
TG-GAN: Continuous-time Temporal Graph Deep Generative
Models with Time-Validity Constraints

Liming Zhang

lzhang22@gmu.edu

George Mason University

Fairfax, Virginia, USA

Liang Zhao

liang.zhao@emory.edu

Emory University

Atlanta, Georgia, USA

Shan Qin

qinshan2016@bupt.edu.cn

Beijing University of Posts and

Telecommunications

Haidian District, Beijing, China

Dieter Pfoser

dpfoser@gmu.edu

George Mason University

Fairfax, Virginia, USA

Chen Ling

chen.ling@emory.edu

Emory University

Atlanta, Georgia, USA

ABSTRACT
Deep generative models of graph-structured data have become pop-

ular in very recent years. Although initial research has focused

on static graphs in applications such as molecular design and so-

cial networks, many challenges involve temporal graphs whose

topology and attribute values evolve dynamically over time. Sophis-

ticated and unknown network processes that affect temporal graphs

cannot be captured adequately by prescribed models. Application

areas include social mobility networks and catastrophic cybersecu-

rity failures. These web-scale applications challenge current deep

graph generative models with the need to capture 1) time-validity

constraints, 2) time and topological distributions, and 3) joint time

and graph encoding and decoding. Here, we propose the “Temporal

Graph Generative Adversarial Network” (TG-GAN) for continuous-

time graph generation with time-validity constraints
1
. TG-GAN

can jointly generate the time, node, and edge information for trun-

cated temporal walks via a novel recurrent-based model and a

valid time decoder. The generated truncated temporal walks are

then assembled into time-budgeted temporal walks for temporal

graphs under the learned topological and temporal dependencies.

In addition, a discriminator is proposed to combine time and node

encoding operations over a recurrent architecture to distinguish

generated sequences from real ones sampled by a truncated tem-

poral walk sampler. Extensive experiments on both synthetic and

real-world datasets confirm that TG-GAN significantly outperforms

five benchmarking methods in terms of efficiency and effectiveness.

CCS CONCEPTS
• Networks → Topology analysis and generation; • Theory
of computation→ Dynamic graph algorithms.

1
github link: https://github.com/tongjiyiming/TGGAN

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449818

KEYWORDS
Graph Generative Model, Temporal Graph, Temporal Walks

ACM Reference Format:
Liming Zhang, Liang Zhao, Shan Qin, Dieter Pfoser, and Chen Ling. 2021.

TG-GAN: Continuous-time Temporal Graph Deep Generative Models with

Time-Validity Constraints. In Proceedings of the Web Conference 2021 (WWW
’21), April 19–23, 2021, Ljubljana, Slovenia.ACM,NewYork, NY, USA, 12 pages.

https://doi.org/10.1145/3442381.3449818

1 INTRODUCTION
Generative models for graphs are powerful approaches that can

leverage vast quantities of unannotated graph data to synthesize

unknown graph data distributions and fuel subsequent graph data

mining tasks. Deep generativemodels for graphs such as GraphRNN

[33], NetGAN [4], and GraphVAE [26] have started to achieve sig-

nificant success compared to traditional prescribed approaches from

random graph theory [8, 10]. These deep generative models are

applied to static graphs such as molecule generation [14], social

communities [33, 34], and citation networks [4], benefiting from

their high expressiveness in learning underlying complex principles

directly from the data in an end-to-end fashion without the need

for handcrafted rules.

However, many real-world graphs are actually temporal graphs
that are networks evolving dynamically over time. Figure 1 (a) il-

lustrates a typical example of an urban mobility graph for a person,

and Figure 1 (b) shows a user authentication graph that reflects the

behavior of a computer network administrator who visits from de-

vices to devices. Further application areas include network behavior

synthesis and intervention, brain network simulation, and protein

folding [15]. Given the underlying complex but unknown network

processes involved in many such applications, this paper focuses on

highly expressive deep models that can distill and model the under-

lying generative process of such temporal graphs. This approach

goes beyond related domains such as representation learning for

dynamic graphs [12] and temporal link prediction [22, 31].

So far, deep generative models for temporal graphs have not

been well explored, due to the technical challenges involved in

leveraging static graph techniques: 1) Difficulties in ensuring
the temporal validity of the generated graphs. The connectiv-
ity patterns for temporal graphs can be very different from those

1

https://github.com/tongjiyiming/TGGAN
https://doi.org/10.1145/3442381.3449818
https://doi.org/10.1145/3442381.3449818

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhang, et al.

Figure 1: Real-world temporal graphs: (a) A transportation graph capturing passenger movement as trips (arrows) between
locations (nodes) at given times; (b) A user authentication graph to model cyber behavior - a laptop connecting to different
desktops, gate servers, production servers, and data servers chronologically. IP addresses are nodes, and remote connections
are edges. Two types of temporal graph representations include: (c) a continuous-time graph representation has no infor-
mation loss since the activation time of an edge is a real value ranging from 0 to 4𝑠; and (d) a discrete-snapshot graph with
information loss since the activation times are cast to integer values and loose their chronological order. For example, edges
(1, 2, 0.1𝑠), (1, 3, 0.7𝑠), (2, 3, 0.9𝑠) can be ordered in continuous-time temporal graph, however, they are converted to new edges
of (1, 2), (1, 3), (2, 3) within a snapshot without chronological order.

in static graphs. For example, in a temporal graph, if we want to

pass a message from node 𝑎 to node 𝑐 via node 𝑏, we need to know

not only the existence of the edges from 𝑎 to 𝑏 and 𝑏 to 𝑐 , but also

that the edge from 𝑏 to 𝑐 cannot disappear before the birth of the

edge from 𝑎 to 𝑏. There are many such types of temporal validity

requirements for temporal graphs, none of which can be consid-

ered or ensured using current static graph generation techniques.

2) Challenges in learning temporal graph distributions in
both the discrete-valued topological and continuous-valued
time dimensions Temporal edges only exist at a certain time span.

Modeling the generative models of temporal graphs requires one

to characterize the distributions of the time spans and topological

dependencies among temporal edges. Conventional formulation of

temporal graphs into discrete snapshots of adjacency matrices [12]

or individual edges [35] without the characterization of time dis-

tributions incur information loss and low efficiency. The former is

caused due to the discretization of time into ordinal values, while

the latter is incurred by a highly sparse representation in the joint

topological and temporal high-dimensional space. 3) Difficulties
in jointly encoding and decoding topological and temporal
information. The node and edge patterns on temporal graphs are

simultaneously influenced by the graphs’ topology and temporal

dependency, which also mutually impact each other. For example,

the same path in a temporal graph may have a different meaning if

it happens during a different time frame.

To address these challenges, we propose a new model, called

“Temporal Graph Generative Adversarial Network” (TG-GAN) for

continuous-time temporal graph generation with time-validity con-

straints. It can generate the time, node, and edge information for

time-budgeted temporal walks, which are then assembled to tempo-

ral graphs under the learned topological and temporal dependencies.

The proposed method is very efficient in generatively modeling

non-small temporal graphs with respect to, both, topology and

time. We propose a novel temporal graph generator that jointly

models truncated temporal walks via a novel recurrent-structured

model that enforces temporal validity constraints. We also propose

a new encoder and decoder for modeling continuous timestamps

and discrete nodes in edges. The major contributions of this paper

can be summarized as follows:

• Propose anovel deep generative framework for continuous-
time temporal graph generation. The proposed framework

can efficiently and effectively learn the underlying distribution

of continuous-time temporal graphs. It generates graphs with

time-varying node features while ensuring temporal validity.

• Develop anew truncated temporalwalk generator. Encoders
and decoders for both continuous-valued time information and

discrete-valued node information have been proposed. New time

budgeting strategies and activation functions have been proposed

to ensure temporal validity.

• Propose a new truncated temporal graph discriminator. A
recurrent-architecture-based discriminator is developed to jointly

examine the sequence patterns and time validity along with a

truncated temporal walk sampler to obtain real samples from

observed temporal graphs.

• Conduct extensive experiments on both synthetic and real-
world data. The results demonstrate that TG-GAN is capable

of generating temporal graphs closely resembling real graphs. It

significantly outperforms other models in several metrics by two

orders of magnitude with outstanding scalability.

2 RELATEDWORK
Temporal graph generation Conventional methods are based on

prescribed structural assumptions, including probabilistic models

[1], configuration models [2], and stochastic block models (SBM)

[30]. These prescribed approaches capture some of the predefined

properties of a graph, such as the degree distribution, community

structure, or clustering patterns. Relevant extensions for temporal

graphs are based on these prescribed models and also include mod-

els with new designs, such as Stochastic block transition models

[29, 32] using a Hidden Markov Model along SBM or Temporal

Stochastic Block Model (TSBM) [7]. However, some recent works

have identified surprising properties of real-world large graphs and

2

TG-GAN: Continuous-time Temporal Graph Deep Generative Models with Time-Validity Constraints WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

demonstrate that prescribed models are insufficient. More details

can be found in surveys such as [17, 24].

Deep generativemodels for graphsDeep graph generation [15]
is based on the concept of different unsupervised learning tech-

niques and includes approaches such as adversarial networks (Net-

GAN [4]), variational autoencoders (GraphVAE [26]), and recurrent

networks (GraphRNN [33]). GraphVAE [26] is a new and first-of-its-

kind variational autoencoder for whole graph generation, though

it typically only handles very small graphs and does not scale well

to large graphs because of both memory and runtime complexity.

GraphRNN [33] models a graph as a sequence of node and edge gen-

eration that can be learned by autoregressive models, achieving a

much better performance and scalability than GraphVAE. NetGAN

[4] follows a GAN approach [11] and generates synthetic random

walks while discriminating synthetic walks from real randomwalks

sampled from a real graph. These approaches typically generate

a synthetic static graph of good quality. Although these popular

generative approaches for many applications, only one very recent

approach discusses a deep model for temporal graph generation.

TagGen [35] models deep generative processes of 𝑘-length tempo-

ral walks to compose a temporal interaction networks, which is a

specific type of general temporal graphs that reduces time informa-

tion into ordinal values. Hence it does not handle continuous-time

temporal graphs, time validity constraints, and time distributions.

Given all the above work, it is imperative to propose deep gen-

erative models for learning the distributions of generic temporal

graphs in both graph topology and continuous-time dimensions

with temporal validity guarantee.

Random walk For static graphs, random walks are shown to

be a powerful representation when it comes to scalability [4]. The

random walk is a diffusion model and its dynamicity provides fun-

damental hints of the underlying mechanisms for a whole class

of diffusive processes in graphs. Temporal graphs basically depict

time-dependent and time-constrained diffusion, so temporal walks,

extension of random walks in temporal graphs, inherit their diffu-

sion properties [16] with additional time-dependent characteristics.

