exhibit several distinct clusters. However, S2U

made these clusters even more distinguishable. The proposed S2U

framework thus boosts the clustering performance even for raw

features that already have distinctive clusters. The S2U framework

produces clusters that are shown as green, red, and orange points

in Figure 9 (d), (e), and (f) (in the lower row). The clusters are more

evenly distributed and visually appealing.

Results of generated semantic-based station pattern: Us-
ing the tidal-regularized loss, the visualization in Figure 10 shows

that our TR-NMF approach provides more explainable station pat-

terns. The sub-figures show station locations (circles) around the

area of the White House (the background map). A larger circle

indicates stronger attractivity (recovered commuting in-flow for

associated temporal signatures). The Metro lines are shown as black

lines connecting stations. Figure 10 (a) is based on the 7𝑎𝑚 commut-

ing signature. Stations around the White House (mostly Federal

Government offices) have a higher flow during these early hours.

Figure 10 (b) relates to the 8𝑎𝑚 flow and area such as Dupont Cir-

cle (a commercial area) now have a larger flow. Stations around

the White House have a comparatively low flow. This example

illustrates how using the tidal traffic regularization can support

better explainable station patterns and in the future an urban spatial

function analysis.
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(a) Component 1 (morning 7am) (b) Component 2 (morning 8am)

Attractivity decreasing

Figure 10: Explainable stations pattern in Washington D.C.

6 CONCLUSIONS AND FUTURE WORK
Inferring semantic information such as trip purpose from basic

mobility datasets such as Metro farecard data, Taxi trip data, and

Bikeshare data is a challenge given the lack of contextual informa-

tion with this data. This work proposes a new Station-to-User (S2U)

transfer learning framework to achieve a more explainable and sta-

ble learning of user clusters from farecard data by transferring users

to a latent feature space built with the stations’ temporal signa-

tures. As part of the approach, we develop a novel Tidal-Regularized

Non-negative Matrix Factorization approach to guide the learning

process by including the regular, tidal traffic patterns, e.g., com-

muters, which dominate urban transportation. To demonstrate the

effectiveness of our work, we developed a novel user stability test

as an evaluation metric to promote cross-model performance com-

parison. Lastly, we show that our framework improves the cluster

quality in terms CST score by 7% for the challenging Bikeshare

data and by 21% for the more cluster-able Taxi trip data. Visualizing

the raw datasets and S2U transformed data using t-SNE shows the

power of the S2U framework and how it boosts the clusterability

of the datasets. Future works includes anomaly detection of users

based on travel data over a few weeks/months and urban function

analysis using our semantics-based temporal aggregation results.
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A LEMMA FOR SWAPPING LINES FOR NMF
Lemma A.1. Let𝑊𝑊𝑊 ∈ 𝑅𝑚×𝐾 , 𝐻𝐻𝐻 ∈ 𝑅𝐾×𝑛 . Further, let 𝑥,𝑦 ≤ 𝐾 ,

let𝑊𝑊𝑊 ′ be obtained by swapping lines 𝑥 and 𝑦 in𝑊𝑊𝑊 , and let 𝐻𝐻𝐻 ′ be
obtained by swapping corresponding columns 𝑥 and 𝑦, then

𝑊𝑊𝑊𝐻𝐻𝐻 =𝑊𝑊𝑊 ′𝐻𝐻𝐻 ′

Proof. Let𝑉𝑉𝑉 =𝑊𝑊𝑊𝐻𝐻𝐻 , and let𝑉𝑉𝑉
′ =𝑊𝑊𝑊 ′𝐻𝐻𝐻 ′. For any cell 𝑣𝑖 𝑗 in𝑉𝑉𝑉 is

derived by matrix multiplication as

𝑣𝑖 𝑗 =∑
𝐾

𝑘=1
𝑤𝑖𝑘ℎ𝑘𝑖 =∑

𝐾

𝑘=1,𝑘≠𝑥,𝑦
𝑤𝑖𝑘ℎ𝑘𝑖 +𝑤𝑥𝑘ℎ𝑘𝑥 +𝑤𝑦𝑘ℎ𝑘𝑦

Equivalently, we obtain

𝑣
′

𝑖 𝑗 =∑
𝐾

𝑘=1
𝑤𝑖𝑘ℎ𝑘𝑖 =∑

𝐾

𝑘=1,𝑘≠𝑥,𝑦
𝑤𝑖𝑘ℎ𝑘𝑖 +𝑤𝑦𝑘ℎ𝑘𝑦 +𝑤𝑥𝑘ℎ𝑘𝑥

Since𝑤𝑥𝑘ℎ𝑘𝑥 +𝑤𝑦𝑘ℎ𝑘𝑦 =𝑤𝑦𝑘ℎ𝑘𝑦 +𝑤𝑥𝑘ℎ𝑘𝑥 by commutativity of

multiplication, we get 𝑣𝑖 𝑗 = 𝑣 ′𝑖 𝑗 for any 𝑖, 𝑗 ≤ 𝑘 . Thus𝑉𝑉𝑉 =𝑉𝑉𝑉 ′. □

This swapping of lines using Lemma A.1 allows us to assume,

without loss of generality, that columns of𝑊𝑊𝑊 and lines of 𝐻𝐻𝐻 are

grouped into morning features first and afternoon features last.

