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ABSTRACT
Earth observation data is collected by ever-expanding fleets of satel-

lites including Landsat1-8, Sentinel1 & Sentinel2, SPOT1-7 and

WorldView1-3. These satellites generate at spatial resolutions (pixel

size) from 30m to 31cm and provide revisit rates of as frequent as

every 5 days. This allows us not only to look at high-resolution

images of every corner of the Earth, but also to track events and

observe change over time. During the past 5 years, medium spatial

resolution satellite data (30− 10m pixels) have developed very high

temporal revisit frequencies of 5-16 days and spatial-temporal struc-

tures have been developed to manage these vast data sets. However,

high resolution satellite images and rapidly increasing revisit rates

create major data management and mining challenges. This work

discusses six challenges of integrating observations at different

times, from different sensors, at different spatial resolutions and

different temporal frequencies into a unified Earth Observation

Data Cube, that is, a tensor of location, time, and spectral bands.

Challenges include creating a unified data cube from heterogeneous

sensors, scaling geo-registration (mapping pixel between images),

accounting for uncertainty across observations, imputing missing

observations, broad area event detection, and ultimately, predicting

the future state of our planet. With such a unified Earth Observa-

tion Data Cube in place, we describe potential application areas

such as detecting anthropogenic land cover change, early warning

of natural hazards, tracing movement of animals, finding missing

airplanes, and rapid detection of forest fires.
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1 INTRODUCTION
Due to advances in imaging and satellite technology, an overwhelm-

ing amount of Earth Observation (EO) data is collected and made
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Figure 1: Schematic of an Earth observation data cube

publicly available at an unprecedented spatial and temporal resolu-

tion. For example, the Worldview-3 satellite observes the world at

a resolution of 31cm per pixel 1, which translates into 10.4 million

pixels per km2
, and covers 680, 000km2

a day resulting in more than

7 trillion pixels per day. Data has been collected since 2014 and is

openly available to paying customers [7]. Other programs such as

Landsat [27] and Sentinel-2 [8] now coordinate up to four satellites

to produce a Harmonized Landsat Sentinel2 product, which will

reduce the traditional 16-day revisit frequency of a single Landsat

down to 3 days and creating a flood (or rather a Tsunami) of open

and publicly available data in the process.

Besides frequent satellite imagery, other spatio-temporal environ-

mental data have become publicly available. For example, MERRA-2

Modern-Era Retrospective analysis for Research and Applications

Dataset [10, 24] provides environmental parameters such as temper-

ature, humidity, and precipitation every hour since 1979, but with a

coarser spatial resolution of 50km. MERRA-2 datacubes have been

used, for example, to predict the rapid intensification of tropical

storms [17].

Together, satellite observations of land, oceans and atmosphere

along with models, can capture and monitor the entire earth sys-

tems, up to the scale of the entire Earth. Abstractly speaking, Earth

observation data maps location and time to a series of observa-

tions, such as spectral features (color intensities), temperature, or

precipitation.

1
The panchromatic (greyscale) sensor resolution of Worldview-3 is at 31cm whereas

the multi-spectral (color) sensor has a resolution of 1.24m.
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Definition 1.1 (Observation). LetV = {var1, ...,varN } denote a

set of observable variables. We let O = var1 × ... × varN denote

the observation variable space and we let an observation obs ∈ O

map each variable to a value.

Earth observation data consists of a geolocation, a time (often

aggregated to days), and an observation. Earth observation datasets

can be captured by so-called data cubes [20].

Definition 1.2 (Earth Observation Datacube). Let G = Lat × Lonд
denote a spatial grid, let Time denote a time grid, and let O =

var1 × ... ×varN denote an observation variable space. An Earth

Observation Datacube D := OD∈lat×lonд×T ime
is a three-mode

tensor such thatDlat ∈Lat,lonд∈Lonд,t ∈T ime ∈ O is an observation

made at location (lat , lonд) at time t .