For example, continuous-time networks are sequentially activated

by edge connections within start and end times [22], hence, to

activate certain sub-graphs therefore be invalid as time evolves.

They are already popular in representation learning approaches,

such as DeepWalk [23], dynamic network embeddings [22], and

dynamic representation learning [25]. To the best of our knowledge,

TagGen [35] is the only existing work to learn the latent generative

distribution for temporal interaction networks via time-budgeted

temporal walks. Next, we propose a powerful model for a wider

range of continuous-time temporally-bounded dynamic graphs.

3 DEEP GENERATIVE MODELS FOR
TEMPORAL GRAPH GENERATION

This section focuses on formulating the problem and then describ-

ing our proposed TG-GAN approach, which 1) directly models

time-dependent and time-constrained diffusion dynamics in varied-

length sequences, 2) accomplishes graph generation through se-

quential models that do not have a permutation requirement, and 3)

possesses a time complexity independent of the number of nodes.

3.1 Problem Formulation
A temporal graph is a directed graph 𝐺 = {𝑒1, 𝑒2, · · · , 𝑒𝑀 }, 𝑒𝑖 =

(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) is a temporal edge, where 𝑢𝑖 , 𝑣𝑖 ∈ 𝑉 are respectively start

and end nodes from node set 𝑉 , 𝑡𝑖 ∈ 𝑇 is the time point of the

edge, 𝑇 = [0, 𝑡𝑒𝑛𝑑] (where 𝑡𝑒𝑛𝑑 ⊆ R+) is the time span of the tem-

poral graph. A temporal walk is defined as 𝑠 = {𝑒1, 𝑒2, · · · , 𝑒𝐿𝑠 } =
{(𝑢1, 𝑣1, 𝑡1), · · · , (𝑢𝐿𝑠 , 𝑣𝐿𝑠 , 𝑡𝐿𝑠)}, where ∀𝑒𝑖 ∈ 𝐺 and 𝐿𝑠 is the length

of the walk 𝑠 . Hence 𝑠 is terminated at the edge 𝑒𝐿𝑠 = (𝑢𝐿𝑠 , 𝑣𝐿𝑠 , 𝑡𝐿𝑠)
whose end node 𝑣𝐿𝑠 ’s neighbor edges are all earlier than 𝑡𝐿𝑠 . There-

fore, a temporal graph can be also denoted as the union of all the

temporal walks in it 𝐺 =
⋃

𝑠∼𝑝𝐺 (𝑠) 𝑠 , where 𝑝𝐺 (𝑠) is the distri-

bution of all the walks in graph 𝐺 . The central problem of deep

generative modeling for temporal graphs is to learn an underlying

distribution 𝐺 ∼ 𝑝 (𝐺) for a set of temporal graphs, each of which

can be represented by a set of temporal walks.

3.2 Overall Architecture
TG-GAN captures the topological and temporal patterns of tem-

poral graphs by learning the distributions of temporal walks. It

consists of two parts, namely a temporal walk generator G (a gener-

ative recurrent model, shown in the lower part of Figure 2 (a)) and

a temporal walk discriminator D (another recurrent model, shown

in the right lower part of Figure 2 (b)) in a MinMax game. The key

challenge here is that the generated temporal walk G(𝑧𝑧𝑧) must in-

herit strong temporal diffusion and satisfy the temporal constraint,

whose set of temporal-valid solutions is defined as C. Overall, the
objective function of TG-GAN with temporal constraints is:

min
G

max
D

[
E𝐺,𝑠∼𝑝𝐺 (𝑠) [𝑙𝑜𝑔(D(𝑠))] + E𝑧𝑧𝑧∼𝑝 (𝑧𝑧𝑧) [𝑙𝑜𝑔(1 − D(G(𝑧𝑧𝑧)))]

]
𝑠 .𝑡 . G(𝑧𝑧𝑧) ∈ C (1)

where 𝑠 is a real temporal walk sampled from observed tempo-

ral graphs, and 𝑧𝑧𝑧 ∼ 𝑝 (𝑧𝑧𝑧) follows a trivial distribution such as an

isotropic Gaussian. C = {𝑠 |T (𝑠) ∈ T, 𝑠 ∼ 𝑝𝐺 (𝑠),𝐺 ∼ 𝑝 (𝐺)} is the
set of all the truncated temporal walks whose edges’ times T (𝑠)
follow the required temporal validity constraint T. This will be
discussed in Section 3.6. The general ideas of the generator and dis-

criminator are as follows: 1) The generator G, illustrated in Figure
2, trains a fixed-length LSTM whose output G(𝑧𝑧𝑧) is a sequence of
special temporal walks defined in the next Section 3.3 with a novel

assembly method (as detailed in Section 3.4) and a non-parametric

time distribution inference (as detailed in Section 3.5). Time con-

straint G(𝑧𝑧𝑧) ∈ C is handled with a new time constraint operation

(as detailed in 3.6). 2) the discriminator D, illustrated in Figure

2 (b), tried its best to score real and fake temporal walks so that

expectation of loss 1 − D(G(𝑧𝑧𝑧)) for discriminating generated sam-

ples is minimized while expectation of lossD(𝑠) for discriminating

real samples is maximized. Its details and an underlying classifier

design is introduced in Section 3.7. The final output consists of the

classifying scores in the GAN framework.

3.3 Generation via truncated temporal walks
with time budgets

Unlike static connected graphs where random walks can have a

fixed length and hence are easy to learn, walks in temporal graphs

come with starting point and end point and hence their lengths can

3

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhang, et al.

En
co

de

Real

Fake

𝑡

Classifier

b) Discriminator

En
co

de

En
co

de

En
co

de

En
co

de

En
co

de

Time-budgeted Temporal walk

Truncated temporal walks

……

𝑶&'

...

Z

𝑣)
𝑢+ 𝑣+ ,𝑡+

𝑂.

𝑢)𝑥 ,𝑡)

𝑶0'

,𝑡1

𝑶&2 𝑶3'𝑶4

a) Generator

𝒄1
𝒉1

𝒂4

Encode
𝒉𝒙

𝒂&2

Encode
𝒉𝒕

Encode
𝒉𝒗

Encode
𝒉𝒗

Encode
𝒉𝒕

𝒂0' 𝒂3' 𝒂&'

𝑦

……

Decode
𝑪(𝒈 𝒕)

Decode
𝑪(𝒈 𝒕)

𝒄)
𝒉)

𝒄@
𝒉@

𝒄A
𝒉A

𝒄B
𝒉B

𝒄C
𝒉C

𝒂1

Sampler
𝒔𝒕𝒂𝒓𝒕

𝒆𝒏𝒅

𝒗𝟑
𝒗𝟏

𝒗𝟕

𝒗𝟐

𝒗𝟔 𝒗𝟖
𝒗𝟓

𝒗𝟒

Real Graph

.7s
2.3s

2.1s
.9s

1.1s
1.9s

2s
1s

𝒗𝟑𝒗𝟏

𝒗𝟕

𝒗𝟐

𝒗𝟔 𝒗𝟖
𝒗𝟓

𝒗𝟒

1.5s
1.5s

3s

2.3s

1.9s

1.9s

2.3s

Gumbel
𝒈𝒙

Gumbel
𝒈𝒗

Gumbel
𝒈𝒗

Gumbel
𝒈𝒚

Figure 2: The outline of the TG-GAN framework.

Step 1: y=0!𝑡#=𝑡$%& 𝑢(𝑥=1 𝑣+ 𝑢, !𝑡,𝑣-!𝑡(

y=1!𝑡#=!𝑡,𝑥=0 𝑢. !𝑡.𝑣/𝑢0 !𝑡-𝑣1

y=0!𝑡#=!𝑡(𝑥=0 𝑢0 !𝑡-𝑣1𝑢, !𝑡,𝑣-!𝑡(=2.3	

Step 2: !𝑡-=.9,	 y=0

Step 1: !𝑡,=1.9	, y=0

Step 3:
!𝑡.=.1, y=1

𝒗𝟑𝒗𝟏

𝒗𝟕

𝒗𝟐

𝒗𝟔
𝒗𝟖

𝒗𝟓

𝒗𝟒

!𝑡#=3
𝒔𝒕𝒂𝒓𝒕

𝒆𝒏𝒅

Step 2:

Step 3:

x

x

(a) A whole time-budgeted temporal walk (b) Truncated temporal walks and assemble them incrementally

Figure 3: (a) Example of a time-budgeted temporal walk. Shades of grey indicate nodes of the same step. Two red crossesmark
two impossible edges in this walk; (b) for training, three truncated temporal walks are used as real walks by the discriminator.
For inference, truncated temporal walks are assembled step-by-step (blue squares) to ensure strong temporal diffusion. Step
1): generate two temporal edges (blue squares) and 𝑦 = 0 with 𝑥 = 1, 𝑡0 = 𝑡𝑒𝑛𝑑 as inputs; Step 2): generate one additional edge
and 𝑦 = 0 profile with inputs of last edge (𝑢2, 𝑣3, 𝑡2) and profile of 𝑥 = 0, 𝑡1; Step 3): generate another edge and 𝑦 = 1 with inputs
of last edge (𝑢5, 𝑣7, 𝑡3) and profile of 𝑥 = 0, 𝑡2, and the generation terminates at 𝑦 = 1.

vary significantly. For example, for a temporal graph with 1 million

nodes, the length could range from 1 to 1million, which is extremely

difficult for typical sequential models to learn. To solve this issue,

one approach is to utilize fixed-length sequential models. However,

naively splitting a temporal walk 𝑠 into smaller sized walks elimi-

nates the temporal dependence at the split points. We thus need

a way to connect these truncated walks with their preceding and

succeeding walks, leading to the following definitions:

Definition 1 (Time-budgeted Temporal Walks). A time-
budgeted temporalwalk is defined as 𝑠 = {𝑡0, 𝑒1, 𝑒2, · · · , 𝑒𝐿𝑠 , 𝑡𝑒𝑛𝑑 },
where 𝐿𝑠 is the length of this walk. 𝑒𝑖 are time-inversed edges as
𝑒𝑖 = (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) ∈ 𝐸, where 𝑡𝑖 = 𝑡𝑒𝑛𝑑 − 𝑡𝑖 is called the “time budget”

for the edge 𝑒𝑖 and consequently 𝑡0 = 𝑡𝑒𝑛𝑑 and 𝑡𝑒𝑛𝑑 = 0, which denote
the respective full time budget (= 𝑡𝑒𝑛𝑑) and end time budget (= 0).