B COMPLEXITY ANALYSIS
The complexity of our algorithm only adds constant factor to

generic NMF analysis [7] 𝑂(𝑘𝑀𝑁 ) in theory, where 𝑘 is num-

ber of latent components, 𝑀 is number of rows of𝑊𝑊𝑊 matrix, 𝑁 is

number of columns of 𝑉 matrix. As in our case, 𝑀 is the number

of station pairs, which equals ⋃︀𝒪𝒟⋃︀ in 𝑂(𝑆2) and 𝑁 is the number

of time slots ⋃︀𝒯 ⋃︀. The run-time complexity of our proposed tidel-

regularized NMF only adds a constant factor 𝑐 to generic NMF and

lies in𝑂(𝑐𝑘 ⋃︀𝒪𝒟⋃︀⋃︀𝒯 ⋃︀) = 𝑂(𝑘 ⋃︀𝒪𝒟⋃︀⋃︀𝒯 ⋃︀). This constant factor of addi-
tional complexity over NMF model training comes from updating

gradients of the proposed tidal-regularized loss without affecting

the total gradient updating iterations. Kmean++ [2] has the same

run-time complexity as KMeans 𝑂(𝐾 ∗ 𝑁 ∗ 𝐷), where 𝐾 is the

number of clusters, 𝑁 is the number of users ⋃︀𝒰 ⋃︀, and 𝐷 is the di-

mensionality of feature vectors which is 𝐾 in our case. To total, the

run-time of our algorithm lies in 𝑂(𝑘 ⋃︀𝒪𝒟⋃︀⋃︀𝒯 ⋃︀ +𝐾 ⋃︀𝒰 ⋃︀𝐷).

C EARLY STOPPING
To reduce running time, a common approach is to do early stoping

which terminates the gradient updating loop when the difference

of weight matrix𝑊𝑊𝑊 in 𝑡
𝑡ℎ

step and in 𝑡 − 1𝑡ℎ weight is small than

an very small threshold 𝜖 . ⋃︀⋃︀𝑊𝑊𝑊 𝑡 −𝑊𝑊𝑊 𝑡−1⋃︀⋃︀2 < 𝜖 . This does not change
our theoretical complexity analysis.

D HYPER-PARAMETER TUNING
There are a few hyper-parameter we need to choose. 𝛼,𝜂 in generic

NMF loss, and 𝛾, 𝜌 for TR-loss. We use 𝛼 = 1.0, 𝜂 = 0.9,𝛾 = 0.1, 𝜌 =
0.1 in our presented results. We run 100 loop for gradient updating.

Other parameters includes number of latent components, number

of time slots, number of morning and afternoon subsets .etc, which

we leave to the future work. Notice that our approaches are two-

fold: transfer learning and TR-loss. Others could use either transfer

learning without TR-loss or the other way around.

E USER CLUSTERING STABILITY TEST
Different metrics such as potential (sum of squared distances of

samples to their closest cluster center) [12], log-likelihood score

[12], perplexity score (information measure of generative proba-

bilistic models) [18], AIC [12], and BIC [12], are used to assess

clustering quality based on model assumption or information the-

ory. However, they are not able to assess the stability of a clustering.

Various works exist to test the stability of clustering, e.g., [15, 24].

Our proposed metric is based on the Adjusted Rand Index (ARI) [14].

Generic ARI score is computed in this way: for a dataset, like users

𝒰 , one clustering result assigns a set of group labels to each user

with 𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑢}, while another clustering result assigns a

set of labels 𝑌 = {𝑦1,𝑦2, . . . ,𝑦𝑢}. An ARI score 𝐴𝑅𝐼𝑥,𝑦 is computed

based on these two label sets with random permutation of cluster

label orders (cf. [14]). 𝐴𝑅𝐼𝑥,𝑦 is a value with a range of (︀−1,+1⌋︀,
where 0 indicates complete random labeling, +1 stands for a perfect
match, and −1 indicates complete reversed labeling.

The proposed metric is named “clustering stability test”, which

first partitions the original user set 𝒰 into non-overlapping 𝑀

training sets {𝒰(𝑚)}𝑀𝑚=1 and a non-overlapping testing set𝒰(𝑀+1).
Then, an end-to-end procedure is applied to a mixed set that joins

a training set with the testing set, 𝒰 ′𝑚 = 𝒰(𝑚) + 𝒰(𝑀+1),∀𝑚 ∈
1, . . . ,𝑀 . A label set 𝑋

(𝑚)
is created for 𝒰 ′𝑚 using S2U. For each

pair of 𝑋
(𝑚𝑖)

and 𝑋
(𝑚 𝑗)

, we calculate the score 𝐴𝑅𝐼
(𝑚𝑖 ,𝑚 𝑗)

. The

Mean value of all the paired ARI scores, denoted as𝐶𝑆𝑇𝑚𝑒𝑎𝑛 , is used

as the “clustering stability score” to compare different clustering

methods. Another choice is to use the Median value of all the

scores 𝐴𝑅𝐼
(𝑚𝑖 ,𝑚 𝑗)

denoted as 𝐶𝑆𝑇𝑚𝑒𝑑𝑖𝑎𝑛 . This score has the range

of (︀−1,+1⌋︀, with +1 indicating a perfectly stable clustering method.
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