A visual representation of an Earth observation data cube is de-

picted in Figure 1. We note that an Earth observation data cube may

be extremely large. Using 31cm resolution observations as measured

by Worldview-3, the planet spans 2.05 quadrillion pixels, yielding

approximately a |Lat | = 45, 000, 000 by |Lonд | = 45, 000, 000 grid

measured for approximately |Time | = 3000 days since the start of

Worldview-3 in 2013. Thus, for Worldview-3, the corresponding

Datacube D would have more than six quintillion (6 · 1018) cells.

2 TOWARDS A UNIFIED EARTH
OBSERVATION DATA CUBE

Although significant progress has been made to create datacube

standards and operational implementations (e.g., Open DataCube)

[6, 11, 12], a number of challenges have to be solved to create a uni-

fied Earth observation data cube that captures data from different

satellites, at different spatio-temporal resolutions, and with differ-

ent levels of uncertainty. Prior work [20] defines Earth observation

as a collection of data cubes, each pertaining to an individual sensor.

While such an approach is sufficient to analyze individual scenes

and to compare different sensors, it does not allow linking data

across data cubes. To obtain a greater picture (technically, a greater

video) of Earth, it is paramount to unify or link data cubes from

different sensors to provide unified access to observations from a

multitude of sensors.

Challenge 1 (A Unified Earth Observation Data Cube).

Given a collection of Earth observation data cubes. The challenge is
to unify the information across all the data cubes into a single data
cube D.

Such sensors may not only include large Earth observation

projects using state-of-the-art satellite technology, but also include

data observed and volunteered by individuals using drones to ob-

serve small areas that may span only a handful of square kilometers.

We call such data Volunteered Earth Observation Data (VEOD). The
greater challenge will be to integrate such VEOD in a single Earth

observation data cube. Such integration may enabling an era of vol-

unteered Earth observation data where individual users can upload

Earth observation data captured by private drones in a common

and public Earth observation data cube.

Towards Challenge 1, Section 2.1 describes the challenge of co-

registering large-scale Earth observation data cubes, that is, map-

ping the precise locations observed in one observation to the same

(a) Earth Observation Data (b) Co-Registered Land Cover Data

Figure 2: Example of Image Co-Registration

location in another observation. Section 2.2 discusses the challenge

of estimating the uncertainty of observations of individual sensors

and the challenge of minimizing uncertainty across sensors in a

unified data cube. Section 2.3 postulates the challenge of handling

the sparsity of an Earth observation data cube by imputing missing

observations.

2.1 Earth Observation Data Cube Fusion
In remote sensing, multi-sensor image fusion or (co-)registration is

the process of combining relevant information from two or more

images into a single image [4]. The remote sensing community

has already developed algorithms for this purpose [19]. For exam-

ple, Figure 2(a) shows Harmonized Landsat Sentinel-2 (HLS) data

obtained via NASA’s Land Processes Distributed Active Archive

Center (LP DAAC) [1]. To obtain a ground truth of labeled land

cover information (such as forest cover, wetlands, urban, etc.), Fig-

ure 2(b) shows co-registered land cover information obtained from

the United States Geological Survey (USGS) National Land Cover

Database [14]. In a nutshell, co-registration joins two observations

using a matching spatial location as the join predicate. Existing

solutions for co-registration however assume that observed images

capture the same, known area of limited size.

Challenge 2 (Scalable Earth Observation Data Cube Fu-

sion). An open challenge is to scale co-registration algorithms to
a global scale to allow the fusion of whole data cubes, which may
each pertain to quadrillions of observations across space and time, at
different resolutions and levels of data quality.

2.2 Uncertainty Management
Different earth observation sensors capture the planet at different

resolutions and different levels of quality. Drones may capture a

small area of the planet with extremely high centimeter resolution,

some satellites may observe data at 10m resolutionwhile others may

only provide 30m resolution data. How can we integrate all such

observations across data cubes without loss of information? Simply

taking the highest resolution observation will discard information

from lower resolutions which could be used to correct errors. As

observations may be made at different times, it becomes a challenge

when to switch to a more recent but lower resolution observation.