Definition 2 (Truncated Temporal Walks). A truncated
temporal walk is defined as a sequence 𝑠 = {𝑐, 𝑒1, 𝑒2, · · · , 𝑒𝐿} with
its profile information 𝑐 = (𝑥,𝑦, 𝑡0), which is truncated from an
originated time-budgeted temporal walk. The temporal edges 𝑒𝑖 , 𝑖 =
1, · · · , 𝐿, where 𝐿 is equal to or less than a threshold defined as the
maximal length of a truncated temporal walk. Here, the profile 𝑐 =
(𝑥,𝑦, 𝑡0) includes 𝑥 ∈ {0, 1} and 𝑦 ∈ {0, 1}, which denote whether
𝑠 is the respective starting or ending point (= 1) or neither of them
(= 0) in its originated time-budgeted temporal walk.

For example, in Figure 3 (a), a time-budgeted temporal walk

with a length of 4 has been concatenated as 3 truncated temporal

walks with fixed length of 2, where the first one starting at 𝑢1 has

a profile time budget of 𝑡0 = 𝑡𝑒𝑛𝑑 = 3𝑠 (“𝑠” here means a second

here) and its starting flag is 𝑥 = 1. Raw time stamps are shown in

italics. The temporal walk has two edges, namely (𝑢1, 𝑣6, 2.3𝑠) and
(𝑢2, 𝑣3, 1.9𝑠). Since it is not the end of the time-budgeted temporal

walk, its end flag is 𝑦 = 0. 2.3𝑠 and 1.9𝑠 represent the remaining

time budgets after both edges have been created at times 0.7𝑠 and
1.1𝑠 . The second truncated temporal walk starts at (𝑢2, 𝑣3, 1.9𝑠)
with a profile of 𝑥 = 0, and 𝑡0 = 2.3𝑠 , where 2.3𝑠 comes from the

previous edge (𝑢1, 𝑣6, 2.3𝑠). The second edge is (𝑢5, 𝑣7, 0.9𝑠), and
finally, 𝑦 = 1 for this walk. Similarly, the third truncated temporal

walk includes edges (𝑢5, 𝑣7, 0.9𝑠) and (𝑢4, 𝑣8, 0.1𝑠) with 𝑦 = 1. The
time-budgeted also terminates here since 𝑦 = 1. The 𝑣6, 𝑣5 edge

and 𝑣3, 𝑣4 edge are red-crossed because there is not enough time

budget for these two edges.

The generator generates truncated temporal walks 𝑠 during the

training phase and assemble time-budgeted temporal walks 𝑠 in the

inference phase as follows:

Training phase: The overall architecture used by the generator is

illustrated in Figure 2 during training phase to generate 𝑠 . Specifi-

cally, the backbone structure of generator is a fixed-length LSTM.

The basic LSTM unit has latent state ℎℎℎ𝑖 and cell state 𝑐𝑐𝑐𝑖 . 𝑎𝑎𝑎𝑖 is an

input, and 𝑜𝑜𝑜𝑖 is an output. The generator outputs the generated

4

TG-GAN: Continuous-time Temporal Graph Deep Generative Models with Time-Validity Constraints WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

time budgets 𝑡𝑖 and nodes 𝑢𝑖 , 𝑣𝑖 through decoding 𝑜𝑜𝑜𝑖 , according to

different categorical and continuous data decoding modules. The

categorical data decoding modules, which include: node 𝑣𝑖 decod-

ing function 𝑔𝑣 so that 𝑣𝑖 = 𝑔𝑣 (𝑜𝑜𝑜𝑣𝑖); the start profile 𝑥 decoding

function 𝑔𝑥 so that 𝑥 = 𝑔𝑥 (𝑜𝑜𝑜𝑥); and the end profile 𝑦 decoding func-

tion 𝑔𝑦 so that 𝑦 = 𝑔𝑦 (𝑜𝑜𝑜𝑦). The continuous data decoding module

includes a time distribution inference module 𝑔𝑡 (·) and its auxiliary
time-constraint functions C so that 𝑡𝑖 = C(𝑔𝑡 (𝑜𝑡𝑖)). The generator
also uses different encoding modules to encode generated data to

the inputs 𝑎𝑎𝑎𝑖 . There are categorical encoding modules, including:

the start profile 𝑥 encoding function ℎ𝑥 so that 𝑎𝑎𝑎𝑥 = ℎ𝑥 (𝑥); and
nodes 𝑣𝑖 encoding function ℎ𝑣 so that 𝑎𝑎𝑎𝑣𝑖 = ℎ𝑣 (𝑣𝑖). The continuous
data encoding module is just a function ℎ𝑡 so that 𝑎𝑎𝑎𝑡𝑖 = ℎ𝑥 (𝑡𝑖).
The categorical data decoding functions utilize a Gumbel-max re-

parameterization (as detailed in Appendix A.1 and A.2). Its novel

decoding functions for continuous-time distribution is described in

Sections 3.5 and 3.6.

Inference phase: the generator assembles (varying-length) a time-

budgeted temporal walk 𝑠 by stacking edges step-by-step illustrated

in Figure 3 (b). The first truncated temporal walk 𝑠 = {𝑥 = 1, 𝑦 =

0, 𝑡0 = 𝑡𝑒𝑛𝑑 , (𝑢1, 𝑣6, 𝑡1), (𝑢2, 𝑣3, 𝑡2)} is generated by LSTM with the

only input of random variable 𝑧𝑧𝑧. The next step recycles 𝑡0 = 𝑡1
and (𝑢2, 𝑣3, 𝑡2) and generates only one more new edge (𝑢5, 𝑣7, 𝑡3).
Then, the next step recycles 𝑡0 = 𝑡2 and (𝑢5, 𝑣7, 𝑡3), and generates

another new edge (𝑢4, 𝑣8, 𝑡4) with 𝑦 = 1. These generation steps

are terminated now since𝑦 = 1 is found. The details of the proposed
inference method are described in Section 3.4.

3.4 Time-budgeted temporal walk assembly
using the truncated temporal walk
generator

After the generator has been trained, we can compose time-budgeted

temporal walks from a set of generated truncated walks. However,

arbitrarily matching and chronologically concatenating them will

not be sufficient, since this approach does not preserve the tempo-

ral dependency of two consecutive truncated walks. Instead, we

strive to take into account temporal dependency by the following

two types of underlying diffusion: 1) Weak temporal diffusion. This
assumes a non-Markovian process for the whole temporal graph.

Under this assumption, one truncated walk can be freely assembled

with any other truncated temporal walk under only a loose chrono-

logical requirement of 𝑡𝑖 ≤ 𝑡 𝑗 ; and 2) Strong temporal diffusion. This
assumes that the connection of two consecutive edges follows a

Markovian process. This means that chronologically assembling

different walks is only a necessary, but not a sufficient condition

to connect two truncated temporal walks. Strong temporal diffu-

sion is a stricter approach and existing works on temporal graphs

[22, 25, 35] only consider the weak temporal diffusion, here we

model the stricter strong temporal diffusion case.

To guarantee strong temporal diffusion, when generating each

temporal edge 𝑒𝑖 , we need to maintain its conditional dependency

𝑝 (𝑒𝑖 , 𝑦0 |𝑒𝑖−1, 𝑒𝑖−2, ...𝑒1, 𝑥0, 𝑡0) over all the historical edges in a time-

budgeted temporal walk. As shown in Figure 3 (b), this is done by

first generating an initial truncated temporal walk (all blue squares)

in Step 1 and then incrementally appending additional temporal

edges 𝑒𝑖 in Step 2 and 3 (blues squares after grey squares recycled

from last step), one at a time, finishing until an end status flag is

𝑦 = 1 in Step 3. All generating processes re-use the same generator.

Such inference directly models the strong temporal diffusion.

3.5 End-to-end time distribution inference
The time budget 𝑡𝑖 of each temporal edge is assumed to be sampled

from the underlying distribution handled by a time distribution in-

ferencemodule𝑔𝑡 and an auxiliary time-constraint module𝐶 so that

𝑡𝑖 = 𝐶 (𝑔𝑡 (𝑜𝑡𝑖)). In this part, we describe𝑔𝑡 first. A conventional way

to achieve this is to assume a prescribed distribution, e.g., Gauss-

ian, Gamma, or Beta distribution, followed by re-parameterization

tricks to move the non-differentiable sampling operations from

the sufficient statistics parameters (e.g., the mean and variance of

the Gaussian) to a unit Gaussian N(0, 1), as was done for the vari-
ational decoder in [20]. Unfortunately, the time budget in many

real-world situations does not follow for a simple distribution and

the true distribution is typically unknown, or cannot be described

by known prescribed distributions. It is thus highly desirable for the

model to identify and fit such unknown distributions with highly

expressive generative models.

Here, we propose a deep end-to-end time distribution inference

method, namely “Time Decoder” which is illustrated in Figure 4.

The time decoder is a end-to-end sampling function 𝑔𝑡 that con-

vert latent representation 𝑜𝑜𝑜𝑡𝑖 to a time budget 𝑡𝑖 . It uses a series

of neural network layers to mimic the sampling operation from a

deep continuous-time distribution. Specifically, 𝑜𝑜𝑜𝑡𝑖 is firstly trans-

formed by a deconvolutional layer “DeConv()”, then follow up with

a dropout layer “DropOut()” and another multi-perceptron layer

“Dense()”. Finally, it outputs a intermediate value of 𝑡𝑖 before the

time constraint functions C which is covered in the next Section 3.6.

The mechanism is that the dropout layer can supply random noise.

However, different from the conventional dropout layer which is

only used during the training phase, our proposed dropout layer is

used in both the training and the inference phases. The deconvolu-

tional layer can increase stochasticity in this process. This series of

neural network operation are summarized in Equation 2.

After the time constraint functions C, a realistic temporally-valid

time value is generated and ready to be encoded to 𝑎𝑎𝑎𝑡𝑖 as LSTM

inputs. In general, we use an encoding operation (encoding time

function ℎ𝑡 in Figure 4) which is another dense layer that maps the

generated time 𝑡𝑖 back to the hidden vectors using 𝑎𝑎𝑎𝑡𝑖 = Dense(𝑡𝑖).
It is also summarized in Equation 2 as follows:

𝑡𝑖 = C(Dense(DropOut(DeConv(𝑜𝑜𝑜))))
𝑎𝑎𝑎𝑡𝑖 = Dense(𝑡𝑖)

(2)

where “C(·)” (corresponding to “TimeCon” in Figure 4) repre-

sents different types of time constraint functions which are further

detailed in the next Section 3.6.

3.6 Temporally-valid activations for ensuring
time constraints

Unlike conventional random walks, truncated temporal walks re-

quire that the temporal edges also satisfy various temporal-validity

constraints encoded in C of Equation (1), which can be instantiated

by the specific form of the term in Equation (2). Such constraints

are implemented as auxiliary regularizing functions “TimeCon()”

illustrated in Figure 4. Several methods are proposed to address

5

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhang, et al.

DeConv

𝒐𝜿

Dense

#𝒕𝒊

Time Decoder:𝒈𝒕

Dense

𝒂(𝜿

Encoding
Time: 𝒉𝒕

𝑻𝒊𝒎𝒆𝑪𝒐𝒏

Decoding
Time:𝑪(𝒈𝒕) Dropout

Figure 4: End-to-end time distributions inference by the pro-
posed random time deep sampler, temporally-valid activa-
tion, and encoding of continuous times

various time-valid constraints in need, including clipping method,

nested ReLU Bounding method, and Mini-max Bounding. Some of

the constraints enforce the non-negativeness, upper/lower bounds,

and joint boundary of the time information of the decoded tem-

poral edges. Specifically, 1) Clipping, which clips the generated

time to boundary values if it is outside the range, is similar to a

method commonly used in image generation [9]; 2) Nested Relu
Bounding can ensure 0 ≤ 𝑡𝑖 ≤ 𝑡𝑖−1, which uses two nested Relu
functions 𝑡𝑖 = 𝑅𝑒𝑙𝑢 (𝑡𝑖) −𝑅𝑒𝑙𝑢 (𝑡𝑖 − 𝑡𝑖−1); and 3)Mini-max Bounding
𝑡𝑖 = MinMax(𝑡𝑖) uses a scaling based on “min” and “max” values

within a sampled set of truncated sequences {𝑠} for each training

epoch. Initially, a “min-value-transform” operation is performed. A

minimum value is obtained from this mini-batch:𝑚𝑖𝑛({𝑡𝑖 }). Then,
if 𝑚𝑖𝑛({𝑡𝑖 }) ≤ 𝜖 , then 𝑡𝑖 = 𝑡𝑖 − 𝑚𝑖𝑛({𝑡𝑖 }), otherwise, go to the

next step. Here, 𝜖 is a hyper-parameter with a small value (e.g.

𝜖 < 1𝑒 − 3) to prevent a zero value for 𝑡𝑖 . Next, the maximum value

of the min-value-transformed mini-batch𝑚𝑎𝑥 ({𝑡𝑖 }) is obtained. If
𝑚𝑎𝑥 ({𝑡𝑖 }) > 1, then, 𝑡𝑖 = 𝑡𝑖/𝑚𝑎𝑥 ({𝑡𝑖 }), otherwise, nothing is done.

3.7 Discriminator LSTM-based classifier design
Discriminator D tries to distinguish real or generated walks. It

utilizes a real temporal walk sampler (detailed in Appendix A.3) to

extract real truncated temporal walks 𝑠 , and uses generated trun-

cated temporal walks from the generator G. Then the classifier of

discriminator D is based on a recurrent architecture where recur-

rent units also adopt LSTM units. Each input is thus a truncated

temporal walk 𝑠 that consists of 𝑥 , 𝑡0, 𝑒1, 𝑒2, · · · , 𝑦 sequentially. We

can directly leverage the same encoding operations introduced in

Section 3.3 to encode them here and input encoded features into

the LSTM unit.

Training stopping criteria:TG-GANuses an early-stoppingmech-

anism that relies on one specific chosen evaluation metric, Mean

degree in MMD distance (detailed in Section 4) to save time for the

case of large graphs. The competitor methods use their respective

default training mechanism.

Complexity analysis: TG-GAN is 𝑂 (𝐿𝑠) because of its
time-budgeted temporal walks assembly using a truncated temporal

walk generator, where 𝐿𝑠 is the maximal length of all the time-
budgeted temporal walks. Memory complexity is 𝑂 (|𝑉 | · 𝐿) for
storing logit vectors of sampled nodes, where 𝐿 is the length of

truncated temporal walks. This makes our proposed model highly

efficient for handling large graphs without any information loss.

Here, our continuous-time method has a considerable advantage

over other potential strategies using snapshots. All those require at

least 𝑂 (|𝑉 |2 ·𝑇) and still suffer from information loss, where 𝑇 is

the number of time snapshots.

4 EXPERIMENTS
Synthetic datasets: datasets with increasing complexity were

taken from scale-free random graphs [1], which are static graphs

with a power-law degree distribution. They are generated by pro-

gressively adding nodes to an existing network and introducing

links to existing nodes with preferential attachment, such that

the probability of linking to a given node 𝑣 is proportional to the

number of existing links that node already has. We modified this

generation by adding a time-dependent link and node generation

step (cf. Appendix A.4). This method was used to generate three syn-

thetic datasets with {100, 500, 2500} nodes, respectively. For each
dataset, different iterations of the simulation, i.e., {200, 100, 100}
graph samples, were used.

Real-world datasets: a) User authentication graph. Consists of
the authentication activities of 97 users working on 27 computers

or servers (nodes in the graph) in an enterprise intranet over a 485ℎ
period [19]. For this evaluation exercise, we focused on single user

data. Each hour was treated as a temporal graph sample, and all

timestamps were normalized to a range of [0, 1]. b) Public transport
graph. Farecard records from the Washington D.C. metro system

(91 stations as graph nodes) comprise millions of trip records with

anonymized user information that takes the form <user id, entry

station, timestamp, exit station, timestamp>. The dataset captures

all trips taken over a period of three months (123 days) from May

2016 to July 2016, with each day being treated as a temporal graph

sample. Since metro operations stop at 1am, we shifted all the times-

tamps by one hour to adhere to a 24ℎ interval. All timestamps were

converted to a [0, 1] interval. All the datasets used were split into

a separate 80% training and 20% test datasets. For the prescribed

model, which required considerable main memory, sparser graph

samples were used to adhere to memory limits.

Metrics: A simple means to evaluate the various methods is

to report the mean of the specific graph measures based on a set

of graph samples as shown in Table 1. Since we utilize simulated

scale-free graphs, another intuitive way is to compare the ground

truth properties with estimated properties of generated graphs. A

more rigorous evaluation method is Maximum Mean Discrepancy

(MMD) [13], which evaluates the distribution distances of two sets

of graph samples. One set is from a generative model and the other

is real-world data. MMD is becoming more popular (cf. [6, 33]) than

Kullback–Leibler divergence, or other distance metrics for two-

sample tests of high-dimensional distributions [21]. Since MMD

measures whole distributions, it handles uniqueness and diversity

issues of high-dimensional samples well. MMD had to be used with

different graph measurements on each graph sample. To ensure

a fair comparison, both, continuous-time and discrete-snapshot

graph measures [27] were used (check column names in Tables 2

and 4. Details are given in Appendix A.6).

Competing methods: Our experimentation utilized five com-

parison methods: 1) TagGen [35], 2) GraphRNN [33], 3) NetGAN [4],

4) GraphVAE [26], and 5) a prescribed method, Dynamic-Stochastic-

Blocks-Model (DSBM) [30]. We created snapshot graphs for these

methods if needed, trained the models, and recovered the con-

tinuous time from the generated snapshot graphs (as detailed in

Appendix A.5). Necessary parameter-tuning was done to ensure

that TG-GAN performed as expected (cf. Appendix A.7).

6

TG-GAN: Continuous-time Temporal Graph Deep Generative Models with Time-Validity Constraints WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

(a) Running time V.S. Number of nodes

(b) Running time V.S. Number of snapshots

Figure 5: Running time experiments

Table 1: Continuous-time graph measures (the closer a value is
to the real data’s values, the better that model performed)

data

Method

Metrics
Mean De-

gree

Average

Group Size

Average Group

Number

Mean Coordina-

tion Number

Auth.

TagGen 0.0166 1.1624 23.2808 0.8726

GraphRNN 0.0166 1.1154 24.2373 0.5856

NetGAN 0.1116 2.2971 11.8050 11.1950

GraphVAE 0.0204 1.1156 24.2360 0.5938

DSBM 0.1918 0.9999 27.0000 2.2204

TG-GAN 2.89e-05 1.0184 26.5156 0.0359
Real 0.0166 1.0276 26.2911 0.0959

Metro

TagGen 0.0082 1.0285 88.4783 0.1089

GraphRNN 0.0026 1.0109 90.0176 0.0239

NetGAN 0.0068 1.0304 88.3149 0.1105

GraphVAE 0.0026 1.0109 90.0160 0.0240

DSBM 0.2544 0.9999 91.0000 2.22e-16

TG-GAN 0.00077 1.0072 90.3523 0.01425
Real 0.00065 1.0077 90.3012 0.0154

Table 2: Distances between real and generated graph sample sets using various
continuous-time graph measures in MMD (the lower the better)

data

Method

Metrics
Average

Degree

Mean Aver-

age Degree

Group

Size

Average

Group Size

Mean Coordina-

tion Number

Mean Group

Number

Mean Group

Duration

Auth.