Some observations may also be covered, partially or completely, by

clouds or shadows, thus blurring or masking the true observations

on the ground. Another challenge is that at a given time, some

observations may be obsolete and require extrapolation from the
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Figure 3: Schematic of an Earth observation data cube

most recent observations or interpolation using observations made

at later times.

All these challenges have in common that for a location on

Earth, our information may be uncertain, obsolete, inconsistent, or

contradicting. How can we capture the underlying uncertainty and

leverage uncertainty for more reliable information retrieval and

data mining?

Challenge 3 (Managing Uncertainty in Earth Observa-

tion Data Cubes). Existing Earth Observations Data Cubes store
deterministic values. Due to uncertain, obsolete, inconsistent, or con-
tradicting observations, the true data values are unknown. How can we
capture the inherent uncertainty of observations to improve decision
making?

To tackle this challenge, researchers may be able to leverage ad-

vances in uncertain spatio-temporal data management as surveyed

in recent tutorials [30–32]. Uncertain spatio-temporal databases

treat spatial information as a random variable whose probability

distribution is estimated using observed data. While the size of an

earth observation data cube may make detailed probability distri-

butions infeasible, parametric models may be useful to assess the

variance of each observation as a measure of reliability.

2.3 Imputation of Missing Values
While an Earth Observation Data Cube as defined in Definition 1.2

is extremely large, it is also very sparse. For most (lat , lonд, time)
triples there are typically no available observations in the corre-

sponding location and on the corresponding day. While satellites

like Worldview-3 collect data from vast areas of the Earth each day

(680,000km2
for the case of Worldview-3) this is less than 0.2% of

the total area of 512,072,000km2
of Earth.

Challenge 4 (EarthObservation Imputation). Given a sparse
Earth observation data cube, we formulate the challenge of estimating
what an observation, in the past, would have looked like if a sensor
would have observed it.

A classic approach for tensor imputation uses tensor factoriza-

tion to represent each mode of a tensor by a small set of K latent

features [29] as sketched in Figure 3. Following an encoder-decoder

paradigm, this encoded representation of the tensor is then decoded

(via tensor multiplication) to obtain a data cube having missing

values estimated. While such an approach works well to impute

missing values in non-spatial applications such as recommender

systems (where a tensor may hold user ratings and modes may

correspond to users, products, and context features) (cf. , e.g., [22]),

it is not clear whether such an approach is promising for spatial

data. The problem is that the factorized representation ofK-latitude
features andK-longitude features (as shown on the right of Figure 3)
treats latitude and longitude as independent modes, without any

notion of spatial proximity. A spatially-aware Earth observation

data cube factorization that employs a convolution of space may be

a promising direction to improve the imputation of missing Earth

observations.

3 MINING A UNIFIED EARTH OBSERVATION
DATA CUBE

Having a unified Earth observation data cube at hand will enable

impactful new applications and research directions with major

impact on our lives. Speaking abstractly, an Earth observation data

cube represents a (very large) video of Earth. A first vision of broad

area search is to detect and retrieve events of interest, such as

the location (in space and time) of a missing plane, the location

and movement of protected animals, or an emerging forest fire. A

second vision asks how our planet evolves into the future [2]. How

is climate changing? Which places will suffer from pollution? How

will land cover change in the next decades? This section describes

these two visions in details.

3.1 Broad Spatio-Temporal Area Search
Our ability to extra information and recognize objects on images

and videos has improved tremendously in the last decade, allowing

us to detect objects as videos are streamed [23]. Such solutions can

be used to monitor a region to detect flooding, or forest fires [18]

using high resolution imagery and videos collected by UAVs. A

limiting factor for such approaches is that one first has to know

where to look to find objects of interest. What if a forest fire breaks

out in an area that is not monitored?