TagGen 0.0005 0.0015 0.9373 0.0184 0.3500 1.1737 0.0727

GraphRNN 1.68e-05 1.42e-05 0.8053 0.0077 0.1829 0.9114 0.0654

NetGAN 0.0036 0.0090 1.1192 1.0787 1.5065 1.4122 0.04337
GraphVAE 1.70e-05 1.41e-05 0.8030 0.0077 0.1819 0.9083 0.0658

DSBM 0.0002 0.0304 0.6344 0.0007 0.0087 0.2782 0.9315

TG-GAN 3.38e-09 2.94e-09 0.1187 0.0004 0.0047 0.1035 0.1974

Metro

TagGen 3.78e-05 5.75e-05 1.4048 0.0004 0.0087 1.4556 0.5761

GraphRNN 5.92e-06 3.82e-06 0.1826 1.00e-05 7.31e-05 0.0745 1.0376

NetGAN 2.97e-05 3.85e-05 1.7542 0.0005 0.0091 1.6471 0.6608

GraphVAE 5.88e-06 3.84e-06 0.1831 1.02e-05 7.54e-05 0.0754 1.0320

DSBM 0.0004 0.0634 1.2656 5.99e-05 0.0002 0.4198 0.8011

TG-GAN 2.86e-08 1.45e-08 0.0065 2.92e-07 1.10e-06 0.0020 0.0910

100

TagGen 5.73e-06 2.93e-05 1.3295 0.0142 1.2362 1.3434 0.0103

GraphRNN 4.80e-05 8.16e-06 1.4152 0.0012 0.0019 1.4899 0.0342

NetGAN 8.67e-05 0.0004 1.3785 0.0646 1.6637 1.5070 0.0019
GraphVAE 7.72e-05 6.10e-06 1.4155 0.0012 0.0022 1.4933 0.0317

DSBM 0.0083 0.0488 0.9932 1.8548 1.1320 1.0690 0.0020

TG-GAN 6.46e-07 1.35e-06 1.24 0.0004 0.0005 1.3419 0.0041

500

TagGen 7.14e-05 0.0005 0.8500 0.0023 0.7982 0.8656 0.0079

GraphRNN 7.42e-06 3.03e-06 1.3557 0.0001 1.17e-05 1.4287 0.0615

NetGAN 2.14e-05 8.94e-05 0.8554 0.0162 1.4453 0.9566 0.0001
GraphVAE 6.96e-06 2.46e-06 1.2291 0.0002 0.0002 1.2982 0.0227

TG-GAN 1.10e-06 2.10e-06 0.8000 0.2312 1.8727 0.0800 0.2032

2500

TagGen 4.87e-06 3.66e-05 0.7156 0.0005 0.1413 0.7382 0.0078

GraphRNN 1.80e-06 9.33e-07 1.0961 0.0002 0.0002 1.1154 0.78380

NetGAN 1.48e-06 6.37e-06 0.6464 0.0017 1.3449 0.7414 0.0003
TG-GAN 4.78e-07 2.57e-07 1.1189 0.0002 0.0002 1.1292 0.0377

Table 3: Real 𝛽 property in sim-
ulation compared to estimated
𝛽 values in generated graphs)

data

Real

𝛽 val-

ues
Method

Metrics

Estimated 𝛽 val-

ues for generated

graphs

100 0.20

TagGen 0.33

GraphRNN 0.90

NetGAN 0.18

GraphVAE 0.78

DSBM 0.0007

TG-GAN 0.27

500 0.1

TagGen 0.113

GraphRNN 0.47

NetGAN 0.32

GraphVAE 0.63

TG-GAN 0.107

2500 0.05

TagGen 0.066

GraphRNN 1.937

NetGAN 0.171

TG-GAN 0.023

4.1 Quantitative performance
This section discusses the performance of TG-GAN in relation to the

comparison methods. Given their scalability limitations, GraphVAE

and DSBM were omitted for the 500-node and 2500-node datasets

given their estimated runtime of several years for those cases.

Performance on real-world datasets through basic sample mean
metrics. Table 1 presents the mean values of generated graph sam-

ples vs. real-world data. The performance of a model is assessed

by how close its mean values for a generated set of graph samples

are to the real-world data. For Authentication data, only TagGen

outperforms our TG-GAN model in the Mean Degree metric. TG-

GAN shows the best performance for all other metrics. For Metro

data, TG-GAN outperforms all methods under all metrics. DSBM

performs poorly for all cases. A more rigorous evaluation using the

MMD distance is presented in the next section.

Performance on synthetic datasets through simulation properties:
Table 3 shows the 𝛽 property (detailed in Appendix A.4) in both

synthetic data simulation and generated graphs using different

models. The closer the estimated 𝛽 values are compared to the

ground truth values, the better is the respective performance. Our

TG-GAN consistently outperforms all other methods.

Performance on synthetic datasets through MMD: Tables 2 and
4 present the MMD distances for the different graph measures for

the three synthetic datasets (indicated as 100, 500, 2500 nodes in

the first column). The lower the values, the better the respective

performance for a method and dataset. Our TG-GAN method con-

sistently outperforms all other methods. For the continuous-time

graph measure (Table 2), including Average Degree, Mean Average

Degree, and Mean Coordination Number, TG-GAN achieved a per-

formance that was two orders of magnitude better than most of the

comparison methods expect GraphRNN for the case of 500-node

data. This was largely due to the amount of information loss all

these models suffered in order to perform a discrete-time snapshot.

The most recent TagGen method achieved good performance in

7

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhang, et al.

Table 4: Distances between real and generated graph sample sets using various
discrete-time gragh measures in MMD (the lower the better)

Nodes

Method

Metrics
Betweenness

Centrality

Broadcast

Centrality

Burstiness

Centrality

Closeness

Centrality

Nodes’

Temporal

Correlation

Receive

Centrality

Temporal

Correlation

Auth.

TagGen 0.0159 0.6645 0.0926 0.0409 0.4797 0.5439 9.95e-04

GraphRNN 4.41e-06 0.3071 0.2090 0.0223 0.0057 0.3072 8.26e-06

NetGAN 4.40e-06 0.5996 0.0302 0.8119 0.0056 0.5971 8.27e-06

GraphVAE 4.41e-06 0.3999 0.1718 0.0390 0.0057 0.3973 8.26e-06

DSBM 0.9943 0.3598 0.0326 0.1016 0.0594 0.3628 0.0013

TG-GAN 5.05e-05 0.1468 0.0020 6.97e-04 0.0036 0.1365 5.23e-06

Metro

TagGen 0.2260 NaN 0.0114 1.79e-05 0.2994 NaN 1.46e-04

GraphRNN 0.0815 0.7316 0.0031 2.54e-04 NaN 0.7351 NaN

NetGAN 0.0829 0.5946 0.0244 0.0166 NaN 0.5811 NaN

GraphVAE 0.0829 0.7509 0.0030 1.99e-04 NaN 0.7374 NaN

DSBM 0.7880 1.1403 0.0228 0.0164 0.0223 1.0444 2.01e-04

TG-GAN 0.0120 0.0257 0.0026 8.36e-06 2.86e-05 0.0266 4.95e-09

100

TagGen 0.0591 0.6918 0.0035 9.70e-05 0.8301 0.2858 0.0014

GraphRNN 0.9567 0.1658 0.3790 5.89e-04 0.0011 0.3023 1.81e-06

NetGAN 0.6497 0.7058 0.0092 0.2073 0.0014 0.2878 7.31e-07
GraphVAE 0.9567 0.2167 0.4138 5.37e-04 0.0011 0.3539 1.81e-06

DSBM 0.0020 0.4016 0.0526 0.01666 0.0183 0.1317 1.33e-04

TG-GAN 0.5606 0.2100 0.0026 0.0015 0.0010 0.2181 1.10e-06

500

TagGen 0.0179 0.5209 0.0021 - 0.9394 0.1171 1.97e-04

GraphRNN 0.7912 0.1556 0.1621 - 0.0049 0.4241 1.75e-07

NetGAN 0.7928 0.3253 0.0415 - 0.0049 0.0948 1.75e-07

GraphVAE 0.7928 0.0871 0.1921 - 0.0049 0.2858 1.75e-07

TG-GAN 0.7231 0.2878 0.0842 - 0.0048 0.2087 1.74e-07

2500

TagGen 0.0047 0.4102 0.0038 - 0.9976 0.1302 1.5e-05

GraphRNN 0.8802 1.0239 9.65e-07 - 0.0044 1.2410 1.00e-08

NetGAN 0.8801 0.1200 0.0169 - 0.0044 0.0965 1.00e-08

TG-GAN 0.8245 0.1549 0.4296 - 0.0043 0.1979 9.76e-09
-
: programs could not finished in three days.

NaN
: programs return errors.

Real TG-GAN

U
ser Authentication

M
etro Transport

100 Scale Free

Time Time

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

N
od

es
 in

de
x

Figure 6: Comparisons of real graphs
(left column) and graphs generated
by TG-GAN (right column) through
snapshot graphs.

some of the metrics, such as Average Degree, Mean Average De-

gree. TG-GAN, GraphRNN and GraphVAE generally achieved a

lower value than DSBM. This indicates that deep generative meth-
ods perform better than existing prescribed models for the case of
continuous-time measures.

For discrete-time graph measures, the competitive advantage of

TG-GAN is less clear. In some cases (Betweenness Centrality and

Receive Centrality for 100-node graphs), DSBM achieved a better

performance than deep generative methods. For 500-node and 2500-

node data, TagGen outperforms all other methods. TG-GAN did,

however, outperform the other two deep generative methods for the

100-node graphs, but this advantage was less significant for the 500-

node graph. Overall, TG-GAN performed best for several measures,

including Betweenness Centrality, Broadcast Centrality, Receive

Centrality, and Temporal Correlation. The narrower performance

gap for the larger synthetic graphs could be the result of our early-

stopping mechanism, which is included to reduce overfitting.

Performance on real-world datasets through MMD: Tables 2 and 4
demonstrate the effectiveness of the proposed TG-GAN framework

for real-world datasets (identified as Auth. and Metro in the first

column). The overall performance characteristics differe from the

synthetic datasets. TG-GAN outperforms all other methods in terms

of all metrics and datasets. The only exception is Betweenness Cen-

trality, for which NetGAN shows the best performance. Looking at

how effective TG-GAN is for different graph sparsities, we observe

that the authentication graph is sparser than synthetic scale-free

graphs, while the metro graph is even sparser with only one or two

edges per snapshot (typically 1-3 trips per day per traveler). We can

see that for the discrete-time measures in Table 4, GraphRNN and

GraphVAE have NaN values for Node Temporal Correlation, Tem-

poral Correlation, or Receive Centrality for the sparse metro graph,

since they fail to model empty graphs for most temporal snapshots

(no trips happened during that snapshot). The same conclusion can

also be drawn from the qualitative visualization in Appendix A.8.

In short, a highlight from the above results is the effectiveness

of TG-GAN for different graph sparsities. The metro transport

graph is an extremely sparse graph (typically 1-3 trips per day per

traveler), while Authentication data has denser graphs with dozens

of edges linked to one node. The synthetic scale-free graphs grow

their density over time since more and more edges are added to

such a graph. With increasing density, the advantage of TG-GAN

decreases and we might need more training epochs so as to allow

TG-GAN to better converge on an optimized state. Also, empty

snapshots are challenging for many existing methods, but pose

no challenge to TG-GAN. The following qualitative visualization

provide further intuition on the graph generation properties of the

different methods.

4.2 Qualitative analysis
The visualizations of Figure 6 show temporal patterns for the 1) user

authentication graphs, 2) metro transport graphs, and 3) 100-node

scale-free graphs. The 𝑦 axis is the index of all nodes and the 𝑥 axis

is the index of the discrete-time snapshots. Arcs between two nodes

represent a temporal edge. The darker an edge is, the more edges it

represents based on all the graph samples (normalized values in a

range from 0 to 1). Once again, TG-GAN performed is shown to

perform well, since it captures the temporal patterns of the actual

graphs the models are based on, i.e., similar arc patterns between

the left and right column in Figure 6. Additional qualitative graph

8

TG-GAN: Continuous-time Temporal Graph Deep Generative Models with Time-Validity Constraints WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

visualizations for all the other competing methods are given in

Appendix A.8.