To address this problem, we can utilize EOD and monitor the

whole planet at a lower spatial and temporal resolution. Existing

object detection algorithms [23, 26] first scan an image or video for

candidate objects and then use a classifier to identify the type of

object. Earth-wide data cubes contain many objects and the vast

majority of them represents negative examples. A novel challenge

is to develop object detection algorithms capable of processing data

on the scale of the whole planet.

Challenge 5 (Earth-WideObject or EventDetection). Given
an earth observation data cube, a challenge is to detect objects or events
of interest such as forest fires, flooding, and other natural or anthro-
pogenic events automatically, and on a planet-wide scale without a
priori knowledge of the location of these events.

Speaking figuratively, the challenge is to find needles in a haystack,

or “Waldo” in a crowd of people [13].We have capabilities to classify

needles and hay straws and if the image of a person depicts Waldo.

However, efficiently searching through an Earth-wide multi-year

data cube discarding potentially billions of true negatives remains

an open challenge. This challenge may require spatial index struc-

tures and efficient algorithms to quickly identify true negatives with

high confidence, and to leverage parallel and distributed computing

solutions for spatial data [9, 28] to search concurrently in many
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Figure 4: Predicting future states of an Earth observation
data cube. Left: Factorized representation to an EO data cube
with predicted future temporal features. Right: Correspond-
ing decoded datacube with future slices extrapolated viama-
trix multiplication.

places at once. Currently, operational systems are available that

detect, e.g., deforestation in the tropics using time series of Land-

sat imagery, or active fires using the thermal channels of MODIS

satellite sensor. However, these individual systems are tailored to

identifying only one specific phenomenon, or a finite study area

using one or maybe two satellite sensors. The vision of the unified

Data Cube would enable a “God’s Eye view”, which is able to au-

tomatically detect multiple phenomena using a large number of

diverse satellite sensors. Artificial Intelligence will play a central

role in deriving situational awareness and geo-spatial insight from

all the earth observation data.

3.2 Predicting Future Earth
We have gained great capabilities in predicting future states of

complex spatio-temporal systems such as traffic [5, 16], crime [25],

and events [21]. A novel challenge is to leverage these predictive

capabilities to predict future states of the Earth. How will land

cover change in the next years, given specific drivers? How will

urban areas grow under various economic and policy scenarios (and

pandemics)?Will land degradation such as desertification continue?

By forecasting future states of an unified Earth observation data

cube, we may be able to answer such questions.

Challenge 6 (EarthObservation Prediction). Given an Earth
observation data cube D := OD∈lat×lonд×T ime , capturing Earth
observation at past and current times Time a challenge is to predict
future statesD := OD∈lat×lonд×T ime ′ whereTime ′ captures future
times that have not yet been observed.

One approach to estimate future Earth observationsmay leverage

a encoder-decoder framework using non-negative matrix factoriza-

tion as used in recent work to predict states in a traffic network [3].

Such an approach may predict latent features of time in the encoded

latent feature space and decodes these features using matrix mul-

tiplication to predict future observations. Other approaches may

leverage GeoAI to find representations of space and time to predict

future observation of the data cube [15].

4 CONCLUSIONS AND FUTUREWORK
Data cubes are important data management and analysis constructs

when it comes to extracting knowledge from the massive Earth

Observation Data that is being collected by a steeply increasing

number of satellites. This work outlines some of the challenges

when in comes to integrating data at varying spatial an temporal

granularities and coming from different sensors. While there are no

prescribed solutions, integrating such data in one large data cube

or linking across numbers of smaller data cubes, it is paramount to

provide unified access to such data resources. We mention six spe-

cific challenges that relate implementation, i.e., integration, scaling,

uncertainty management, and missing values, as well application-

type problems, i.e., “needle-in-haystack” broad area search, and

prediction of future states (of the Earth). These challenges should

provide a blueprint for geospatial data science research as it relates

to Earth Observation Data.
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