4.3 Running time analysis
The results of our running time experiments are shown in Figure 5.

The running time is shown with respect to the growth of number of

nodes and time of snapshots. All running times are in 𝑙𝑜𝑔10 scale

per epoch. Figure 5 (a) shows the running time as function of the

number of nodes. Both our TG-GAN and TagGen have a constant

growth in terms of number of nodes, which is especially important

when dealing with large graphs. GraphRNN and NetGANwith their

quadratic-time complexity are still able to run for 2500-node graphs.

Other methods, such as GraphVAE and DSBM, would only run for

up to 100- or 500- node graphs, respectively. We also experimented

with different numbers of discrete time snapshots (cf. Figure 5 (b)).

Both TG-GAN and TagGen again exhibit constant running time

with the number of snapshots. GraphRAN and NetGAN again ex-

hibit exponential growth. These results demonstrate the advantage

of TG-GAN for large temporal graphs.

5 CONCLUSIONS
To effectively model the generative distributions of temporal graphs

and retain continuous-time information, this work proposes the

first-of-its-kind Temporal Graph Generative Adversarial Network

(TG-GAN) framework. Our new framework learns the representa-

tions of temporal graphs via truncated temporal walks. It includes a

novel temporal generator to model truncated temporal walks with

profile information that also takes a strong temporal diffusion pro-

cess and temporal constraints into account. Extensive experiments

with synthetic and real-world datasets demonstrate the advantages

of TG-GAN over existing deep generative and prescribed models.

ACKNOWLEDGEMENTS
This work has been partially supported by the National Science

Foundation Grant No. 1637541, No. 1755850, No. 1841520, No.

2007716, No. 2007976, No. 1942594, No. 1907805, a Jeffress Memo-

rial Trust Award, USDOD Grant No. HM02101410004, Amazon

Research Award, NVIDIA GPU Grant, and Design Knowledge Com-

pany (subcontract number: 10827.002.120.04). Liming Zhang has

been supported by a presidential graduate research scholarship of

George Mason University. We would like to thank the Washington

Metropolitan Area Transit Authority (WMATA) for providing the

farecard data used in our experiments.

REFERENCES
[1] Albert-László Barabási, Réka Albert, and Hawoong Jeong. 1999. Mean-field

theory for scale-free random networks. Physica A: Statistical Mechanics and its
Applications 272, 1-2 (1999), 173–187.

[2] Edward A Bender and E Rodney Canfield. 1978. The asymptotic number of

labeled graphs with given degree sequences. Journal of Combinatorial Theory,
Series A 24, 3 (1978), 296–307.

[3] Z Bahrami Bidoni, R George, and KA Shujaee. 2014. A Generalization of the

PageRank Algorithm. ICDS.

[4] Aleksandar Bojchevski, Oleksandr Shchur, Daniel Zügner, and Stephan Gün-

nemann. 2018. Netgan: Generating graphs via random walks. arXiv preprint
arXiv:1803.00816 (2018).

[5] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. 2003. Di-

rected scale-free graphs. In Proceedings of the fourteenth annual ACM-SIAM sym-
posium on Discrete algorithms. Society for Industrial and Applied Mathematics,

132–139.

[6] Wacha Bounliphone, Eugene Belilovsky, Matthew B Blaschko, Ioannis

Antonoglou, and Arthur Gretton. 2015. A test of relative similarity for model

selection in generative models. arXiv preprint arXiv:1511.04581 (2015).
[7] Marco Corneli, Pierre Latouche, and Fabrice Rossi. 2016. Exact ICL maximization

in a non-stationary temporal extension of the stochastic block model for dynamic

networks. Neurocomputing 192 (2016), 81–91.

[8] P ERDdS and A R&wi. 1959. On random graphs i. Publ. Math. Debrecen 6, 290-297
(1959), 18.

[9] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2015. A neural algorithm

of artistic style. arXiv preprint arXiv:1508.06576 (2015).
[10] Anna Goldenberg, Alice X Zheng, Stephen E Fienberg, Edoardo M Airoldi, et al.

2010. A survey of statistical network models. Foundations and Trends® in Machine
Learning 2, 2 (2010), 129–233.

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial

nets. In Advances in neural information processing systems. 2672–2680.
[12] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2018. Dyngem: Deep em-

bedding method for dynamic graphs. arXiv preprint arXiv:1805.11273 (2018).
[13] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and

Alexander Smola. 2012. A kernel two-sample test. Journal of Machine Learning
Research 13, Mar (2012), 723–773.

[14] Xiaojie Guo, Yuanqi Du, and Liang Zhao. 2021. Property Controllable Variational

Autoencoder via Invertible Mutual Dependence. International Conference on
Learning Representations (ICLR 2021) (2021).

[15] Xiaojie Guo and Liang Zhao. 2020. A systematic survey on deep generative

models for graph generation. arXiv preprint arXiv:2007.06686 (2020).
[16] Till Hoffmann, Mason A Porter, and Renaud Lambiotte. 2013. Random walks on

stochastic temporal networks. In Temporal Networks. Springer, 295–313.
[17] Petter Holme. 2015. Modern temporal network theory: a colloquium. The

European Physical Journal B 88, 9 (2015), 234.

[18] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical reparameterization

with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016).
[19] Alexander D. Kent. 2015. Cybersecurity Data Sources for Dynamic Network

Research. In Dynamic Networks in Cybersecurity. Imperial College Press.

[20] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.

arXiv preprint arXiv:1312.6114 (2013).
[21] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature

521, 7553 (2015), 436–444.

[22] Giang H Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee Koh,

and Sungchul Kim. 2018. Dynamic network embeddings: From random walks to

temporal random walks. In 2018 IEEE International Conference on Big Data (Big
Data). IEEE, 1085–1092.

[23] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[24] Polina Rozenshtein and Aristides Gionis. 2019. Mining Temporal Networks.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. ACM, 3225–3226.

[25] Hooman Peiro Sajjad, Andrew Docherty, and Yuriy Tyshetskiy. 2019. Efficient

representation learning using random walks for dynamic graphs. arXiv preprint
arXiv:1901.01346 (2019).

[26] Martin Simonovsky and Nikos Komodakis. 2018. Graphvae: Towards generation

of small graphs using variational autoencoders. In International Conference on
Artificial Neural Networks. Springer, 412–422.

[27] Ann E Sizemore and Danielle S Bassett. 2018. Dynamic graph metrics: Tutorial,

toolbox, and tale. NeuroImage 180 (2018), 417–427.
[28] Larry Wasserman. 2013. All of statistics: a concise course in statistical inference.

Springer Science & Business Media.

[29] Kevin Xu. 2015. Stochastic block transition models for dynamic networks. In

Artificial Intelligence and Statistics. 1079–1087.
[30] Kevin S Xu and Alfred O Hero. 2014. Dynamic stochastic blockmodels for time-

evolving social networks. IEEE Journal of Selected Topics in Signal Processing 8, 4

(2014), 552–562.

[31] Min Yang, Junhao Liu, Lei Chen, Zhou Zhao, Xiaojun Chen, and Ying Shen.

2019. An Advanced Deep Generative Framework for Temporal Link Prediction

in Dynamic Networks. IEEE Transactions on Cybernetics (2019).
[32] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. 2011. Detect-

ing communities and their evolutions in dynamic social networks—a Bayesian

approach. Machine learning 82, 2 (2011), 157–189.

[33] Jiaxuan You, Rex Ying, Xiang Ren, William L Hamilton, and Jure Leskovec. 2018.

Graphrnn: Generating realistic graphs with deep auto-regressive models. arXiv
preprint arXiv:1802.08773 (2018).

[34] Liang Zhao. 2020. Event Prediction in the Big Data Era: A Systematic Survey.

arXiv preprint arXiv:2007.09815 (2020).
[35] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. 2020. A Data-Driven

Graph Generative Model for Temporal Interaction Networks. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 401–411.

9

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhang, et al.

A APPENDIX
A.1 Decoding and encoding operations for

categorical data in the generator
As shown in Figure 2 (a), sampling categorical data includes sam-

pling nodes with 𝑔𝑣 (𝑜𝑜𝑜𝑣), sampling starting flags 𝑔𝑥 (𝑜𝑜𝑜𝑥), and sam-

pling ending flags 𝑔𝑦 (𝑜𝑜𝑜𝑦). Each of these share the similar categori-

cal distribution sampling methods, and categorical data encoding

procedures ℎ𝑣, ℎ𝑥 using embedding layers to get features 𝑎𝑎𝑎𝑥 ,𝑎𝑎𝑎𝑣𝑖 as

inputs for the next LSTM unit. All the operations are summarized

in Equation 3 as follows:

𝑔𝑣 (·) : 𝑣𝑣𝑣𝑖 ∼ 𝐶𝑎𝑡 (𝑞𝑞𝑞𝑣𝑖), 𝑞𝑞𝑞𝑣𝑖 =𝑊𝑊𝑊 𝑣,𝑢𝑝𝑜𝑜𝑜𝑣𝑖 +𝑏𝑏𝑏𝑣,𝑢𝑝
ℎ𝑣 (·) : 𝑎𝑎𝑎𝑣𝑖 = Dense(𝑊𝑊𝑊 𝑣,𝑑𝑜𝑤𝑛𝑣𝑣𝑣𝑖)
𝑔𝑥 (·) : 𝑥𝑥𝑥 ∼ 𝐵𝑒𝑟𝑛(𝑞𝑞𝑞𝑥), 𝑞𝑞𝑞𝑥 =𝑊𝑊𝑊 𝑥,𝑢𝑝𝑜𝑜𝑜𝑥 +𝑏𝑏𝑏𝑥,𝑢𝑝
ℎ𝑥 (·) : 𝑎𝑎𝑎𝑥 = Dense(𝑊𝑊𝑊 𝑥,𝑑𝑜𝑤𝑛𝑥𝑥𝑥)
𝑔𝑦 (·) : 𝑦𝑦𝑦 ∼ 𝐵𝑒𝑟𝑛(𝑞𝑞𝑞𝑦), 𝑞𝑞𝑞𝑦 =𝑊𝑊𝑊 𝑦,𝑢𝑝𝑜𝑜𝑜𝑦 +𝑏𝑏𝑏𝑦,𝑢𝑝

(3)

where 𝑞𝑞𝑞𝑣𝑖 ∈ R |𝑉 |,𝑞𝑞𝑞𝑥 ∈ R2,𝑞𝑞𝑞𝑦 ∈ R2 are logits of categorical or

Bernoulli distribution [28] for sampling a node, and𝑜𝑜𝑜𝑣𝑖 ∈ R𝐻 ,∀𝐻 ≪
|𝑉 | is the output of the corresponding LSTM units, which is a highly

concise representation that largely reduces the computing overhead

especially for large graphs.𝑊𝑊𝑊 𝑣,𝑑𝑜𝑤𝑛 ∈ R |𝑉 |×𝐻 ,𝑊𝑊𝑊 𝑥,𝑑𝑜𝑤𝑛 ∈ R2×1
are different embedding matrices. Notice that we do not need to

embed end flag 𝑦.

Here are some more details. Taking the operations for a node

as an example, the second LSTM unit produces an output vector

𝑜𝑜𝑜𝑣𝑖 ∈ R𝐻 . Here, 𝐻 ≪ |𝑉 | is the dimension of the embedding space

of a node from 𝑉 . So 𝑜𝑜𝑜𝑣𝑖 is a highly concise representation that

largely reduces the computing overhead especially for large graphs.

Then𝑜𝑜𝑜𝑣𝑖 is projected upscale to another vector𝑞𝑞𝑞𝑣𝑖 ∈ R |𝑉 | , which is

a logit parameter of a categorical distribution for sampling a node

𝑣𝑖 ∼ 𝐶𝑎𝑡 (𝑞𝑞𝑞𝑣𝑖). The projection function is defined as an affine trans-

formation𝑊𝑊𝑊𝑢𝑝𝑜𝑜𝑜𝜅 + 𝑏𝑏𝑏𝑢𝑝 . The procedures for starting and ending

flags are the same as the above except that the dimension of the

decoded value is two, namely 𝑞𝑞𝑞𝑥 ,𝑞𝑞𝑞𝑦 ∈ R2, and hence the sampling

of the starting and ending flags can be denoted as 𝑥 ∼ 𝐵𝑒𝑟𝑛(𝑞𝑞𝑞𝑥) or
𝑦 ∼ 𝐵𝑒𝑟𝑛(𝑞𝑞𝑞𝑦), where 𝐵𝑒𝑟𝑛 denotes the Bernoulli distribution [28].

𝑥𝑥𝑥,𝑦𝑦𝑦,𝑣𝑣𝑣𝑖 are one-hot vectors in this context.

Figure 2 (a) shows the encoding operations for categorical data.

Besides the memory states, the decoded categorical data (i.e., either

node 𝑣𝑖 or starting flag 𝑥) is also encoded for the next LSTM unit’s

inputs. Specifically, to convert categorical data including 𝑥, 𝑣𝑖 , em-

bedding layers are used in the form of two embedding matrices

𝑊𝑊𝑊 𝑥,𝑑𝑜𝑤𝑛 ∈ R2×𝐻 ,𝑊𝑊𝑊 𝑣,𝑑𝑜𝑤𝑛 ∈ R |𝑉 |×𝐻 ,∀𝐻 ≪ |𝑉 |. 𝐻 are the dimen-

sions of the embedded vectors. All nodes share the same embedding

parameters. Embedded vectors are passed to two different dense

layers and generate input vectors 𝑎𝑎𝑎𝑥 ,𝑎𝑎𝑎𝑣𝑖 for the next LSTM unit.

A.2 Gumbel-Max tricks for
re-parameterization of categorical data

The sampling operation ∼ from categorical (or Bernolli) distribu-

tions in Equation 3 poses significant challenges to backpropaga-

tion training, which inherently requires differentiable objective

functions to work. To address this issue, we leverage a recent re-

parametrization trick based on Gumbel-Max [18]. More details can

be found in [18]. Gumbel-Max re-parameterization of categorical

distributions [18] creates 𝑣 ′
𝑖
= tanh((𝑞𝑞𝑞𝑣𝑖 + 𝑔𝑔𝑔)/𝜏), where 𝜏 is the

so-called “temperature” hyper-parameter. Each value 𝑔𝑖 in 𝑔𝑔𝑔 is an

independent and identically distributed (i.i.d.) sample from standard

Gumbel distribution [18]. We can now generate a one-hot vector

representation 𝑣𝑣𝑣𝑖 , whose 𝑖’th element is one and all the others are

zeros, where 𝑖 = argmax𝑖 𝑣𝑣𝑣
′
𝑖
. In this way, gradients can be back-

propagated through 𝑣𝑣𝑣 ′
𝑖
. The same approach is also used for start

and end flags 𝑥,𝑦. Notice that when 𝜏 becomes larger, the sampled

values become more uniformly regulated, with a more stable gradi-

ent flow. The typical approach is to decrease 𝜏 as training continues

and thus to adopt a decrease strategy similar to [18] (Equations 4).

for nodes 𝑣𝑖 , 𝑞𝑞𝑞𝑣𝑖 =𝑊𝑊𝑊 𝑣,𝑢𝑝𝑜𝑜𝑜𝑣𝑖 +𝑏𝑏𝑏𝑣,𝑢𝑝
𝑣𝑣𝑣 ′𝑖 = tanh

(
(𝑞𝑞𝑞𝑣𝑖 +𝑔𝑔𝑔𝑣𝑖)/𝜏

)
, 𝑣𝑖 = OneHot(argmax𝑣𝑣𝑣 ′𝑖)

for start indicator 𝑥 , 𝑞𝑞𝑞𝑥 =𝑊𝑊𝑊 𝑥,𝑢𝑝𝑜𝑜𝑜𝑥 +𝑏𝑏𝑏𝑥,𝑢𝑝
𝑥𝑥𝑥 ′ = tanh

(
(𝑞𝑞𝑞𝑥 +𝑔𝑔𝑔𝑥)/𝜏

)
, 𝑥 = OneHot(argmax𝑥𝑥𝑥 ′)

for end indicator 𝑦, 𝑞𝑞𝑞𝑦 =𝑊𝑊𝑊 𝑦,𝑢𝑝𝑜𝑜𝑜𝑦 +𝑏𝑏𝑏𝑦,𝑢𝑝
𝑦𝑦𝑦′ = tanh

(
(𝑞𝑞𝑞𝑦 +𝑔𝑔𝑔𝑦)/𝜏

)
, 𝑦 = OneHot(argmax𝑦𝑦𝑦′)

(4)

A.3 Truncated temporal walk sampler
In the case of a temporal graph, a time-variant graph topology

changes dynamically and a variable-length walk sequence can be

sampled. However, if we truncate this variable-length sequences

to small fixed-length sequences, there are two challenges: 1) sub-

sequences of a temporal sequence might contain less information

and are more challenging for finding patterns, older parts are more

difficult to learn; and 2) sparse connections of different sub-graphs

in a whole graph prevent the learning of global information. In

the extreme cases, walkers could be stuck in a sub-graph with no

out-links to the whole graph. This is referred to as the “Spider-Trap”

problem in graph data mining [3].

To address these challenges, we propose a novel samplingmethod

for truncated temporal walks that first determines the starting edge

of the walk and then samples the next edges sequentially following

a temporal process. The proposed truncated temporal walk sampler

is shown in Algorithm 1. Line 1 normalizes times so that 𝑡𝑒𝑛𝑑 = 1.
Line 2 specifies the selection of a graph sample, while Lines 3-10

sample the profiles and walk sequences. The details of the starting

edge sampler K and next edge samplerH are as follows:

Algorithm 1: Truncated temporal walks sampler

Data: 𝐸 = {𝐸𝑑 }, ∀𝐸𝑑 = {𝑒𝑖 (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) }, 𝑡𝑒𝑛𝑑 , 𝐿
Result: a set of truncated sequences: {(𝑥, 𝑡0, 𝑒1, . . . , 𝑒𝐿, 𝑦) }

1 initialize 𝑡𝑖 ← 𝑡𝑖/𝑡𝑒𝑛𝑑
2 sample 𝑑 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚 (1/ |𝐸 |) , and get 𝐸𝑑

3 𝑒𝑖0 (𝑣𝑖0 ,𝑢𝑖0 , 𝑡𝑖0) ∼ K (𝐸𝑑)
4 if 𝑖 == 1 then 𝑥 ← 1, 𝑡0 ← 1 else 𝑥 ← 0, 𝑡0 ← 𝑡𝑖−1
5 𝑖 ← 𝑖0

6 while 𝑖 ≤ 𝑖0 + 𝐿 do
7 𝑒𝑖+1 (𝑢𝑖+1, 𝑣𝑖+1, 𝑡𝑖+1) ∼ H(𝑒𝑖)
8 𝑖 ← 𝑖 + 1
9 end

10 if 𝑖 == |𝐸𝑑 | then 𝑦 ← 1 else 𝑦 ← 0

Starting edge sampler K: Several alternatives could be used

here, such as a uniform distribution: 𝑝K (𝑒) = 1/|𝐸 |. However, it
is reasonable to use a distribution that is biased towards the start

time, so starting edges that happen earlier have a higher probabil-

ity. Biased ones are better candidates for extremely sparse graphs

10

TG-GAN: Continuous-time Temporal Graph Deep Generative Models with Time-Validity Constraints WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

with very short temporal sequences. To build a biased sampler, we

could leverage a linearly-biased distribution: 𝑝K (𝑒) = 𝑡𝑖/
∑
𝑒𝑖 ∈𝐸 𝑡𝑖

or exponential distribution: 𝑝K (𝑒) = 𝑒𝑥𝑝 (𝑡𝑖)/
∑
𝑒𝑖 ∈𝐸 𝑒𝑥𝑝 (𝑡𝑖).

Descendant edge sampler H with temporal jumps: A de-

scendant edge following the current edge could be selected from

among its adjacent edges either uniformly or considering the time

decay. By extending the notion of jumps, we propose the use of

temporal jumps, acted like a prior distribution, which should help

achieve “smoothness” in posterior distributions. For example, in

human mobility in metro networks can be modeled as a tempo-

ral graph in which a traveler could do walks between different

metro stations along the transport network (i.e., temporal edges).

Temporal jumps occur when a traveler switches between different

modes of transport, e.g., walking, taxiing, etc. To provide for more

robust and flexible modeling, we propose the use of “teleported

temporal edges” with monotonically-increasing time stamps, by

incorporating a Bayesian prior into the temporal graphs. Teleported

temporal edges are a Bayesian prior-enhanced categorical distri-

bution 𝐶𝑎𝑡 (𝑝H) with a probability of selecting the next edge that

depends on time, and are implemented with an exponential func-

tion that decays with time and has a uniform distribution over all

the nodes except the current node.

𝑒𝑖 ∼ H(𝑒𝑖 |𝑚𝑚𝑚), 𝑚𝑖 = 𝛼 (𝑒𝑥𝑝 (𝑡𝑖)/
∑ |𝐸 |

𝑗=𝑖
𝑒𝑥𝑝 (𝑡 𝑗) + 2𝜖/(|𝑉 | − 1))

where 𝛼 is a normalization term to ensure all probabilities sum to

1, and 𝜖 is a very small teleport probability over all the other nodes

except the current node.

A.4 Temporal scale-free random graph
simulation

A directed scale-free graph [5] create a new edge from a new in-

node, an existing node, or a new out-node by sampling a multi-

nomial distribution of three probabilities ⟨𝛼, 𝛽,𝛾⟩,∀𝛼 + 𝛽 + 𝛾 = 1,
which is adopted in the Networkx

2
library. We modify this edge

generation procedure to a temporal dependent generation. The

general idea is to append a continuous-time value to generated

edge in each constructing step. First, a uniform distribution within

[0, 1] is used to sample a time value, 𝑡 ∼ 𝑈𝑛𝑖 𝑓 𝑜𝑟𝑚(). And, we
know that Uniform distribution output value from 0 to 1. By com-

paring 𝑡 with cumulative probability ⟨𝛼, 𝛼 + 𝛽, 1⟩, if 𝑡 ∈ [0, 𝛼] a
new in-node indexed as |𝑉 | + 1 is added and an exiting node is

chosen from 𝑉 with probability 𝑝 (𝑣 = 𝑣𝑖) as an out-node, where

𝑑𝑖𝑛 is the function to get degree of 𝑣𝑖 , 𝛿𝑖𝑛 is a hyper-parameter, 𝑟

is a uniformly random generated real number. A temporal edge is

created for them with time-stamp 𝑡 . If 𝑡 ∈ (𝛼, 𝛼 + 𝛽], two existing

nodes 𝑢𝑖 and 𝑣𝑖 are chosen, and a temporal edge is created with

time 𝑡 . If 𝑡 ∈ (𝛼 + 𝛽, 1], a new out-node is got, and a temporal

edge to a chosen exiting node is created with time 𝑡 . The choice of

existing in-node 𝑝 (𝑢 = 𝑢𝑖) = 𝑑𝑖𝑛 (𝑢𝑖)+𝛿𝑖𝑛
|𝐸 |+𝛿𝑖𝑛𝑟 , where 𝑑𝑖𝑛 is the function

to get normalized in-degree of 𝑢𝑖 , 𝛿𝑖𝑛 is a hyper-parameter, 𝑟 is a

uniformly-random-generated real number. The choice of existing

out-node 𝑝 (𝑣 = 𝑣𝑖) = 𝑑𝑜𝑢𝑡 (𝑣𝑖)+𝛿𝑜𝑢𝑡
|𝐸 |+𝛿𝑜𝑢𝑡𝑟 , where 𝑑𝑜𝑢𝑡 is the function to

get normalized out-degree of 𝑣𝑖 , 𝛿𝑜𝑢𝑡 is a hyper-parameter, 𝑟 is an-

other uniformly-random-generated real number. For more details,

2
https://networkx.github.io/documentation/stable/index.html

check [5]. After each constructing step, the elapsed time is accu-

mulated. This process is terminated until either number of edges

is equal to number of nodes, or a preset maximum time range is

reached. We adopt part of Networkx library’s original Scale-free

graph code.

A.5 Competing methods details
Modifications of adapting competing methods developed for static

graphs to temporal graphs are described as follows:

TagGen. This is a most recent work of temporal graph gener-

ation with deep generative method. However, it is developed for

a specific type of temporal graph, temporal interaction network.

Also, it can only handle fixed amount of timestamps which already

exist in real data. Its design is scalable to very large graphs. We use

the default parameters provided in the TagGen code.

GraphRNN. This is a recent state-of-the-art deep generative

method. It is developed for a set of static graph samples. It scales to

very large graphs. We use the default parameters provided in the

GraphRNN code.

NetGAN. This is a recent deep generative method via random

walks. It is developed for one static graph. It scales to very large

graphs. We use the default parameters provided in the NetGAN

code, but we change the random walks sampling code to be ran-

domly sampling one graph from a set of graphs first before sampling

random walks from graphs.

GraphVAE. This is also a recent deep generative method target-

ing static graphs. Its complexity analysis makes it only viable for

small graphs. The original paper does include source code and as

such we use the code developed as part of the GraphRNN paper.

Default parameters are used.

DSBM. It is most recent development of prescribed models for

dynamic graphs based on Stochastic Blocks Models. It utilizes a

Markovian transition to model the dynamic in temporal graphs.

Our models can adapt to start-time and end-time easily by adding

additional LSTM cells for each temporal edge if applications end-

time evaluation is needed. The performance of our new TG-GAN

framework was compared to the above models. Another question

with those five models is how to convert the snapshots back to

continuous time. We simply chose the mid point in each snapshot

as the real time of a generated temporal edge. Also, notice that

temporal edges are modeled as a time point for all the datasets

and generated data. For continuous-time measures, temporal edges

have a start time and end time. For simplicity, we assume a constant

time for all temporal edges to exist. This assumption is also true for

real-world authentication graph which only has one timestamp for

each edge. For the transport graph, the existing time of a temporal

edge is the travel time from one station to another station, which

is almost fixed in metro schedules and relatively small compared

to a whole 24 hours. It is also a reasonable assumption to use the

same small edge existing time.

A.6 MMD
In short, MMD measures how the distribution of one set of sam-

ples is similar to another set of samples. Given 𝑋𝑋𝑋 ∈ R𝑛×𝑘 , each
row𝑋𝑋𝑋 𝑖, is a sampled vector from a unknown distribution. There is

another𝑋𝑋𝑋 ′ ∈ R𝑛′×𝑘 , each row𝑋𝑋𝑋 ′
𝑖,
is a sampled vector from another

unknown distribution. We have 𝑀𝑀𝐷 (𝑋𝑋𝑋,𝑋𝑋𝑋 ′) as a distance mea-

surement of these two sample sets. 𝑀𝑀𝐷 (𝑋𝑋𝑋,𝑋𝑋𝑋 ′) = 0 means two

11

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Zhang, et al.

sets are exactly the same. In this experiment, different empirical

graph measures are chosen for𝑋𝑋𝑋 . For example, the continuous-time

average degree distribution of one graph sample is 𝑋𝑋𝑋 𝑖, ∈ R1×|𝑉 | ,
where |𝑉 | is the number of nodes. We can compute𝑀𝑀𝐷 (𝑋𝑋𝑋,𝑋𝑋𝑋) to
see if graphs samples generated from a trained model𝑋𝑋𝑋 is close to

real graph samples𝑋𝑋𝑋 .

A.7 Parameter tuning
These includes a set of hyper-parameters for TG-GAN to achieve

the best performance. They include learning rate [0.003, 0.003],

generator node embedding size [node number / 2], discriminator

node embedding size [node number / 2], 𝐿2 penalty of discriminator

[5𝑒 − 5], 𝐿2 penalty of generator [1𝑒 − 7], up-project of 𝑥,𝑦 [16-64],

up-project of 𝑡 [32-128], up-project of node 𝑣 [32-128], generator

LSTM cell state 𝑐, ℎ [[100, 20], [50, 10], [100], [50]], discriminator

LSTM cell state 𝑐, ℎ [[80, 20], [40, 10], [80], [40]], start tempera-

ture of gumbel-max [5], wasserstein penalty [1, 10], time decoding

methods [Gaussian, Gamma, Beta, Deep random time sampler],

time constraint activation methods [Minmax, clipping, Relu], initial

noise type [Uniform, Gaussian].

A.8 Additional experimental results
Figure 7 shows temporal patterns for the various generated graphs

and compares them to the actual graph. The𝑦 axis is the index of all

nodes and the 𝑥 axis is the index of the discrete-time snapshots. Arcs

between two nodes represent a temporal edge. A comparison across

graphs is facilitated by the small dots on each column representing

nodes as well. The dots repeat across all temporal snapshots. The

figures are created by, first, converting each graph sample to a

snapshot, and then, for each snapshot, summing up counts of an

edge for all graph samples. The darker an edge is, the more edges

it represents based on all the graph samples (normalized values in

a range from 0 to 1).
For user authentication graphs, we observe that this graph is

densely connected in sub-regions of the whole graph. TG-GAN

mimics the real graph topology quite well. GraphRNN and Graph-

VAE show a trend towards similar topology. More training could

potentiall result in better performance. DSBM does not create a

graph close to the actual topology.

For the metro transport graph, a good example of extremely

sparse graphs, one edge is typically for one snapshot. Most of the

temporal edges happen in one or two snapshots. TG-GAN is the

only model to capture this challenging sparse graphs.

For 100-node scale-free synthetic graph, we can see that edges are

connected increasingly as time grows. First, it did agree with typical

scale-free graph pattern though it is a time-dependent growth.

Then, TG-GAN performs the best to mimic this growing connection

pattern. GraphRNN and GraphVAE also capture the overall trends.

Probably, more training would improve their performance. DSBM

do not perform well too.

Time Time Time Time Time Time

Real TG-GAN GraphRNN NetGAN GraphVAE DSBM

N
od
e
In
de
x

N
od
e
In
de
x

N
od
e
In
de
x

Auth.
Graphs

Metro.
Graphs

Scale-free
Graphs [100]

TagGen

Time
Figure 7: Comparison of the real graphs (left), TG-GAN and five comparison methods for three different datasets

12

	Abstract
	1 Introduction
	2 Related Work
	3 Deep Generative Models for Temporal Graph Generation
	3.1 Problem Formulation
	3.2 Overall Architecture
	3.3 Generation via truncated temporal walks with time budgets
	3.4 Time-budgeted temporal walk assembly using the truncated temporal walk generator
	3.5 End-to-end time distribution inference
	3.6 Temporally-valid activations for ensuring time constraints
	3.7 Discriminator LSTM-based classifier design

	4 Experiments
	4.1 Quantitative performance
	4.2 Qualitative analysis
	4.3 Running time analysis

	5 Conclusions
	References
	A Appendix
	A.1 Decoding and encoding operations for categorical data in the generator
	A.2 Gumbel-Max tricks for re-parameterization of categorical data
	A.3 Truncated temporal walk sampler
	A.4 Temporal scale-free random graph simulation
	A.5 Competing methods details
	A.6 MMD
	A.7 Parameter tuning
	A.8 Additional experimental results

